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Abs t rac t .  In this paper we present several new potentially weak (pairs 
of) keys for DES, LOKI89 and LOKIgl. 

1 I n t r o d u c t i o n  

In this paper we consider DES-like iterative ciphers in particular the DES [5] and 
the LOKI ciphers, LOKI'8912] and LOKI'9113]. In these ciphers the ciphertext is 
calculated by recursively applying a round function to the plaintext. We expect 
the reader to be familiar with the basic concepts of differential cryptanalysis and 
refer to [1, 7] for further details. 

In this paper we show how to use the 'differential techniques' to find new 
classes of weak keys for DES-like iterated ciphers. We found several pairs of 
keys, qua s i  w e a k  keys ,  for which there exist a simple relation between the DES- 
permutat ions induced by pairs of keys. Furthermore we define w eak  h a s h  keys  
for DES-like i terated ciphers and show several of these for the LOKI ciphers. 

2 DES 

The F-function of the DES is defined F(Ki, Ri-1) = P(S(E(Ri-1)~Ki)) ,  where 
E is an expansion of 32 bits to 48 bits, S consist of 8 S-boxes each substituting 
a 6 bit value by a 4 bit value, P is a permutat ion of 32 bits and Ki is a 48-bit 
round key derived from a key schedule algorithm. In [6] it is shown that  to have 
equal outputs  of the F-function with two different inputs using the same key, 
the inputs must be different in the inputs to at least 3 neighboring S-boxes. We 
state here a converse result, i.e. 

L e m m a  1 ( D E S )  There exist pairs of round keys different in the inputs to only 
o n e  S-box, s.t. using the same (text)input, equal outputs of the F-function are 
obtained. 

Proof: Because the keys are added to the input after the expansion, they do not 
(automatically) affect neighboring S-boxes. [] 
Furthermore there exist many pairs of 48 bit keys Ki and K~ different in the 
inputs to only one S-box, s.t. equal inputs lead to equal outputs in one round of 
encryption. 
We can use Lemma 1 to find what we will call quas i  w eak  keys  for DES. 
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2.1 Q u a s i  w e a k  k e y s  for  D E S  

According to Shannons concept of diffusion, there should be no simple relation 
between the two functions DESK(.)  and DESK.  (.) for any two keys K and K*.  
The  well-known exceptions are the weak and semi-weak keys, a total  of 16 for 
DES. We show tha t  for several other pairs of keys for the DES there exists a 
simple relation between the encryption functions, at least for a fraction of all 
plaintexts. 
T h e  k e y  s c h e d u l e  o f  t h e  D E S .  The input is a 64 bit key. First the key is 
permuted  and the pari ty bits are removed. This permuta t ion  has no importance 
for what  we are about  to show and we assume in the following that  the input is 
a 56 bit  (permuted)  key. The 56 bits are divided into two blocks Co and Do of 
28 bits each. The round keys K~ for i -- 1, ..., 16 are defined Ki = PC2(C~ II D~), 
where C / =  LSi(Ci_I), Di = LSi(Di-1),  PC2 is a permutat ion and where LSi is 
a left circular shift by the no. of positions given in Table 1. Alternatively, we could 

i 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6  
[ht] LSi 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1 

a[s~ 1 2 4 6 8 1 0 1 2 1 4 1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 8  

Table  1. The circular shifts in the key schedule of DES 

define Li(Co liD0) = (LSa[i](Co) II LSa[i](Do)), where a[z] is the accumulated 
number  of shifts given in Table 1 and then define Ki = PC2(Li(K)) ,  where 
K -- (Co II Do), the 56 bit key. In the following we will use the alternative 
definition of the key schedule of DES. 

T h e o r e m  1 ( D E S )  For every key K,  there exists a key K*, s.t. 

g i + l  = K*,  for i E {2, ..., 7} U {9, ..., 14} 

i.e. K and K* have 12 common round keys. 

Proof: Suppose we are given the key K.  Set K* : L2(K),  where L is defined as 
above. Now it follows easily that  

K3 = PC2(L4(K))  = PC2(L2(K*)) = K~. 

And similarly, Ki+l  = K* for i = 2, ..., 7. Further, K9 = PC2(L17(K)) and K~ = 
PC2(L14(K*)) = PC2(L16(K)). Hereafter the round keys get 're-synchronized',  
since 

g l 0  = PC2(L17(K)) = PC2(L15(K*)) = K~. 

And Ki+l = K* for i = 9, ..., 14. [:3 

T h e o r e m  2 ( D E S )  There exist 256 pairs of keys K and K*, s.t. 

Ki+t  = g * ,  for i e {2, ..., 14} 

i.e. K and K* have 13 common round keys. 
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For these pairs of keys we found that there is some connection between the two 
encryption functions defined by the pair. In the following 5i and ej denote 32 bit 
values. For every pair {6i, e/} a probability Pij is connected. 

