
Formal Requirements for Key Distr ibution
Protocols

Paul Syverson and Catherine Meadows

Center for High Assurance Computing Systems
Naval Research Laboratory

Washington, DC 20375
USA

A b s t r a c t . We discuss generic formal requirements for reasoning about
two party key distribution protocols, using a language developed for spec-
ifying security requirements for security protocols. Typically earlier work
has considered formal analysis of already developed protocols. Our goal
is to present sets of formal requirements for various contexts which can
be applied at the design stage as well as to existing protocols. We use
a protocol analysis tool we have developed to determine whether or not
a specific protocol has met some of the requirements we specified. We
show how this process uncovered a flaw in the protocol and helped us
refine our requirements.

1 Introduction

Recently, there has been a growing interest in the development and use of formal
methods to analyze security properties of cryptographic protocols. Together with
this increased interest, there has been a growing recognition tha t it is not enough
to possess a means of formally specifying and analyzing a protocol; one must also
have a means of formally specifying the properties that a protocol must have.
One way of gaining greater assurance tha t one is specifying and verifying the
correct properties is to develop a formal requirements language that one can use
to define the properties one wants to hold for the protocol. Although the use of
a formal requirements language will not guarantee by itself tha t one has thought
of all necessary protocol requirements, it will at least assist in understanding
and using the requirements.

In an earlier paper, [10], we set forth such a requirements language tha t
was intended for use with the NRL Protocol Analyzer, an au tomated tool for
specifying and analyzing cryptographic protocols. The Protocol Analyzer verifies
tha t a protocol meets a set of requirements by checking tha t every possible run
of the protocol is one over which the requirements remain valid (unless of course
this is not so, in which case the Analyzer shows that instead). In other words,
the Protocol Analyzer functions as a semantic model checker with respect to
the requirements language. In tha t paper, we looked at a simple one-sided pure
authenticat ion protocol to show how one could use the requirements language
to specify a number of different requirements. And we showed how we could use

321

the Protocol Analyzer to prove that the protocol met the requirements set forth
in the language.

In this paper we provide further evidence of the usefulness of our language
by using it to specify more realistic protocols. In particular, we use the language
to define requirements for two-party key distribution protocols with one or more
servers. These are the types of protocols that have received the most interest
in the verification literature; so, it is useful to have a set of requirements for
comparison.

2 T h e L a n g u a g e

Our language contains a denumerable collection of constant singular terms, typ-
ically represented by letters from the beginning of the alphabet. We also have
a denumerable collection of variable terms, typically represented by letters from
the end of the alphabet. We also have, for each n > 1, n-ary function letters
taking terms of either type as arguments and allowing us to build up functional
terms in the usual recursive fashion. (We will always indicate whether a term
is constant or variable if there is any potential for confusion.) We have a de-
numerable collection of n-ary action symbols for each arity n > 1. These will
be written as words in typewriter script (e.g., accept). The first argument of
an action symbol is reserved for a term representing the agent of the action in
question. An atomic formula consists of an n-ary action symbol, e.g., ' ac t ' fol-
lowed by an n-tuple of terms. We have the usual logical connectives: -~, A, V, -%
and *-% and also one temporal operator: ~ . Complex formulae are built up from
atomic formulae in the usual recursive fashion. (Note that this is only a formal
language, not a logic; hence there are no axioms or inference rules.)

In general, an action symbol will be of the following form. It will have four
arguments, the first representing the agent of the action in question, the second
representing the other principals involved in the action, the third representing the
words involved in the action, and the fourth representing the local round number
of the agent of the action, where a round number local to a principal identifies
all actions pertaining to a single session as far as that principal is concerned.
Action symbols can describe such events as a principal sending a message, the
learning of a word by the intruder, or a principal's making a change to one or
more of its local state variables. An action symbol may map to more than one
event, and for a given event, there may be more than one action symbol mapping
to it. Requirements are stated in terms of conditions on traces of action symbols.
For example, we may require that an event indicated by an action symbol can
only take place if some event indicated by another action symbol has taken place
previously.

3 T h e N R L P r o t o c o l A n a l y z e r

In this section we give a brief overview of the NRL Protocol Analyzer. More
complete descriptions may be found in [7, 6].

