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A b s t r a c t .  We discuss generic formal requirements for reasoning about 
two party key distribution protocols, using a language developed for spec- 
ifying security requirements for security protocols. Typically earlier work 
has considered formal analysis of already developed protocols. Our goal 
is to present sets of formal requirements for various contexts which can 
be applied at the design stage as well as to existing protocols. We use 
a protocol analysis tool we have developed to determine whether or not 
a specific protocol has met some of the requirements we specified. We 
show how this process uncovered a flaw in the protocol and helped us 
refine our requirements. 

1 Introduction 

Recently, there has been a growing interest in the development and use of formal 
methods  to analyze security properties of cryptographic protocols. Together with 
this increased interest, there has been a growing recognition tha t  it is not enough 
to possess a means of formally specifying and analyzing a protocol; one must  also 
have a means of formally specifying the properties that  a protocol must  have. 
One way of gaining greater assurance tha t  one is specifying and verifying the 
correct properties is to develop a formal requirements language that  one can use 
to define the properties one wants to hold for the protocol. Although the use of 
a formal  requirements language will not guarantee by itself tha t  one has thought 
of all necessary protocol requirements, it will at  least assist in understanding 
and using the requirements. 

In an earlier paper,  [10], we set forth such a requirements language tha t  
was intended for use with the NRL Protocol Analyzer, an au tomated  tool for 
specifying and analyzing cryptographic protocols. The Protocol Analyzer verifies 
tha t  a protocol meets a set of requirements by checking tha t  every possible run 
of the protocol is one over which the requirements remain valid (unless of course 
this is not so, in which case the Analyzer shows that  instead). In other words, 
the Protocol Analyzer functions as a semantic model checker with respect to 
the requirements language. In tha t  paper,  we looked at a simple one-sided pure 
authenticat ion protocol to show how one could use the requirements language 
to specify a number  of different requirements. And we showed how we could use 
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the Protocol Analyzer to prove that the protocol met the requirements set forth 
in the language. 

In this paper we provide further evidence of the usefulness of our language 
by using it to specify more realistic protocols. In particular, we use the language 
to define requirements for two-party key distribution protocols with one or more 
servers. These are the types of protocols that have received the most interest 
in the verification literature; so, it is useful to have a set of requirements for 
comparison. 

2 T h e  L a n g u a g e  

Our language contains a denumerable collection of constant singular terms, typ- 
ically represented by letters from the beginning of the alphabet. We also have 
a denumerable collection of variable terms, typically represented by letters from 
the end of the alphabet. We also have, for each n > 1, n-ary function letters 
taking terms of either type as arguments and allowing us to build up functional 
terms in the usual recursive fashion. (We will always indicate whether a term 
is constant or variable if there is any potential for confusion.) We have a de- 
numerable collection of n-ary action symbols for each arity n > 1. These will 
be written as words in typewriter script (e.g., accept). The first argument of 
an action symbol is reserved for a term representing the agent of the action in 
question. An atomic formula consists of an n-ary action symbol, e.g., ' ac t '  fol- 
lowed by an n-tuple of terms. We have the usual logical connectives: -~, A, V, -% 
and *-% and also one temporal operator: ~ .  Complex formulae are built up from 
atomic formulae in the usual recursive fashion. (Note that this is only a formal 
language, not a logic; hence there are no axioms or inference rules.) 

In general, an action symbol will be of the following form. It will have four 
arguments, the first representing the agent of the action in question, the second 
representing the other principals involved in the action, the third representing the 
words involved in the action, and the fourth representing the local round number 
of the agent of the action, where a round number local to a principal identifies 
all actions pertaining to a single session as far as that principal is concerned. 
Action symbols can describe such events as a principal sending a message, the 
learning of a word by the intruder, or a principal's making a change to one or 
more of its local state variables. An action symbol may map to more than one 
event, and for a given event, there may be more than one action symbol mapping 
to it. Requirements are stated in terms of conditions on traces of action symbols. 
For example, we may require that an event indicated by an action symbol can 
only take place if some event indicated by another action symbol has taken place 
previously. 