T h e o r e m  3 (DES) Let K and K* be a pair of keys from Th. 2. Then for all 
plaintexts, P, there exist a pair {6i, Q} and a probability Pi,j, s.t. with 
P = P L [ I P R  and P*=PR(9~i[ IPL(gF(K~,PR)  

DES(K,  P) --- CL II CR =~ DES(K*,  P*) = CR (9 r(g~6, CL (9 ej) H CL (9 e i (1) 

with probability Pij. Furthermore for the pairs of keys of Th. 9 

E Pij = 1 
i,j 

Proof: Let K and K* be a pair of keys from Th. 2. Choose a random plaintext 
P = PL II PR. Encrypt P using g obtaining C -" CL [] CR = DES(K,  P). Let the 
right half of P* be PL (~ F(K1, PR). The right half inputs (before addition of the 
keys) to the second round of DES(K,  P) and the first round of DES(K*,  P*) 
are equal: Let the difference in the round keys be AK2,1 ---- K2 (9 K[. That is, 
the difference in the inputs to the S-boxes of respectively the second and first 
round is z~K2,t. 

It is now easy from the 'pairs xor table' of DES to find a possible xor of 
the outputs of the respective rounds. Denote the outputs ~P and ~*, and define 
6 = ~P (9 ~* ; the corresponding probability from the xor table is denoted p~. Now 
let the left half of P* be PR (9 6. Now the right half input to the third round of 
the encryption with K is PR (9 ~ and the right half of the input to the second 
round of the encryption with K* is PR (9 6 (9 ~P*, i.e. the inputs are equal, since 
PR (9 gf (9 PR (9 6 (9 ~* = 0. The left halves of the inputs to the corresponding 
rounds are also equal and since the keys are equal from now on and until the 
16'th and 15'th round respectively, according to Theorem 2, it follows that the 
two encryptions are the same until the last and second last round respectively. 
For these rounds the right half of the inputs are equal and the xor of keys is 
AK16,15 = K16 (9 K~5. Let e denote a possible xor of the outputs with input xor 
AK16,15 and the corresponding probability pc. 
Now the implication in (1) holds with probability p~, E = p~ • pE. To complete 
the proof we notice that for a given plaintext there is only one value for 6 and e 
above and that for all plaintexts there are only a limited number of choices for 
and e, which depend on the keys (K, K*) and they can easily be identified using 
the 'pairs xor table'. [] 

Example 1. Let K* = 4020 0000 1080 9080~ and K = 0000 0080 9080 9080~ in 
hexadecimal notation, this pair is one of the pairs from Th. 2. The connection 
between the round keys of the pair is as follows. K~ = Ki+t for i - 2, .., 14 and 

K~ ~ K2 = 00~, 20~, 00~, 00~, 00~, 00~, 00~, 00~ 

K ~  @ Kt6 = 05~, 00x, 00~, 00~, 00~, 00~, 00~, 00~ 
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where we have arranged the key bits in 8 groups of 6 bits each (hex). From the 
'pairs xor table' of DES we find that  for S-box 2, there are 9 possible xor of the 
outputs with an input xor 20~. The most likely xor of the outputs is C~, which 
has probability 14 Let 61 = P(0C000000~), where P is the 32-bit permutation 
at the end of the F-function, and denote the probability P61- 
Similarly, we find that  there are 14 possible xors of the outputs with an input 
xor 05~ for S-box 1. The most likely xor of the outputs is (again) C~, which 
has probability ~-~.12 Let et = P(C0000000~) and denote the probability p~l. 
With 8i = 61 and cj = el the implication in (1) holds with probability P1,1 = 

_ 14x12 p~ x p~ -- ~ __ 2-~" For the two keys in this example there are 9 • 14 -= 126 
pairs {6i, ej} in Th. 3. 

Since this phenomenon is due to only the xor of some round keys of K and K*, 
a similar result holds for the complemented pairs of keys K- and K--;. 
For all pairs of keys, K and K* from Th. 1, K9 # K~ except for the 256 pairs of 
keys of Th. 2. As shown above the input to the ninth round for encryption with 
K and the input to the eighth round for encryption with K* will be equal with 
some probability ~f. That  means that  the inputxor for the two encryptions will 
be (K9 (9 K~), since the (text)inputs are equal. For about 24s'T pairs of keys K 
and K*, the input xor (K9 (9 K~) will lead to equal outputs for some fraction 
of all plaintexts. Lemma 1 shows that  this is possible for keys that  differ in the 
inputs to only one S-box. For the 248.7 pairs of keys this fraction varies from �88 
to 2 -39. Therefore for these keys we have a parallel to Th. 3. 

