
A Polyvariant Binding-Time Analysis for
Off-line Partial Deduction

Maurice Bruynooghe, Michael Leuschel, and Konstantinos Sagonas

Katholieke Universiteit Leuven, Department of Computer Science
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

e-ma~: {maurice ,michael ,kostis}@cs .kuleuven.ac.be

Abst rac t . We study the notion of binding-time analysis for logic pro-
grams. We formalise the unfolding aspect of an on-line partial deduction
system as a Prolog program. Using abstract interpretation, we collect
information about the run-time behaviour of the program. We use this
information to make the control decisions about the unfolding at analysis
time and to turn the on-line system into an off-line system. We report
on some initial experiments.

1 I n t r o d u c t i o n

Partial evaluation and partial deduction are well-known techniques for special-
ising respectively functional and logic programs. While both depart from the
same basic concept, there is quite a divergence between their application and
overall approach. In functional programming, the most widespread approach is
to use off-li~e specialisers. These are typically very simple and fast specialisers
which take (almost) no control decisions concerning the degree of specialisation.
In th iscontext , the specialisation is performed as follows: First, a bi~di~g-~ime
a~alysis (BTA) is performed on the program which annotates all its statements
as either "reducible" or "non-reducible". The annotated program is then passed
to the off-line specialiser, which executes the statements marked reducible and
produces residual code for the statements marked non-reducible. In logic pro-
gramming, the o~-li~e approach is almost the only one used. All work is done
by a complex on-line specialiser which monitors the whole specialisation process
and decides on the degree of specialisation while specialising the program. A
few researchers have explored off-line specialisation, but lacking an appropriate
notion of BTA, they worked with hand-annotated programs, something which
is far from being practical. Until now, it was unclear how to perform BTA for
logic programs.

The current paper remedies this situation. It develops a BTA for logic pro-
grams, not by translating the corresponding notions from functional program-
ming to logic programming, but by departing from first principles. Given a logic
program to be specialised, we develop a logic program which performs its on-
line specialisation. The behaviour of this program is analysed and the results are
used to take all decisions w.r.t, the degree of specialisation off-line. This turns
the on-line specialiser into an off-line specialiser. A prototype has been built and
the quality and speed of the off-line specialisation has been evaluated.

28

2 B a c k g r o u n d

2.1 Partial Deduction

In contrast to ordinary (full) evaluation, a partial evaluator receives a program P
along with only part of its input, called the static input. The remaining part of
the input, called the dynamic input, will only be known at some later point in
time. Given the static input S, the partial evaluator then produces a specialised
version Ps of P which, when given the dynamic input D, produces the same
output as the original program P. The goal is to exploit the static input in order
to derive a more efficient program.

In the context of logic programming, full input to a program P consists of a
goal G and evaluation corresponds to constructing a complete SLDNF-tree for
P U (G}. The static input is given in the form of a partially instantiated goal G t
(and the specialised program should be correct for all instances of GI).

A technique which produces specialised programs is known under the name of
partial deduction [18]. Its general idea is to construct a finite set of atoms A and
a finite set of finite, but possibly incomplete SLDNF-trees (one for every 1 atom in
A) which "cover" the possibly infinite SLDNF-tree for P U (G~}. The derivation
steps in these SLDNF-trees correspond to the computation steps which have
been performed beforehand and the specialised program is then extracted from
these trees by constructing one specialised clause per non-failing branch.

In partial deduction one usually distinguishes two levels of control: the global
control, determining the set A, thus deciding which atoms are to be partially
deduced, and the local control, guiding construction of the finite SLDNF-trees
for each individual atom in A and thus determining what the definitions for the
partially deduced atoms look like.

2.2 Off- l lne vs. On- l ine C o n t r o l

The (global and local) control problems of partial evaluation and deduction
in general have been tackled from two different angles: the so-called on-line
versus off-line approaches. The on-line approach performs all the control deci-
sions during the actual specialisation phase. The off-line approach on the other
hand performs a (binding-time) analysis phase prior to the actual specialisation
phase. This analysis starts from a description of which parts of the inputs will be
"static" (i.e. sufficiently known) and provides binding-time annotation8 which
encode the control decisions to be made by the specialiser, so that the specialiser
becomes much more simple and efficient.

Partial evaluation of functional programs [8, 15] has mainly stressed off-line
approaches, while supercompilation of functional [32, 31] and partial deduction
of logic programs [13, 3, 1, 30, 25, 20] have concentrated on on-line control.