3 T h e  N R L  P r o t o c o l  A n a l y z e r  

In this section we give a brief overview of the NRL Protocol Analyzer. More 
complete descriptions may be found in [7, 6]. 
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The NRL Protocol Analyzer is a software tool that  can be used either to prove 
theorems about  security properties of cryptographic protocols, or to find flaws if 
the theorems turn out not to be true. The model used by the Protocol Analyzer is 
an extension of the Dolev-Yao model [4]. We assume that  the participants in the 
protocol are communicating in a network under the control of a hostile intruder 
who may also have access to the network as a legitimate user or users. The 
intruder has the ability to read all message traffic, destroy and alter messages, 
and create his own messages. Since all messages pass through the intruder's 
domain, any message that  an honest participant sees can be assumed to originate 
from the intruder. Thus a protocol rule describes, not how one participant sends 
a message in response to another, but how the intruder manipulates the system 
to produce messages by causing principals to receive certain other messages. 

As in Dolev-Yao, the words generated in the protocol obey a set of reduction 
rules ( that  is, rules for reducing words to simpler words), so we can think of 
the protocol as a machine by which the intruder produces words in the term- 
rewriting system. Also, as in Dolev-Yao, we make very strong assumptions about 
the knowledge gained when an intruder observes a message. We assume that  the 
intruder learns the complete significance of each message at the moment  that  
it is observed. Thus, if the intruder sees a string of bits that  is the result of 
encrypting a message from A to B with a session key belonging to A and B, he 
knows that  is what it is, although he will not know either the message or the 
key if he has not observed them. 

A specification in the Protocol Analyzer describes how one moves from one 
state to another via honest participants sending data, honest participants re- 
ceiving data, honest participants manipulating stored data, and the intruder's 
manipulation of data  sent by the honest, participants. Honest principals keep 
track of where they are in the protocol by means of local state variables. A state 
in the Protocol Analyzer is described by some combination of words known by 
the intruder, values of local state variables, and sequences of events that  have 
occurred some time in the past. One uses the NRL Protocol Analyzer by spec- 
ifying an insecure state and at tempting to prove it unreachable. This is done 
by reducing the state space to a manageable size by proving a set of inductive 
lemmas about the unreachability of infinite classes of states and then performing 
an exhaustive search on the remaining state space. If the state is unreachable, 
every path to the state should begin in a state that  was proved unreachable. If 
a state is reachable, the Analyzer should generate a path to the state. One can 
use the Protocol Analyzer to prove that  requirements stated in the requirements 
language are satisfied by mapping action terms to Protocol Analyzer events. One 
then replaces each requirement by its negation and at tempts to prove that  the 
state specified by the negation is not reachable. 
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4 Two party, one server key distribution protocols  

4.1 R e q u i r e m e n t s  f o r  o n e  t i m e  a u t h e n t i c a t i o n  p r o t o c o l s  

We begin with the requirements for a key distribution protocol with a single key 
server. We restrict outselves to the case in which there are two parties involved 
in obtaining keys, one who initiates the protocol, who we designate as the ini- 
t iator,  and the other, who we designate as the receiver. The server can be either 
a separate entity, or the initiator or receiver. For this set of requirements, we 
assume tha t  the server (given that  he is distinct from the two principals) is hon- 
est. Individuals a t t empt ing  to communicate  may  be either honest or dishonest. 
However, we only consider requirements for communication between two honest 
principals together with an honest server. This is because, under our assump- 
tions, if any par ty  is dishonest, they will share the key with the intruder, and so 
the fundamenta l  requirement of key secrecy will not be satisfied. 1 

"There are some obvious requirements on such a protocol. First of all, if a key 
is accepted by an honest principal for communication with another honest prin- 
cipal, it should not be learned by the intruder, either before or after the accept 
event, unless as a result of some key compromise that  is outside the scope of 
the protocol. Secondly, replays of old keys should be avoided. Thus, if a key is 
accepted for communicat ion by honest principal A with honest principal B, it 
should not have been accepted in the past, except possibly by B for communi-  
cation with A. Thirdly, if a key has been accepted for communicat ion between 
A and B, then it should have been generated by a server for use between A 
and B. Finally, we make the more subtle requirement that ,  if A or B accept a 
key for conversation with the other and with A as an initiator, then A did in 
fact initiate the conversation. Thus, A and B cannot be tricked into having a 
conversation tha t  neither one of them initiated. 