322

The NRL Protocol Analyzer is a software tool that can be used either to prove
theorems about security properties of cryptographic protocols, or to find flaws if
the theorems turn out not to be true. The model used by the Protocol Analyzer is
an extension of the Dolev-Yao model [4]. We assume that the participants in the
protocol are communicating in a network under the control of a hostile intruder
who may also have access to the network as a legitimate user or users. The
intruder has the ability to read all message traffic, destroy and alter messages,
and create his own messages. Since all messages pass through the intruder's
domain, any message that an honest participant sees can be assumed to originate
from the intruder. Thus a protocol rule describes, not how one participant sends
a message in response to another, but how the intruder manipulates the system
to produce messages by causing principals to receive certain other messages.

As in Dolev-Yao, the words generated in the protocol obey a set of reduction
rules (that is, rules for reducing words to simpler words), so we can think of
the protocol as a machine by which the intruder produces words in the term-
rewriting system. Also, as in Dolev-Yao, we make very strong assumptions about
the knowledge gained when an intruder observes a message. We assume that the
intruder learns the complete significance of each message at the moment that
it is observed. Thus, if the intruder sees a string of bits that is the result of
encrypting a message from A to B with a session key belonging to A and B, he
knows that is what it is, although he will not know either the message or the
key if he has not observed them.

A specification in the Protocol Analyzer describes how one moves from one
state to another via honest participants sending data, honest participants re-
ceiving data, honest participants manipulating stored data, and the intruder's
manipulation of data sent by the honest, participants. Honest principals keep
track of where they are in the protocol by means of local state variables. A state
in the Protocol Analyzer is described by some combination of words known by
the intruder, values of local state variables, and sequences of events that have
occurred some time in the past. One uses the NRL Protocol Analyzer by spec-
ifying an insecure state and at tempting to prove it unreachable. This is done
by reducing the state space to a manageable size by proving a set of inductive
lemmas about the unreachability of infinite classes of states and then performing
an exhaustive search on the remaining state space. If the state is unreachable,
every path to the state should begin in a state that was proved unreachable. If
a state is reachable, the Analyzer should generate a path to the state. One can
use the Protocol Analyzer to prove that requirements stated in the requirements
language are satisfied by mapping action terms to Protocol Analyzer events. One
then replaces each requirement by its negation and at tempts to prove that the
state specified by the negation is not reachable.

323

4 Two party, one server key distribution protocols

4.1 R e q u i r e m e n t s f o r o n e t i m e a u t h e n t i c a t i o n p r o t o c o l s

We begin with the requirements for a key distribution protocol with a single key
server. We restrict outselves to the case in which there are two parties involved
in obtaining keys, one who initiates the protocol, who we designate as the ini-
t iator, and the other, who we designate as the receiver. The server can be either
a separate entity, or the initiator or receiver. For this set of requirements, we
assume tha t the server (given that he is distinct from the two principals) is hon-
est. Individuals a t t empt ing to communicate may be either honest or dishonest.
However, we only consider requirements for communication between two honest
principals together with an honest server. This is because, under our assump-
tions, if any par ty is dishonest, they will share the key with the intruder, and so
the fundamenta l requirement of key secrecy will not be satisfied. 1

"There are some obvious requirements on such a protocol. First of all, if a key
is accepted by an honest principal for communication with another honest prin-
cipal, it should not be learned by the intruder, either before or after the accept
event, unless as a result of some key compromise that is outside the scope of
the protocol. Secondly, replays of old keys should be avoided. Thus, if a key is
accepted for communicat ion by honest principal A with honest principal B, it
should not have been accepted in the past, except possibly by B for communi-
cation with A. Thirdly, if a key has been accepted for communicat ion between
A and B, then it should have been generated by a server for use between A
and B. Finally, we make the more subtle requirement that , if A or B accept a
key for conversation with the other and with A as an initiator, then A did in
fact initiate the conversation. Thus, A and B cannot be tricked into having a
conversation tha t neither one of them initiated.

We begin by describing the various event s tatements tha t are involved in
informal requirements tha t we have stated so far. They are as follows.