On-line methods, usually obtain better specialisation, because no control
decisions have to be taken beforehand, i.e. at a point where the full specialisation

1 Formally, an SLDNF-tree is obtained from an atom or goal by what is called an
unfolding rule.

29

information is not yet available. The main reasons for using the off-line approach
are to make specialisation itself more efficient and, due to a simpler specialiser
algorithm, enable effective self-application (specialisation of the specialiser) [16].

Few authors discuss off-line specialisation in the context of logic programming
[27, 17], mainly because so far no automated binding-time analysers have been
developed. This paper aims to remedy this problem.

3 T o w a r d s B T A f o r p a r t i a l d e d u c t i o n

3.1 A n on- l ine specia l i ser

The basic idea of BTA in functional programming is to model the flow of static
input: the arguments of a function call flow to the function body, the result
of a function flows back to the call expression. The expressions are annotated
reducible when enough of their parameters are static, i.e. will be known at
specialisation time, to allow the (partial) computation of the expression. Mod-
elling the dataflow gives a system of inequalities over variables in a domain
{static, dynamic} whose least solution yields the best annotation.

This approach does not immediately translate to logic programs. Problems
are that the dataflow in unification is bidirectional and that the degree of in-
stantiation of a variable can change over its lifetime (see also [17]).

We follow a different approach and reconstruct binding-time analysis from
first principles. We start with a Prolog program which performs the unfolding
decisions of an on-line specialiser. However, whereas real on-line specialisers base
their unfolding decisions on the history of the specialisation phase, ours bases
its decisions solely on the actual arguments of the call (which can be more
easily approximated off-line). This is in agreement with the off-line specialisers
for functional languages which base their decision to evaluate or residualise an
expression on the availability of the parameters of that expression. The next step
will be to analyse the behaviour of this program (the binding-time analysis) and
to use the results to make the unfolding decisions at compile time.

First we develop the on-line specialiser. Assuming that for each predicate
p/m a test predicate unfold_p/m exists which decides whether to unfold a call
or not, we obtain an on-line specialiser by replacing each call p(t) by

(unfold_p() memoise_p())

A call to memoise_p(t) informs the specialiser that the call p(t) has to be
residualised. The specialiser has to check whether C a generalisation of) p(t) has
already been specialised - - i f not it has to initiate the specialisation of (a gen-
eralisation of) p(~)-- and has to perform appropriate renaming of predicates to
ensure that residual code calls the proper specialised version of the predicate it
calls.

Ezample 1 (Funny append). Consider the following on-line specialiser for a vari-
ant, funnyapp/3 of the append~3 predicate in which the first two arguments of
the recursive call have been swapped:

30

funnyapp ([] ,X ,X).
funnyapp([X]U'J ,V,[X[W]) : -

(unfold_funnyapp(V,U,W) -> funnyapp(V,U,W)
; memoise_funnyapp (V,U,W)

unfold_fu~myapp(X,Y,Z) : - ground(X).
.

Specialising this program for a query funnyapp([a , b] , L, 1~) results in the spe-
cialised clause (the residual call is renamed as funnyappA)

funnyapp([a,b] ,L, [a[R1]) : - funnyappl(L, [b] ,R1).

Specialising the funnyapp program for the residual call funnyapp(L , [hi ,I~1)
gives (after renaming) the clauses

funnyappA ([] , [b], [b]) .
funnyapp_.l([XlU], [b] ,[X,blR]) : - funnyapp_2(U, [] ,R).

Once more specialising, now for the residual call funnyapp (U, [] , R), gives
funnyapp_2 ([] , [] , []) .
funnyapp_2 ([][[U], [] , [X [U]) .

This completes the specialisation. Note that the sequence of residual calls is ter-
minating in this example. In general, infinite sequences are possible. They can be
avoided by generalising some arguments of the residual calls before specialising.

In the above example, instead of using ground(X) as condition of unfolding,
one could also use the test n i l t e r m i n a t e d (X) . T h i s would allow to obtain the
same level of specialisation for a query funnyappend([X, Y], L, It). This test is
another example of a so called rigid or downward closed property: if it holds for
a certain term, it holds also for all its instances. Such properties are well suited
for analysis by means of abstract interpretation.

3.2 F r o m on - l i ne t o off- l ine

"Ihrning the on-line specialiser into an off-line one requires to determine the
u~fold_p/n predicates during a preceding analysis and to decide on whether to
replace the (u~fold_p(~) --, p(~); memo/se(p(~))) construct either by p(~) or by
memoise(p(~)). The decision has to be based on a safe estimate of the calls
u~folg_p(~) which will occur during the specialisation. Computing such safe ap-
proximations is exactly the purpose of abstract interpretation [9].