We begin by describing the various event s tatements  tha t  are involved in 
informal requirements tha t  we have stated so far. They are as follows. 

- Ini t ia tor  A requests to talk to receiver B: 
request(user(A, honest), user(B, Y ), O, M) 

- Server S sends a key K for communicat ion between A and B: 
send(S, user(A, X), user(B, Y), K, M) 

- Ini t ia tor  A accepts a key for conversation with receiver B: 
ini t_aceept( user( A, honest), user(B, Y ), K, M) 

- Receiver B accepts a key for conversation with initiator A: 
fez_accept(user(B, honest), user(A, X), K, M) 

- Penetrator  P learns a key: 
leaxm(P,  0 ,  K,  M)  

- Key is compromised: 
compromise(envir0nment,  0 ,  K,  M)  

1 In other cases, for example in our analysis of some resource-sharing protocols, we 
develop requirements for the interaction of an honest principal with a possibly dis- 
honest principal 
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We can now set forth the requirements2: 
1. If a key has been accepted, it should not be learned by the intruder, except 

through a compromise event: 

~>( init_aceept( user( A, honest), user(B, honest), K, M1)V 
rec_accept( user( B, honest), user(A, honest), K, M2)) --* 

r O, K, M?) --~ r environment, O, K, M?)) 

2. ff  a key is accepted for communication between two parties, it should 
not have been accepted in the past, except by the other party. This becomes 
two requirements, one for the initiator and one for the receiver. Since these 
requirements are mirror images of each other, we present only the requirement 
for the initiator: 

ini  t_aecept( user( A, honest), user(B, honest), K, M1) 
-~( r $nit_aceept( user( C, honest), user(D, X), K, M?)A 
(r162 honest), user(D, X), K, M?) --+ (C = B A D = A)) 

3. If a key is accepted for communication between two entities, then it must 
have been requested by the initiating entity and sent by a server for communica- 
tion between those two entities. Again, this becomes two requirements, one for 
the initiator and one for the receiver. 

ini t_aceept( user( A, honest), user(B, honest), K, M1) --~ 
~(-end(S, (user(A, honest), user(B, honest)), K, M?)^ 

~ req.e. t(  user( A, honest), user(B, honest), 0, M1)) 

rec_accept( user( B, honest), user(A, honest), K, M2) ---* 
~(.end(S, (user(A, honest), user(B, honest)), K, M?)^ 

~reque.t(user(A, honest), user(B, honest), 0, M?)) 

4.2 Requirements for  r e p e a t e d  a u t h e n t i c a t i o n  

Recently a number of protocols have been proposed that  explicitly include reau- 
thentication of principals to use a previously distributed session key. ([5], [8], 
[12]) When session keys can safely be used for more than the length of a single 
session these protocols provide reauthentication with fewer messages than the 
number required for initial distribution and require fewer session keys to be gen- 
erated (by allowing reuse). This cuts down on expense in communication and 
computation. More importantly, a server is only required for the initial exchange; 
none is necessary for reauthentication. 

Since these protocols may be less familiar than those addressed in the last 
section, we give an example of one, taken from [12]. This example will also be 

2 In all requirements, 'M?' is not really a variable and does not require uniform sub- 
stitution of round numbers. 
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used later to demonstrate specific protocol analysis. It is typical of such protocols 
in that it produces a ticket in the initial exchange to be used during subsequent 
authentication. It is derived from the protocols KSL and NS, presented in [5] 
and [8] respectively. 