- Ini t ia tor A requests to talk to receiver B:
request(user(A, honest), user(B, Y), O, M)

- Server S sends a key K for communicat ion between A and B:
send(S, user(A, X), user(B, Y), K, M)

- Ini t ia tor A accepts a key for conversation with receiver B:
ini t_aceept(user(A, honest), user(B, Y), K, M)

- Receiver B accepts a key for conversation with initiator A:
fez_accept(user(B, honest), user(A, X), K, M)

- Penetrator P learns a key:
leaxm(P, 0 , K, M)

- Key is compromised:
compromise(envir0nment, 0 , K, M)

1 In other cases, for example in our analysis of some resource-sharing protocols, we
develop requirements for the interaction of an honest principal with a possibly dis-
honest principal

324

We can now set forth the requirements2:
1. If a key has been accepted, it should not be learned by the intruder, except

through a compromise event:

~>(init_aceept(user(A, honest), user(B, honest), K, M1)V
rec_accept(user(B, honest), user(A, honest), K, M2)) --*

r O, K, M?) --~ r environment, O, K, M?))

2. ff a key is accepted for communication between two parties, it should
not have been accepted in the past, except by the other party. This becomes
two requirements, one for the initiator and one for the receiver. Since these
requirements are mirror images of each other, we present only the requirement
for the initiator:

ini t_aecept(user(A, honest), user(B, honest), K, M1)
-~(r $nit_aceept(user(C, honest), user(D, X), K, M?)A
(r162 honest), user(D, X), K, M?) --+ (C = B A D = A))

3. If a key is accepted for communication between two entities, then it must
have been requested by the initiating entity and sent by a server for communica-
tion between those two entities. Again, this becomes two requirements, one for
the initiator and one for the receiver.

ini t_aceept(user(A, honest), user(B, honest), K, M1) --~
~(-end(S, (user(A, honest), user(B, honest)), K, M?)^

~ req.e. t(user(A, honest), user(B, honest), 0, M1))

rec_accept(user(B, honest), user(A, honest), K, M2) ---*
~(.end(S, (user(A, honest), user(B, honest)), K, M?)^

~reque.t(user(A, honest), user(B, honest), 0, M?))

4.2 Requirements for r e p e a t e d a u t h e n t i c a t i o n

Recently a number of protocols have been proposed that explicitly include reau-
thentication of principals to use a previously distributed session key. ([5], [8],
[12]) When session keys can safely be used for more than the length of a single
session these protocols provide reauthentication with fewer messages than the
number required for initial distribution and require fewer session keys to be gen-
erated (by allowing reuse). This cuts down on expense in communication and
computation. More importantly, a server is only required for the initial exchange;
none is necessary for reauthentication.

Since these protocols may be less familiar than those addressed in the last
section, we give an example of one, taken from [12]. This example will also be

2 In all requirements, 'M?' is not really a variable and does not require uniform sub-
stitution of round numbers.

325

used later to demonstrate specific protocol analysis. It is typical of such protocols
in that it produces a ticket in the initial exchange to be used during subsequent
authentication. It is derived from the protocols KSL and NS, presented in [5]
and [8] respectively.

Modified Neuman-Stubbleb ine protocol

In i t ia l exchange

(1) A sends to B: A, N~
(2) B sends to S: B, {A, Na, Tb}Kb,, Nb
(3) S sends to A: {B, N~, Kab , Tb}K.,, {A, Kab, Tb}Kbb, Nb
(4) A sends to B: {A, Kab, Tb}Kbb, {Nb}K,~

The initial exchange is straightforward: it is similar to single round key distri-
bution protocols, and we mostly use standard notation here. A and B are the
two principals, and S is the server. Nx is a nonce generated by X and used by
X to determine freshness. Kxy is a key to be used exclusively for communica-
tion between X and Y and assumed to be known only to them or those they
trust. '{Message}g' represents a message encrypted with K, where Message is
the corresponding cleartext. 'T~' usually indicates a timesta.mp generated by X.
Here we use Tb to determine the expiration time of the ticket, {A, Kab,Tb}Kbb,
and associated session key, Kab. This ticket can be used for subsequent authen-
tication. Following Kehne et al., we use 'Kbb' to represent a key used exclusively
to produce a ticket to be checked only by B. Not following Kehne et al., the
ticket key is assumed to be known to the server as well as to B. However, the
server is expected to use it only for this purpose. And, B is expected to be able
to detect the error should he receive either a putative ticket encrypted with Kbs
or a non-ticket encrypted with Kbb. We now give the subsequent authentication
part of the protocol.