T h e o r e m  4 (DES)  For 248.7 pairs of keys K and K*, it holds that for a frac- 
tion PKK* of all plaintexts there exist a pair {6i, ej} and a probability Pi,j, s.t. 
for P = PL I[ Pit and P* = PR (9 ~i II PL @ F(  K1, PR) 

D E S ( K ,  P)  = C = CL I] Cit =~ DES(K* ,  P*) = CR (9 F(  K~e, CL (9 ej ) II CL @ ej 

with probability PKK* • Pi,j, where Pi,j is defined as in Th. 3. Similarly we have 

~ pi,j -- PKK* 
i,j 

C o r o l l a r y  1 There are 2368 pairs of keys for which the fraction PKK* is 1 3" 

We conclude that  for many pairs of keys in DES there is a simple relation 
between the eneryption functions induced by these keys. This simple relation 
corresponds to one round of DES encryption and for 256 pairs of keys it holds for 
all plaintexts. For other 24s'7 pairs of keys it holds for a fraction of all plaintexts. 

A p p l i c a t i o n s .  Since the phenomenon of Th. 3 and Th. 4 holds only for a 
small subset of keys and for most keys only for a fraction of all plaintexts, it is 
doubtful that  the quasi weak keys can be exploited in attacks on the DES itself. 
However, DES is often used in hash functions where the keys are fixed or can be 
chosen as part of the (hash) message [9]. In differential attacks on hash functions 
based on block ciphers one could find two plaintexts, s.t. the (~f, e)'s of Th. 3 are 
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equal, thereby in a differential the 6's and the rightmost e's in (1) would cancel 
out. By trying sufficiently many pairs of plaintexts useful differentials (with fixed 
keys) might be found and used in attacks on hash functions. 

3 W e a k  hash keys 

We consider as before DES-like iterated block ciphers. Let the block size of the 
cipher be m. 

Def in i t ion  1 A weak hash  key K is a key for which 

P (9 E K ( P )  -- 6 (2) 

with probability p >> 2 -rn for fixed 6. 

It is clear that weak hash keys should be avoided in hash modes where the input 
to the block cipher is added modulo 2 to the output to obtain some kind of 
one-wayness. 

In [4] Coppersmith shows how to find tlxpoints for DES used with weak keys, 
i.e. plaintexts P, s.t. P = D E S K ( P ) .  For each weak key in DES (and LOKI) 
there are 232 fixpoints, therefore a weak key in DES and LOKI is also a weak 
hash key. In [8] Moore and Simmons generalized the idea of Coppersmith to the 
case where, for DES, if for some key K, it holds that K(i)  = K(17 - i) = E(~) 
where E is the 48 bit expansion of some 32 bit string ~, then there are exactly 
232 plaintexts P, s.t. D E S K ( P )  (9 P = ~11~. For the DES there are only eight 
keys satisfying this condition [8]. For the LOKI ciphers the keys are added before 
the expansion and the following result holds for the LOKI ciphers. 

T h e o r e m  5 (LOKI)  I l K ( i )  (9 K ( 1 7 -  i) = a for all i e {1, ..., 16} then g is a 
weak hash key and (2) holds with probability 2 -32. 

Note that the inputs to the eighth and ninth round uniquely determine both 
the plaintext and ciphertext and that the difference will be ~r for exactly 232 
plaintexts. Also note that although equation (2) holds with probability only 
2 -32 for the above keys, the plain- and ciphertexts, for which (2) holds, can 
be found using only half an encryption, when the key is known. As for the 
quasi weak keys, once we have found a weak hash key for LOKI (or DES), the 
complemented key is also a weak hash key. 

Coro l la ry  2 LOKI'89 has at least 216 weak hash keys. 

Proof: It follows from the key schedule of LOKI'89, that the keys K = KL H KR, 
w h e r e  

KL = vwyzvwyzx and KR = V W Y Z V W Y Z =  

s.t. v (g w (g y = z and V (g W (g Y -= Z and v (g V = w (g W = y (g Y , satisfy the 
condition in Theorem 5. For LOKI'89 the key K = KLIIKR is added (modulo 2) 
to the plaintext and the 'swapped' key (KRIIKL) is added to the ciphertext [2]. 
The xor of the plaintext and the ciphertext for LOKI'89 (6 in (2)) is a(gcllv,(gc, 
w h e r e  c = KL (9 KR.  r-I 
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C o r o l l a r y  3 LOKI'91 has at least 16 weak hash keys. 

Proof: Let Roln(X) be X rotated (bitwise) n places to the left and let h be a 
hex digit, h E {0, 3, 5, 6, 9, A, C, F}.  From the key schedule of LOKI'91 it follows 
that  the keys K = KL II KR, where KL = hhhhhhhh, and K n  = Rola(KL) or 
KR = Rola(-K-L) are weak hash keys. Eight of these keys are also either weak or 
semi-weak [3], but  the other eight are neither weak nor semi-weak. 

4 Conclusion and open problems 

We defined and found several quasi weak keys for the DES and leave it as an 
open problem to exploit these keys in hash modes based on DES. We defined 
and found several weak hash keys for the LOKI ciphers. We strongly believe 
that  both  quasi weak keys and weak hash keys pose a threat  for hash functions 
based on DES, LOKI'89 and LOKI'91. This will be a topic for further research. 
It is an open problem, whether it is possible to find weak hash keys for the DES. 
For DES versions with a reduced number of rounds it seems possible. But for 
the full DES it seems much harder than for the LOKI ciphers. 
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