Modified Neuman-Stubbleb ine  protocol 

In i t ia l  exchange  

(1) A sends to B: A, N~ 
(2) B sends to S: B, {A, Na, Tb}Kb,, Nb 
(3) S sends to A: {B, N~, Kab , Tb}K.,, {A, Kab, Tb}Kbb, Nb 
(4) A sends to B: {A, Kab, Tb}Kbb, {Nb}K,~ 

The initial exchange is straightforward: it is similar to single round key distri- 
bution protocols, and we mostly use standard notation here. A and B are the 
two principals, and S is the server. Nx is a nonce generated by X and used by 
X to determine freshness. Kxy is a key to be used exclusively for communica- 
tion between X and Y and assumed to be known only to them or those they 
trust. '{Message}g' represents a message encrypted with K, where Message is 
the corresponding cleartext. 'T~' usually indicates a timesta.mp generated by X. 
Here we use Tb to determine the expiration time of the ticket, {A, Kab,Tb}Kbb, 
and associated session key, Kab. This ticket can be used for subsequent authen- 
tication. Following Kehne et al., we use 'Kbb' to represent a key used exclusively 
to produce a ticket to be checked only by B. Not following Kehne et al., the 
ticket key is assumed to be known to the server as well as to B. However, the 
server is expected to use it only for this purpose. And, B is expected to be able 
to detect the error should he receive either a putative ticket encrypted with Kbs 
or a non-ticket encrypted with Kbb. We now give the subsequent authentication 
part of the protocol. 

Subsequent  authent icat ion 

(1') A sends to B: N' ,  {A, Kab, Tb}Kbb 
(2') B sends to A: N~, {N'}K,~ 
(3') A sends to B: {N~}K.b 

In the first message, A generates a new nonce and sends this to B, along with 
the ticket from the initial exchange. B then checks the expiration time of the 
ticket. If the key is still good he generates his own new nonce, which he sends to 
A. He also sends her back the nonce she generated encrypted with the session 
key. Since this key is used only by A and B and since she knows the nonce is 
fresh, upon her receiving this, B will be authenticated to A. Finally, A encrypts 
B's nonce with the session key and sends it back to him, thus authenticating A 
to B. We will return to look at this protocol in more detail below. 

The requirements set out above are for protocols where the distributed key 
is only to be used for one session. While these requirements may be generically 
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adequate for the initial exchange of a protocol allowing repeated authentication, 
further requirements are necessary for the subsequent authentication subpro- 
tocol. Also necessary is a small but  significant change to handle the subtleties 
introduced to our notion of currency by such protocols. Until recently the pri- 
mary  approach to currency, i.e. connection to a particular protocol round, has 
been via authenticat ion and freshness. One showed that  a message was both 
recent and originated by the correct principal in order to show currency to a 
given round. 3 Recently, a number  of papers have shown how to interleave mes- 
sages f rom simultaneous rounds to produce attacks. (Cf., e.g., [1], [3], [9], [11].) 
Against  such interleaving at tacks freshness is no guarantee of currency. 

The  ma t t e r  only becomes more complex for repeat  authentication protocols. 
These protocols need to be concerned simultaneously with currency within a 
round and currency to a class of rounds: we must  make sure tha t  the messages 
involved in the reanthenticat ion are current and that  the session key involved 
is also current. These are two different judgements  of currency. For, if currency 
is bounded only by connection to the initial exchange, then there is no need for 
reauthentication.  And, if currency is relative only to the reauthentication, then 
the session key is no longer current. 

Within  a single protocol round, we must  be concerned with freedom from 
interleaving at tacks (whether it" is the initial exchange or reanthentication tha t  
is executed). However, across multiple reauthentications of a given protocol such 
concern m a y  or may  not be important .  For, if two principals were to have more 
than  one ticket currently acceptable for potential  reauthentication, there may  be 
no problem in a r andom choice of either one to begin a round. In this case, there 
can be no question of interleaving because there is no notion of a single round 
across repeated authentications. On the other hand, if we wanted to reserve spe- 
cific multisession keys for particular types of communication between principals, 
then we could conceivably have interleaving attacks: a principal could be tricked 
into using a key for one class of communicat ion that  was meant  for another. We 
make some small adjustments  to the structure of event s tatements  in order to 
allow enough flexibility to express the types of requirements germane to these 
issues. 