Subsequent authent icat ion

(1') A sends to B: N' , {A, Kab, Tb}Kbb
(2') B sends to A: N~, {N'}K,~
(3') A sends to B: {N~}K.b

In the first message, A generates a new nonce and sends this to B, along with
the ticket from the initial exchange. B then checks the expiration time of the
ticket. If the key is still good he generates his own new nonce, which he sends to
A. He also sends her back the nonce she generated encrypted with the session
key. Since this key is used only by A and B and since she knows the nonce is
fresh, upon her receiving this, B will be authenticated to A. Finally, A encrypts
B's nonce with the session key and sends it back to him, thus authenticating A
to B. We will return to look at this protocol in more detail below.

The requirements set out above are for protocols where the distributed key
is only to be used for one session. While these requirements may be generically

326

adequate for the initial exchange of a protocol allowing repeated authentication,
further requirements are necessary for the subsequent authentication subpro-
tocol. Also necessary is a small but significant change to handle the subtleties
introduced to our notion of currency by such protocols. Until recently the pri-
mary approach to currency, i.e. connection to a particular protocol round, has
been via authenticat ion and freshness. One showed that a message was both
recent and originated by the correct principal in order to show currency to a
given round. 3 Recently, a number of papers have shown how to interleave mes-
sages f rom simultaneous rounds to produce attacks. (Cf., e.g., [1], [3], [9], [11].)
Against such interleaving at tacks freshness is no guarantee of currency.

The ma t t e r only becomes more complex for repeat authentication protocols.
These protocols need to be concerned simultaneously with currency within a
round and currency to a class of rounds: we must make sure tha t the messages
involved in the reanthenticat ion are current and that the session key involved
is also current. These are two different judgements of currency. For, if currency
is bounded only by connection to the initial exchange, then there is no need for
reauthentication. And, if currency is relative only to the reauthentication, then
the session key is no longer current.

Within a single protocol round, we must be concerned with freedom from
interleaving at tacks (whether it" is the initial exchange or reanthentication tha t
is executed). However, across multiple reauthentications of a given protocol such
concern m a y or may not be important . For, if two principals were to have more
than one ticket currently acceptable for potential reauthentication, there may be
no problem in a r andom choice of either one to begin a round. In this case, there
can be no question of interleaving because there is no notion of a single round
across repeated authentications. On the other hand, if we wanted to reserve spe-
cific multisession keys for particular types of communication between principals,
then we could conceivably have interleaving attacks: a principal could be tricked
into using a key for one class of communicat ion that was meant for another. We
make some small adjustments to the structure of event s tatements in order to
allow enough flexibility to express the types of requirements germane to these
issues.

The event s ta tements have the usual format of an action symbol with four
arguments. The fourth argument, for round numbers, now is of the form N . M .
The M indicates the local round number as before. The N indicates an extended
local round number, which may or may not be required to stay the same across
repeated authentications. In order to address currency of the session key, the
third argument is now an ordered pair, e.g., (K, T). This gives both a key and
an expirat ion t ime. Note tha t in the following event s tatements metalinguistic
use of ' in i t ia tor ' refers to the initiator of subsequent authentication, who need
not be the init iator of the initial exchange. Similarly for 'receiver'. In addition to
the previous event s tatements , appropriately reformatted, we have the following.

3 We use 'current' as an attempt at a neutral term meaning connected in some appro-
priate sense to given protocol round(s).

327

- Reauthentication initiator A requests a subsequent session with receiver B:
rerequest(user(A, honest), user(B, Y), O, N.M)

- Reauthentication initiator A accepts a key for a subsequent conversation
with receiver B:

ini t_reaccept(user(A, honest), user(B, Y), (g, T), N.M)
- Reauthentication receiver B accepts a key for subsequent conversation with

initiator A:
rec_veaccept(user(B, honest), user(A, X), (g, T), N.M)

- Session key is assessed to have timed-out by principal A:
t imeout (user(A, honest), user(X, Y), (K, T), N.M)

It might seem that in order for a principal to accept a key for a subsequent
session we should require that it was properly requested for initial exchange,
sent by the server, etc. Much of this can be accomplished, however, simply by
requiring that for a principal to reaccept a key he should have accepted it in a
previous session. This will in turn force all the requirements that such acceptance
implies. We can thus focus exclusively on the requirements for the reacceptance
of the key.

