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Abs t rac t .  We comment on the work by R. Taylor presented at Euro- 
Crypt'94 (see this proceedings). We first extend some known results o n  

authentication codes with a r b i t r a t i o n  to  the case when protection against 
arbiter's attacks is provided. We give lower bounds on the secret key size 
for each participant and give a construction showing that these bounds 
are tight. These results improve upon previously known work and show 
that a claim in the aforementioned paper is wrong. 

1 I n t r o d u c t i o n  

In conventional authentication [1] the two communicating parties share the same 
key and hence they must be assumed trustworthy. This assumption is in many 
situations unnatural  and Simmons [2] therefore introduced extended authenti- 
cation codes, called authentication codes with arbitration, or simply A2-codes, 
where caution is taken both against deceptions from the outsider (opponent) 
and also against some forms of deception from the insiders ( t ransmit ter  and re- 
ceiver). A fourth person, called the arbiter, is included. The arbiter is assumed 
to be honest, does not take part  in any communication activities and his sole 
task is to solve possible disputes between the transmitter  and the receiver. 

Several constructions showing better performance than Simmons'  original 
Cartesian product construction [2] have since then been given, [3], [4], [5]. Bounds 
on the size of each participant 's  key for this kind of codes were given in [4]. The 
class of A2-codes can be considered as a subclass of the more general concept 
asymmetric authentication schemes [3]. 

One disadvantage with the A2-codes noted by Simmons is the fact that  par- 
ticipants must trust the arbiter's honesty. There are of cause several situations 
where this is a very natural assumption, but there are nevertheless examples 
on the opposite. This problem has been addressed and constructions providing 
protection against deceptions from the arbiter have been proposed [6], [3]. 

This is the scenario that  will be investigated in this paper. The goal of the 
paper is to comment on the work in [7] and to show that  a claim appearing in 
[7] is wrong. We do this by giving a brief theoretical overview of some recent 
results, including lower bounds and a simple improved construction. In Section 2 
we give notat ion and problem formulation. In Section 3 we provide lower bounds 
on the size of each participant 's  secret key. In Section 4 we give a construction 
showing the tightness of the bounds and in Section 5 we give the remarks on the 
paper [7], partly obtained from the previously derived results. 

** This work was supported by the TFR grant 222 92-662 



457 

2 N o t a t i o n  a n d  p r o b l e m  f o r m u l a t i o n  

A transmit ter  intends to send some information, called a source state, to the 
receiver in such a way that  the receiver can verify that  the t ransmit ted message 
originate from the legal transmitter.  This is done by mapping a source state s E 8 
to a (channel) message m E A~. The mapping from S to M is determined by 
the transmitters secret encoding rule (or key) eT E ~.T. The opponent can either 
try to simply send a message or replace a t ransmit ted message with another. 
The receiver checks whether a message is valid or not. For this purpose the 
receiver uses a mapping from his own secret encoding rule e R E  E~ and from 
the messages Jk4, that  determines if a received message is valid and if so also the 
source state. The receiver must accept all legal messages from the transmitter.  
Thus the encoding rules must have been chosen in such a way, i.e., there is a 
dependence between the two encoding rules (eR, eT). 

The arbiter does not take part in any communication activities on the chan- 
nel and his only task is to solve disputes between the t ransmit ter  and the re- 
ceiver whenever such occur. Assuming an honest arbiter, there are five different 
attacks that  are possible: Attacks I,S, Impersonation/Subst i tut ion by the oppo- 
nent. Attack T,  Impersonation by the transmitter.  Attacks R 0 ,R1 ,  Imperson- 
at ion/Subst i tut ion by the receiver. 

We denote the maximum probability of success for each attack by PI, Ps, PT, 
PRo and PR1 respectively. For formal definitions, see [2],[4]. When the arbiter is 
not to be trusted, we add two possible attacks: 
Attack A0,  Impersonation by the arbiter: The arbiter sends a message to the 
receiver and succeeds if the message is accepted by the receiver as authentic. 
Attack A1,  Substitution by the arbiter: The arbiter observes a message that  is 
t ransmit ted and replaces this message with another. The arbiter succeeds if the 
receiver accepts this other message as authentic. 

Denote the probability of success for each attack with PAo and PAl, respec- 
tively. Even though the arbiter is not trusted, he is assumed to make honest 
decisions in case of a dispute. The overall probability of deception, denoted PD, 
is defined as the maximum of the probabilities of success over all allowed attacks. 

3 B o u n d s  o n  A 2 - c o d e s  i n c l u d i n g  a r b i t e r ' s  a t t a c k s  

To derive new bounds we examine the probabilities of success for the R0 and R1 
attacks. From the definition of the attacks we write 

PRo = max P( m has success), (1) 
8Rjfl% 

P(m has success) = ~ x(m, eA)P(eAleR), (2) 
e A  

where x(m, eA) = 1 if for the encoding rule eA the arbiter decides that  m came 
from the transmit ter  and 0 otherwise. Similarly, 

Pn,  = max P(m' has successlm has success), (3) 
e R ~ m s ~  
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P(m' has success]m has success) = ~ x(m', eA)P(eAIeR, m )  (4) 
8 A  

We then derive the following bounds, 

T h e o r e m  1. For any A2-code we have 

PRo >_ 2-1(M;EA), PR, > 2 -H(EAIM). (5) 

Proof. The proof is similar to proofs of lower bounds in [4]. 