The  event s ta tements  have the usual format  of an action symbol  with four 
arguments.  The  fourth argument,  for round numbers, now is of the form N . M .  
The M indicates the local round number  as before. The N indicates an extended 
local round number,  which may  or may not be required to stay the same across 
repeated authentications. In order to address currency of the session key, the 
third argument  is now an ordered pair, e.g., (K, T). This gives both a key and 
an expirat ion t ime. Note tha t  in the following event s tatements  metalinguistic 
use of ' in i t ia tor '  refers to the initiator of subsequent authentication, who need 
not be the init iator of the initial exchange. Similarly for 'receiver'. In addition to 
the previous event s tatements ,  appropriately reformatted,  we have the following. 

3 We use 'current' as an attempt at a neutral term meaning connected in some appro- 
priate sense to given protocol round(s). 
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- Reauthentication initiator A requests a subsequent session with receiver B: 
rerequest( user( A, honest), user(B, Y), O, N.M) 

- Reauthentication initiator A accepts a key for a subsequent conversation 
with receiver B: 

ini  t_reaccept( user( A, honest), user(B, Y), ( g, T), N.M ) 
- Reauthentication receiver B accepts a key for subsequent conversation with 

initiator A: 
rec_veaccept( user( B, honest), user(A, X), ( g, T), N.M) 

- Session key is assessed to have timed-out by principal A: 
t imeout ( user( A, honest), user(X, Y ), ( K, T), N.M ) 

It might seem that in order for a principal to accept a key for a subsequent 
session we should require that it was properly requested for initial exchange, 
sent by the server, etc. Much of this can be accomplished, however, simply by 
requiring that for a principal to reaccept a key he should have accepted it in a 
previous session. This will in turn force all the requirements that such acceptance 
implies. We can thus focus exclusively on the requirements for the reacceptance 
of the key. 

The requirements are then as follows: 
1. If a key has been accepted for subsequent use, it should not be learned by 

the intruder, except through a compromise event. (This is virtually the same as 
requirement 1 of the last section.) 

~ ( ini  t_r eaccept( user( A, honest), user(B, honest), ( K, T), NI.M1)V 
r ec_r eaccept ( user( B, honest, user(A, honest), ( g, T), N2.M2)) --+ 

0, K, M?) (->r 0, K, M?)) 

2. If a key is accepted for subsequent use, then it should have been previously 
accepted by both principals in an initial exchange. As above, this yields two 
requirements, one for the initiator and one for the receiver. Since one is the 
mirror image of the other, we only give the first of these requirements. 

ini  t_veaccept( user( A, honest), user(B, honest), ( g, T), N1.M1) ---* 
(~(init_accept(user(A, honest), user(B, honest), (g, T), N1.M?)A 
Orec_accept( user( B, honest), user(A, honest), ( K, T), N?.M?))V 
( (~(rec_accept( user( A, honest), user(B, honest), ( g, T), N1.M?)A 
~) ( ini  t_accept( user( B, honest), user(A, honest), ( g, T), N?.M?)) 

3. If a key is accepted for subsequent use, then a subsequent session must be 
requested by the initiator: 

ini  t_reaccept( user( A, honest), user(B, honest), (K, T), N1.M1) -~ 
(~ rerequest( user( A, honest), user(B, honest), ( K, T), NI.M1)) 

rec_reaccept( user( B, honest), user(A, honest), ( K, T), N2.M2) 
 rereque-t(=ser(A, honest), user(B, honest), ( K, T), N?.M? ) ) 
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This requirement assumes that  the request is for authenticating a particular key. 
If we need only that  the request is for the authentication is for some current key 
we have: 

ini  t_veaccept( user( A, honest), user(B, honest), ( K, T), N1.M1) --* 
~>rerequest( user( A, honest), user(B, honest), 0,  N1.M1)) 

rec_veaccept( user( B, honest), user(A, honest), (K, T), N2.M2) --* 
~rerequest(user(A, honest), user(B, honest), 0, N?.M?))  