:- { grud (L1) } "eapl(Ll,L2,R) {grad(L1)}.
~ap1 ([] , x ,x) .
fapl([XIO],V,[X[W]) : - {grnd(X,U)}

(unf.~apl(V,U,W) {grnd(X,U, [I)} ->
{g~.d(Z,U, V)} ~ap2(V,U,W) {gr.~(Z,U, V,W)}

; {grnd(X,U))memo_fap3(V,U,W) {grad(X,U)}
) {grnd(X,U)}.

unf_fapl(X,Y,Z) : - {grnd(u ground(X) {grnd(X, u
memo_f ap3 (X ,Y ,Z).

3]

By adding to the code of Example 1 the fact memoise.=funnyapp(X,Y,Z)., and
an appropriate handling of the Prolog built-in g round / I , one can run a goal-
dependent polyvariant groundness analysis (using e.g. PLAI coupled with the
set-sharing domain) for a query where the first argument is ground and obtain the
above annotated program. The annotated code for the version l ap2 is omit ted
because it is irrelevant for us. Indeed, inspecting the annotations for un f_ fap l
we see that the analysis cannot infer the groundness of its first argument. So we
decide off-line not to unfold, we cancel the test and the then branch and simplify
the code into:

:- {gr, d(L1)} fapl(L1,L2,R) {gr, d(Ll)}.
~apl ([] ,X,X).
fapl([XlU] ,V, [XIW]) :- {grnd(X,U)} memo.=fap3(V,U,W) <grnd(X,U)}.

The residual call to funnyappend has a different call pattern than the original
call: its second argument is now ground. Thus we perform a second analysis and
obtain (the annotated code for l ap4 is omitted):

:- {9r, d(L2)} fap3(L1,L2,R) {9r, d(L2)}.
~ap3([] ,X,X).
fap3(I'X[U],V,[XIW]) :- {gr, d(F)}

(unf_.fap2(V,U,W) {grnd(F)}->
{grnd(F)} fap4(V,g,W) {gr, d(V)}

; {grnd(V)} memo_fapS(V,U,W) {grnd(V)}
) {gr.d(V)}.

unf.iap2(X,Y,Z) :- {grnd(X)} ground(X) {grnd(X)}.
memo_.f ap5 (X ,Y ,Z).

This time, the annotations for unf_:fap2 show that the groundness test will
definitely succeed. So we decide off-line always to unfold and only keep the then
branch. Moreover, the fap4 call has the same call pattern as the original call to
funnyapp, so we also rename it as f a p l . This yields the second code fragment:

:- {grud(L2)} fap3(L1,L2,R) {grnd(L2)}.
fap3([] ,X,X).
fap3([XIUJ,V,[X[W]) :- {grnd(V)} fapl(V,U,W) {grnd(V)}

Applying the specialiser on these two code fragments for a query lap1 ([a ,b] , L ,R)
gives the same specialised code as in Example 1. However, this time, no calls to
u n f o l d f u n n y a p p have to be evaluated during specialisation.

3.3 A u t o m a t i o n

To weave the step by step analysis sketched above in a single analysis, a special
purpose tool has to be built. We implemented a system based on the abstract do-
main POS, also called PROP [24]. It describes the state of the program variables
by means of positive boolean formulas, i.e., formulas built from +-*, A and V. Its

32

most popular use is for groundness analysis. In that case, the formula X expresses
that the program variable X is (definitely) bound to a ground term, X ~-~ Y
expresses that X is bound to a ground te rm if[Y is, so an eventual binding of X
to a ground term will be propagated to Y. This domain is extended with false
as bo t tom element and is ordered by boolean implication. Groundness analysis
corresponds to checking the rigidity 2 of program variables w.r.t, the eermsize
norm s and abstracts a unification such as X = [Y[Z] by the boolean formula
X *-* Y A Z. However POS can also be used with other semi-linear norms [4].
In e.g. normalised programs, it only requires to redefine the abstraction of the
unifications. For example, with the lisr norm 4, unification of X = [Y[Z] is
abstracted as X *-* Z, and a formula X means that the program variable X is
bound to a term with a bounded listlength, i.e. either the t e rm is a ni l- terminated
list, or has a main functor which is not a list constructor.