From these bounds it follows, 

C o r o l l a r y 2 .  For any A2-code we have 

IE.,,,I _> (PRoPR,) -1. 

Using the bounds from [4] we can summarize the lower bounds for A2-codes both 
with and without arbiter's attacks: 

T h e o r e m 3 .  For any A2-code we have 

IE~r >_ (PIPsPT) -1, 

IE-rl _> (PI PsPRoPR,) -1, 

levi >_ (PRoPR1) -1 

IMI  ___ ( P z P n o ) - I I S I  �9 

In particular, if PD = 1/q, then levi > q3, IErl > q4, levi > q2 and IMI > q21Sl. 

Considering A2-codes used for multiple use we can in a similar way as above 
derive the following: 

T h e o r e m 4 .  For any A2-code for multiple use L tzmes with protection PD = 1/q 
we have 

levi _> qL+2 lET[ > q2L+2 ]E.41 > qL+l 

and IMI  >_ q21Sl at each use. 

Proof. This is a simple extension of the previously derived results. 

4 A c o n s t r u c t i o n  o f  A 2 - c o d e s  i n c l u d i n g  a r b i t e r ' s  a t t a c k s  

We consider a construction that  meets the lower bounds in the previous section 
with equality. We construct an A%code with 181 = q and PD = 1/q. Let the 
parameters be the following: 

IsI = q, IMI = q3, IETI = q4, ]Er~ ] = q3, levi = q2, 
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Let the encoding rules be 

eT = ( e l ,  e2, e3, e4),  (6)  

eR ---- ( f l ,  f2, f3), (7) 

eA -:  (el, e2). (8) 
where el, e2, e3, e4, f l ,  f2, f3 6 ]Fq. The A2-code is constructed as follows: 
C o n s t r u c t i o n  I:  The t ransmit ter  generates messages of the form 

m = (s, el + se2, ez + se4). (9) 

The receiver accepts all messages m = (ml ,  m2, m3) which has 

m 3  = f l  "~- m l f 2  -[- m 2 f 3 .  

In case of a dispute, the arbiter decides tha t  the message m --- (s, m2, m3) came 
from the t ransmit ter  if and only if m~ : el + se2. The encoding rules have in 
the initialization phase been chosen in such a way tha t  

e3 = f l  + elf3,  (10) 

e4 = f2 + e2f3. (11) 

We must  verify tha t  the arbiter makes correct decisions, i.e., all messages 
generated by the t ransmit ter  must  be considered by the arbiter to have been 
generated by the transmit ter .  We see that  this is the case. 

T h e o r e m  5. Construction I awes an A 2-code with parameters: 

IS I = q, [./t41= q3, [eTe ] = q3, iET[ = q4, ]EAI ---- q2 

and the probabilities of success for the different deceptions are 

PI = Ps = PT = PRo = PR, = PAo = PA, = l /q .  

Thus we have 

C o r o l l a r y  6. Construction I gives an A2-code with protection against arbiter's 
attacks which has optimal performance, i.e., the size of the keys are the lowest 
possible. 

The key initialization phase does not have the same structure as in [3]. However, 
the following interesting property of Construction I shows tha t  no loss is made.  

T h e o r e m T .  The key initialization in Construction I can be done using three 
interactions without changing the probabilities of success. 

The construction can be modified in order to obtain other parameters  and we 
end this section by giving the performance of two such modifications. 

T h e o r e m  8. Construction I can be modified in such a way that for I'D -= 1/q 
we have parameters 

ISl = qn, IMI = qn+2, = qn+2, I&-I = q2n+2, = qn+l. 

Alternatwely, if  we consider multiple use L times with PD = 1/q at each use we 
can have parameters ISl = qn, IMI--- qn+2 at each use and 

levi = qn+L+l, IETI = qZn+2L, IE.al = q,~+L. 
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5 S o m e  c o m m e n t s  o n  [7] 

In [7] a construction of A2-codes including arbi ter 's  at tacks is described. The 
author claims a good performance and gives some bounds on the size of the 
message (codeword) and keys. Using the previous results we want to comment  
on some of the s tatements .  
Remark 1: The theorem stated in Section 5 of [7] is incorrect. I t  is s tated tha t  
the length of the messages must  be at least log IS 1 4-3 logq, but  as we showed in 
Section 3, the lower bound on the length of the messages is log ISI 4-2 log q and it 
is tight. Note also tha t  the construction given in Section 4 gives opt imal  message 
length and also bet ter  performance (smaller secret key) than the construction 
proposed in [7]. 
Remark 2: In Section 2 of [7] a construction of conventional authenticat ion codes 
is proposed. Compar ing  with constructions in [8], [9] and [10] we see tha t  the 
performance is not very good. 
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