The requirements are then as follows:
1. If a key has been accepted for subsequent use, it should not be learned by

the intruder, except through a compromise event. (This is virtually the same as
requirement 1 of the last section.)

~ (ini t_r eaccept(user(A, honest), user(B, honest), (K, T), NI.M1)V
r ec_r eaccept (user(B, honest, user(A, honest), (g, T), N2.M2)) --+

0, K, M?) (->r 0, K, M?))

2. If a key is accepted for subsequent use, then it should have been previously
accepted by both principals in an initial exchange. As above, this yields two
requirements, one for the initiator and one for the receiver. Since one is the
mirror image of the other, we only give the first of these requirements.

ini t_veaccept(user(A, honest), user(B, honest), (g, T), N1.M1) ---*
(~(init_accept(user(A, honest), user(B, honest), (g, T), N1.M?)A
Orec_accept(user(B, honest), user(A, honest), (K, T), N?.M?))V
((~(rec_accept(user(A, honest), user(B, honest), (g, T), N1.M?)A
~) (ini t_accept(user(B, honest), user(A, honest), (g, T), N?.M?))

3. If a key is accepted for subsequent use, then a subsequent session must be
requested by the initiator:

ini t_reaccept(user(A, honest), user(B, honest), (K, T), N1.M1) -~
(~ rerequest(user(A, honest), user(B, honest), (K, T), NI.M1))

rec_reaccept(user(B, honest), user(A, honest), (K, T), N2.M2)
 rereque-t(=ser(A, honest), user(B, honest), (K, T), N?.M?))

328

This requirement assumes that the request is for authenticating a particular key.
If we need only that the request is for the authentication is for some current key
we have:

ini t_veaccept(user(A, honest), user(B, honest), (K, T), N1.M1) --*
~>rerequest(user(A, honest), user(B, honest), 0, N1.M1))

rec_veaccept(user(B, honest), user(A, honest), (K, T), N2.M2) --*
~rerequest(user(A, honest), user(B, honest), 0, N?.M?))

4. If a key is accepted for subsequent use, it should not have previously
expired:

init_veaccopt(user(A, honest), user(B, honest), (g, T), N1.M1) --~
~(~timeout(user(A, honest), user(X, Y), (g, T), N?.M?)))

r oc_r eaccept (user(B, honest), user(A, honest), (K, T), N2.M2) --*
-~(~ t imeout(user(S, honest), user(X, Y), (g, T), N?.M?)))

5 Analysis of a Modified Version of the NS Protocol

In this section we describe how we applied the set of requirements developed in
this paper to use the NRL Protocol Analyzer to evaluate a version of the reau-
thentication protocol of Neuman and Stubblebine [8]. This lead to the discovery
of an implementation-dependent flaw similar to the one found in [12] and [2], as
well as of an attack that pointed out a place where our requirements might be too
stringent. As in the earlier case, the discovery of an implementation-dependent
flaw does not mean that implementations of the protocol are necessarily or even
likely to be flawed, but rather that there is a hidden assumption in the specifi-
cation whose violation would cause a security flaw. In this case, as in the flaw
discovered in [12] and [2], the hidden assumption is that the principals have the
ability to recognize different types of data, such as keys, nonces, and timestamps.

In [12] and [2] an attack was found on the Neuman-Stubblebine protocol
which depends upon the receiver's inability to distinguish a nonce from a key.
We do not present the attack here, but note that it depends upon the receiver's
confusing the message it generates in the second step in the protocol with the
message it receives in the fourth step. It was conjectured in [12] that this attack
could be foiled by using two different encryption keys for the two messages.
Thus each principal B would share two keys with the server, Kb8 and Kbb. We
at tempted to verify this claim by applying the NRL Protocol Analyzer to the
requirements set forth in this paper. What we found was that, although the
attack on the receiver's key no longer succeeded, it was possible to mount a
similar attack on the initiator's key.