The analyser has to decide the outcome of the unfold_p test and has to
decide which branch to take for further analysis while doing the analysis. Also
it has to launch the analysis of the generalisations of the memoised calls. The
generalisation we employ is to replace an argument which is not rigid under
the norm used in the analysis by the abstraction of a fresh variable. These
requirements exclude the direct use of the abstract compilat ion technique in the
way advocated by e.g. [5]. One problem of the scheme of [5] is that it handles
constructs (g r o u n d (X) ---, p(~); memoise(p(~))) too inaccurately. The boolean
formula is represented as a truth table, i.e. a set of tuples, and the analyser
processes the t ruth table a tuple at a time. Therefore it cannot infer in a program
point tha t X is true, i.e. that X is definitely ground, so it can never conclude
that the else branch cannot be taken. The other problem is that the analyses
launched for the memoised calls should not interfere (i.e. output should not flow
back) with the analysis of the clauses containing the memoised calls. Note that
defining memoise as memoise_p(X1, . . . , X n) : - copy(X1, Y1), . . . , copy(X,~, Y,~),
and abstract ing copy(X, Y) as X *-~ Y does not work: The abstract success state
of executing P (Y 1 , . . . , Yn) will update the abstractions of X 1 , . . . , X n .

Our prototype binding-time analyser currently consists of ~ 800 lines of Pro-
log code and uses XSB [29] as a generic tool for semantic-based program anal-
ysis [6]. The boolean formulas from the POS domain are represented by their
t ru th tables. This representation enables abstract operations to have straight-
forward implementat ions based on the projection and equi-join operations of
the relational algebra. The disadvantage is that the size of t ruth tables quickly
increases with the number of variables in a clause. The use of dedicated da ta
structures like BDDs to represent the boolean formulas as in [33] often results
in better performance but at the expense of substantial programming efforts.

The main part of the analyser can be seen as a source-to-source transfor-
mat ion (i.e. abstract compilation) that given the program P to be analysed,

A term is rigid w.r.t, a norm if all its instances have the same size w.r.t, the norm.
3 The termsize norm [11] includes all subterms in the measure of the term.
4 The listlength norm [11] includes only the tail of the list in the measure of the list

(and measures other terms as 0); nil-terminated lists are rigid under this norm.

33

produces an abstract program p a with suitable annotations. The abstract pro-
gram can be directly run under XSB (using tabling to ensure termination). The
execution leaves the results of the analysis in the XSB tables. Each predicate p / n
of P is abstracted to a predicate pa /2 whose arguments carry input and output
sets of tuples. The core part of setting up the analysis is then to define the code
for the abstract interpretation of each call (at a program point PP# of interest):

(.nfold_p(X) --4 p(X); memoise_p(X)). (1)

is abstracted by the following code fragment:

project(Args, TPPin, TC),
(unfold_p(TC)->

unfold(TC,PP#), pa(TC,TR)
; TR=TC, generalise(TC,TCG), memo(TCG,PP#), pa(TCG,_)) ,

equi_join(hrgs , TPPin, TR, TPPout),
Predicates unfold/2 and memo/2 which abstract the behaviour of each call in
the form of (1) above are tabled predicates which have no effect on the compu-
tation, but only record information containing the results of the analysis. Their
arguments are the current abstraction and the current program point. This infor-
mation is then dumped from the XSB tables and is fed to the off-line specialiser.
The variable TPPi,~ holds the t ruth table which represents the abstraction of the
program state in the point prior to the call. The call to project/3 projects the
t ru th table on the positions hrgs of the variables X participating in the call. The
result is TC (Tuples of the Call). The predicate unfold_p/1 (currently supplied
by the user for each predicate pin to be analysed) inspects TC to decide whether
there is sufficient information to unfold the call. If it succeeds the then branch is
taken which analyses the effects of unfolding pin. This is done by executing p~/2
with TC as abstraction of the call state. The analysis returns TR as abstraction of
the program state reached after unfolding pin. If the call to unfold_p~1 fails, the
call is memoised, and the program state remains unchanged, so TR = TC. The
generalisation of the memoised call also needs to be analysed; therefore the else
branch first generalises the current state TC into TCG by erasing all dependencies
for non-rigid arguments 5 and then calls p~/2 with TCG as initial state, but takes
care not to use the returned abstract state as the bindings resulting from spe-
cialising memoised calls do not flow back. These actions effectively realise the
intended functionality of memoise_p/1. Finally, the new program state TR over
the variables X has to be propagated to the other program variables described
by the initial state TPPin. This is achieved simply by taking the equi-join over
the hrgs of TPPi,~ and TR. The new program state is described by TPPout.

One of our examples (see Section 4.2) uses two different norms in the unfold
tests: the term norm which tests for groundness, and the listlength norm which
tests for the boundedness of lists (whether lists are nil-terminated). This does
not pose a problem for our framework, we simply use a t ruth table which encodes
two boolean formulas, one for the term norm and one for the listlength norm.