4. If a key is accepted for subsequent use, it should not have previously 
expired: 

init_veaccopt(user( A, honest), user(B, honest), ( g, T), N1.M1) --~ 
~(~timeout(user(A, honest), user(X, Y), (g, T), N?.M?)))  

r oc_r eaccept ( user( B, honest), user(A, honest), ( K, T), N2.M2) --* 
-~( ~ t imeout( user( S, honest), user(X, Y ), ( g, T), N?.M?)))  

5 Analysis  of a Modified Version of the  NS Protocol  

In this section we describe how we applied the set of requirements developed in 
this paper to use the NRL Protocol Analyzer to evaluate a version of the reau- 
thentication protocol of Neuman and Stubblebine [8]. This lead to the discovery 
of an implementation-dependent flaw similar to the one found in [12] and [2], as 
well as of an attack that  pointed out a place where our requirements might be too 
stringent. As in the earlier case, the discovery of an implementation-dependent 
flaw does not mean that  implementations of the protocol are necessarily or even 
likely to be flawed, but rather that  there is a hidden assumption in the specifi- 
cation whose violation would cause a security flaw. In this case, as in the flaw 
discovered in [12] and [2], the hidden assumption is that  the principals have the 
ability to recognize different types of data, such as keys, nonces, and timestamps. 

In [12] and [2] an attack was found on the Neuman-Stubblebine protocol 
which depends upon the receiver's inability to distinguish a nonce from a key. 
We do not present the attack here, but note that  it depends upon the receiver's 
confusing the message it generates in the second step in the protocol with the 
message it receives in the fourth step. It was conjectured in [12] that  this attack 
could be foiled by using two different encryption keys for the two messages. 
Thus each principal B would share two keys with the server, Kb8 and Kbb. We 
at tempted to verify this claim by applying the NRL Protocol Analyzer to the 
requirements set forth in this paper. What  we found was that,  although the 
attack on the receiver's key no longer succeeded, it was possible to mount a 
similar attack on the initiator's key. 

We did this by specifying the modified Neuman-Stubblebine protocol and 
ran the the NRL Protocol Analyzer on the requirement that,  if a key is accepted 
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as good by the sender, then it must have been requested by the sender and 
subsequently generated by a key server. 

We a t tempted to verify that  the protocol satisfied this requirement by show- 
ing that  the negation of the requirement was unreachable. In other words, we 
a t tempted to show that  there was no path to the state in which the initiator of 
the protocol had accepted a key as good, but  in which the sequence in which 
the initiator requested a key and the key server had generated the key did not 
occur. The Analyzer was able to generate the following path by which such a 
state could be reached. 

(1) A sends to Eb: A, Na 
(1") Eb sends to A: B, Na 
(2*) A sends to Ea:A,{B, Na,Ta}g..,N~ 
(2) Omitted.  
(3) E, sends to A: {B, ga, T.(= {K.b, Tb})}K.., Ga,'bagel, Ga,'bage2 

The attack is subtle, and makes use of the interleaving of two instances of 
the protocol, one initiated by A with B, and one initiated by the intruder acting 
as B at tempting to initiate an instance of the protocol with A. In (1), A sends a 
message to B initiating a session with B. This is intercepted by the intruder E.  In 
(1"), E impersonating B at tempts to initiate a session with A, this t ime sending 
Na as B's nonce. In (2"), A encrypts B's message together with a t imestamp and 
forwards it to S. This message is also intercepted by E. In (3), E forwards the 
encrypted message from (2*) as if it were the server's response to B's response 
to A's initial message. The last two parts of the message are not used by A, so 
E can substitute anything she likes. A decrypts the message and checks for the 
nonce. She then assumes that  Ta must be {Kab, Tb}. 

We also ran the Protocol Analyzer on the same requirement from the point 
of view of a receiver B. In this case we were able to prove that,  if B accepts a 
word as a key, then that  word must have been generated as a key by a key server. 
In other words, B cannot be fooled into accepting a piece of a t imestamp as a 
key. However, if the intruder E is able to find out the t imestamp, then E can 
use Ta to impersonate B to A. Since t imestamps may not be as well protected 
as keys, this may be possible. 