We did this by specifying the modified Neuman-Stubblebine protocol and
ran the the NRL Protocol Analyzer on the requirement that, if a key is accepted

329

as good by the sender, then it must have been requested by the sender and
subsequently generated by a key server.

We a t tempted to verify that the protocol satisfied this requirement by show-
ing that the negation of the requirement was unreachable. In other words, we
a t tempted to show that there was no path to the state in which the initiator of
the protocol had accepted a key as good, but in which the sequence in which
the initiator requested a key and the key server had generated the key did not
occur. The Analyzer was able to generate the following path by which such a
state could be reached.

(1) A sends to Eb: A, Na
(1") Eb sends to A: B, Na
(2*) A sends to Ea:A,{B, Na,Ta}g..,N~
(2) Omitted.
(3) E, sends to A: {B, ga, T.(= {K.b, Tb})}K.., Ga,'bagel, Ga,'bage2

The attack is subtle, and makes use of the interleaving of two instances of
the protocol, one initiated by A with B, and one initiated by the intruder acting
as B at tempting to initiate an instance of the protocol with A. In (1), A sends a
message to B initiating a session with B. This is intercepted by the intruder E. In
(1"), E impersonating B at tempts to initiate a session with A, this t ime sending
Na as B's nonce. In (2"), A encrypts B's message together with a t imestamp and
forwards it to S. This message is also intercepted by E. In (3), E forwards the
encrypted message from (2*) as if it were the server's response to B's response
to A's initial message. The last two parts of the message are not used by A, so
E can substitute anything she likes. A decrypts the message and checks for the
nonce. She then assumes that Ta must be {Kab, Tb}.

We also ran the Protocol Analyzer on the same requirement from the point
of view of a receiver B. In this case we were able to prove that, if B accepts a
word as a key, then that word must have been generated as a key by a key server.
In other words, B cannot be fooled into accepting a piece of a t imestamp as a
key. However, if the intruder E is able to find out the t imestamp, then E can
use Ta to impersonate B to A. Since t imestamps may not be as well protected
as keys, this may be possible.

The success of the attack we found with the Protocol Analyzer relies upon a
number of assumptions which may or may not hold in the actual implementation
of the protocol. The first of these is that t imestamps are of variable length. In
the last step, A must be able to confuse a t imestamp with a key concatenated
with a t imestamp. The second assumption is that the initiator of a protocol does
not check a t imestamp generated by the receiver. Again, this is not specified by
Neuman and Stubblebine, but one could imagine cases in which the receiver
would want to check a t imestamp in order to avoid replying to messages that
are obviously out of date. Finally, we must assume that there is no way A can
distinquish between keys and timestamps. Thus, for example, there is no field in
a message to tell A whether to expect the next field to be a t imestamp or a key.

330

In spite of the fact that it is not likely that a particular implementation will
satisfy all these assumptions, knowledge of this attack can be of help in our
a t t empt to gain understanding of how to design a protocol for security. It can
tell us which assumptions we should be careful about relaxing for fear of opening
up a protocol to attack, and it can tell us which features are relevant to security,
and thus should be protected against subversion by a hostile intruder. Thus,
for example, any typing mechanism used in an implementation of the Neuman-
Stubblebine protocol is relevant to the security of that protocol, and we must
be careful to ensure that the mechanism is strong enough so that an intruder
cannot cause a message of one type to be passed off as a message of another.

Our analysis of the requirements on the conditions under which the receiver
will accept a key turned up another attack, although in this case the attack
pointed to a place in which the requirement may be too stringent, rather than
a flaw in the protocol itself. It was found that if a compromise event occurs
right after the server generates a key, the intruder can cause a receiver B to
accept a key as coming from a sender A even though A never requested it: the
intruder requests the key while pretending to be A, waits for S to send the key,
compromises the key, and then impersonates A to B by proving knowledge of
the key in the final step. We note, however, that although such an attack could
be prevented, it is probably not worthwhile to do so. In general, protocols are
designed to be secure against compromise of keys outside of a given round, not
within a round. For example, there is no way to recover against an intruder's
compromising a key during a session except to generate a new session key. Thus
our discovery of this "attack" shows us that our requirement is too stringent,
and it should be modified to one of the following form:

roe_accopt(user(B, honesl), user(A, honest), K, M2)A
-~(~>(r177 environment, O, K, U ?))) --*

 (.end(S, (u.er(A, ho.est), user(B, honest)), K, i ?)^
 r.qu. t(user(A, honest), user(B, ho.e 0, 0, U?))