The  success of the attack we found with the Protocol Analyzer relies upon a 
number of assumptions which may or may not hold in the actual implementation 
of the protocol. The first of these is that  t imestamps are of variable length. In 
the last step, A must be able to confuse a t imestamp with a key concatenated 
with a t imestamp. The second assumption is that  the initiator of a protocol does 
not check a t imestamp generated by the receiver. Again, this is not specified by 
Neuman and Stubblebine, but  one could imagine cases in which the receiver 
would want to check a t imestamp in order to avoid replying to messages that  
are obviously out of date. Finally, we must assume that  there is no way A can 
distinquish between keys and timestamps. Thus, for example, there is no field in 
a message to tell A whether to expect the next field to be a t imestamp or a key. 
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In spite of the fact that  it is not likely that  a particular implementation will 
satisfy all these assumptions, knowledge of this attack can be of help in our 
a t t empt  to gain understanding of how to design a protocol for security. It can 
tell us which assumptions we should be careful about relaxing for fear of opening 
up a protocol to attack, and it can tell us which features are relevant to security, 
and thus should be protected against subversion by a hostile intruder. Thus, 
for example, any typing mechanism used in an implementation of the Neuman- 
Stubblebine protocol is relevant to the security of that  protocol, and we must 
be careful to ensure that  the mechanism is strong enough so that  an intruder 
cannot cause a message of one type to be passed off as a message of another. 

Our analysis of the requirements on the conditions under which the receiver 
will accept a key turned up another attack, although in this case the attack 
pointed to a place in which the requirement may be too stringent, rather than 
a flaw in the protocol itself. It was found that  if a compromise event occurs 
right after the server generates a key, the intruder can cause a receiver B to 
accept a key as coming from a sender A even though A never requested it: the 
intruder requests the key while pretending to be A, waits for S to send the key, 
compromises the key, and then impersonates A to B by proving knowledge of 
the key in the final step. We note, however, that  although such an attack could 
be prevented, it is probably not worthwhile to do so. In general, protocols are 
designed to be secure against compromise of keys outside of a given round, not 
within a round. For example, there is no way to recover against an intruder's 
compromising a key during a session except to generate a new session key. Thus 
our discovery of this "attack" shows us that  our requirement is too stringent, 
and it should be modified to one of the following form: 

roe_accopt( user( B, honesl ), user(A, honest), K, M2)A 
-~( ~>(r177 environment, O, K, U ? ) ) )  --* 

 (.end(S, (u.er(A, ho.est ), user(B, honest)), K, i ?  )^ 
 r.qu. t(user(A, honest), user(B, ho.e 0, 0, U?)) 

6 Conclus ion 

In this paper we have shown how a requirements language based on temporal  
logic can be of assistance in the specification and verification of cryptographic 
protocols. One of the disadvantages of currently available logical languages for 
cryptographic protocol analysis is that  for the most part  each protocol has its 
own specification. Our approach goes some way towards a remedy by allowing 
a single set of requirements to specify a whole class of protocols. This has the 
advantage that  a protocol analyst can largely identify the goals of any protocol 
in this class with that  one specification, which seems to be a fairly intuitive way 
to view things. Once the general class of protocol requirements has been iden- 
tified, it is possible to fine-tune the requirements for the particular application. 
This is what we have done in this paper. We first gave a general set of require- 
ments for key distribution protocols involving a key server. We then showed how 
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the requirements should be augmented to handle key reauthentication. Finally, 
we showed how the key reauthentication requirements could be modified to ex- 
press or leave out the requirement for binding reauthenticated keys to the initial 
communication, depending whether or not this was needed. 

Once we have developed a set of requirements, we can use them together 
with a formal analysis of a particular protocol both to help us to understand 
the strengths and weaknesses of the protocol bet ter  and to help us improve our 
understanding of the requirements. In our analysis of the modified Neuman- 
Stubblebine protocol with the NRL Protocol Analyzer, we were able to make 
progress in both  of these areas. Thus we have provided evidence for the usefulness 
of our approach. 
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