6 Conclus ion

In this paper we have shown how a requirements language based on temporal
logic can be of assistance in the specification and verification of cryptographic
protocols. One of the disadvantages of currently available logical languages for
cryptographic protocol analysis is that for the most part each protocol has its
own specification. Our approach goes some way towards a remedy by allowing
a single set of requirements to specify a whole class of protocols. This has the
advantage that a protocol analyst can largely identify the goals of any protocol
in this class with that one specification, which seems to be a fairly intuitive way
to view things. Once the general class of protocol requirements has been iden-
tified, it is possible to fine-tune the requirements for the particular application.
This is what we have done in this paper. We first gave a general set of require-
ments for key distribution protocols involving a key server. We then showed how

331

the requirements should be augmented to handle key reauthentication. Finally,
we showed how the key reauthentication requirements could be modified to ex-
press or leave out the requirement for binding reauthenticated keys to the initial
communication, depending whether or not this was needed.

Once we have developed a set of requirements, we can use them together
with a formal analysis of a particular protocol both to help us to understand
the strengths and weaknesses of the protocol bet ter and to help us improve our
understanding of the requirements. In our analysis of the modified Neuman-
Stubblebine protocol with the NRL Protocol Analyzer, we were able to make
progress in both of these areas. Thus we have provided evidence for the usefulness
of our approach.

References

1. Ray Bird, Inder Gopal, Amir Herzberg, Phil Janson, Shay Kutten, Refik Molva,
and Moti Yung. Systematic Design of Two-Party Authentication Protocols. In
Joan Feigenbaum, editor, Advances in Cryptology - - CRYPTO '91, volume 576 of
Lecture Notes in Computer Science. Springer Verlag, Berlin, 1992.

2. Ulf Carlsen. Using Logics to Detect Implementation-Dependent Flaws. In Pro-
ceedings of the Ninth Annual Computer Security Applications Conference, pages
64-73. IEEE Computer Society Press, Los Alamitos, California, December 1993.

3. Whitfield Dime, Paul C. van Oorschot, and Michael J. Wiener. Authentication
and Authenticated Key Exchanges. Designs, Codes, and Cryptography, 2:107-125,
1992.

4. D. Dolev and A. Yao. On the Security of Public Key Protocols. 1EEE Transactions
on Information Theory, 29(2):198-208, March 1983.

5. Kehne, Schfnw~lder, and Langendfffer. A Nonce-Based Protocol for Multiple
Authentications. Operating Systems Review, 26(4):84-89, October 1992.

6. Richard Kemmerer, Catherine Meadows, and Jonathan Millen. Three Systems for
Cryptographic Protocol Analysis. Journal of Cryptology, 7(2):79-130, 1994.

7. C. Meadows. Applying Formal Methods to the Analysis of a Key Management
Protocol. Journal of Computer Security, 1:5-53, 1992.

8. B. Clifford Neuman and Stuart G. Stubblebine. A Note on the Use of Timestamps
as Nonces. Operating Systems Review, 27(2):10-14, April 1993.

9. Einar Snekkenes. Roles in Cryptographic Protocols. In Proceedings of the 199~
1EEE Computer Society Symposium on Research in Security and Privacy. IEEE
Computer Society Press, Los Alamitos, California, 1992.

10. Paul Syverson and Catherine Meadows. A Logical Language for Specifying Cryp-
tographic Protocol Requirements. In Proceedings of the 1993 IEEE Computer
Society Symposium on Research in Security and Privacy, pages 165-177. IEEE
Computer Society Press, Los Alamitos, California, 1993.

11. Paul F. Syverson. Adding Time to a Logic of Authentication. In Proceedings of the
First A CM Conference on Computer and Communications Security, pages 97-101.
ACM Press, New York, November 1993.

12. Paul F. Syverson. On Key Distribution Protocols for Repeated Authentication.
Operating Systems Review, 27(4):24-30, October 1993.