~A position is rigid if it has an "s" in each tuple e.g. generalise([p(s,,~,s),
p(s,d,d)],TCG)yields TCG = [p (s , s , s) , p (s , s , d) , p (s , d , s) , p (s , d , d)] .

34

4 S o m e E x p e r i m e n t s a n d B e n c h m a r k s

We first discuss the p a r s e r and l i f t s o l v e examples from [17].

4.1 The parser example

A small generic parser for languages defined by grammars of the form S ::= aS]X
(X is a placeholder for a terminal symbol as well as the first argument to nont/3;
arguments 2 and 3 represent the string to be parsed as a difference list):

nont(X,T,R) : - t (a ,T ,V) ,non t (X ,V ,R) .
nont(X,T,R) : - t (X ,T ,R) .

t (x , [X IEsl ,Es).
A termination analysis can easily determine that calls to t / 3 always terminate
and that calls to nont /3 terminate if their second argument is ground. One can
therefore derive the following unfold predicates:

u n f o l d _ t (X, S1, $2).
unfold_nont (X,T,R) : - ground(T) .

Performing our analysis for the entry point :- .[grnd(X)} nont (X) we obtain
the following annotated program (dynamic arguments [i.e. non-ground ones] and
non-reducible predicates [i.e. memoised ones] are underlined.):

nont(X,T_,_R) : - t (a , T , V) , nont(X,V,_R).
nont(X,L_R) : - t(X,T,_R).
t (X, [X[Es],Es).

Feeding this information into the off-line system LOGEN [17] and specialising
n o n t (c ,T,R), we obtain:

nont__0([a[B],C) :- nont__0(B,C).
nont__O([c[D],D).

Analysing the same specialiser for :- {grnd(T)} nont (_,T,_) yields:
nont(_X,T,_R) : - t (a , T , V) , nont(X_,V,R).
nont(X_,T,_R) : - t(X_,T,_R).
t(x_, Ix IEs] ,~s).

Feeding this information into LOGEN and specialising nont (_X, [a , a , c] ,R) yields:
nont__O(c,~).
nont__O(a,[c]).
nont__O(a,[a,c]).

4.2 The liftsolve example

The following program is a meta-interpreter for the ground representation, in
which the goals are "lifted" to the non-ground representation for resolution.
To perform the lifting, an accumulating parameter is used to keep track of the
variables that have already been encountered and generated. The predicate rang
and x_amg transform (a list of) ground terms (the first argument) into (a list
of) non-ground terms (the second argument; the third and fourth arguments
represent the incoming and outgoing accumulator respectively). The predicate

35

s o l v e uses these predicates to "lift" clauses of a program in ground representation
(its first argument) and then use them for resolution with a non-ground goal (its
second argument) to be solved.
s o l v e (GrP, []).
s o l v e (GrP, [NsH I NsT]) : -

non_ground~aember (t erm(clause, [NsHINgBdy]) ,GrP),
s o l v e (GrP ,NgBdy), s o l v e (GrP ,NgT).

non_sroundJuember(ggx, [GrHI_GrT]) :- make_uon_sround(GrH,ggX).
non_groundJuember (NgX, [_GrHIGrT]) :- non_ground_~ember (NgX,GrT) .
make_non_sround(G,NG) :- nmg(G ,NG, [] ,_Sub) .
ran8 (vat (N) ,X, [] , [sub (N ,X)]) .
ran8 (vat (N) ,X, [sub (N ,X)IT], [sub (N ,X)IT]) .
rang(var(N),X,[sub(H,Y)[T],[sub(N,Y)]T1]) :- N \== M, mng(var(N),X,T,T1).
nmg(term(F,Arss) , t erm(F,I lrgs) ,InS,OutS) :- lmng(Args,IArgs,InS,OutS).
hnng([] , [3 ,Sub,Sub).
]:nng([HIT] , [IHIIT] ,InS,OutS) :-

mng(H,IH,InS,InS1), lmng(T,IT,InSl,0utS).
The following unfold predicates can be derived by a termination analysis:

unfold__lmng(Gs,NGs ,InSub,0utSub) :- ground(Gs), bounded_list (InSub).
unfoldmmg(G,NG,InSub,OutSub) :- ground(G), bounded_list (InSub).
unfold~aakemon_ground(G,NG) :- ground(G).
unfold_non_groundJnember (NgX,L) :- ground(L).
unfold_solve (GrP,Query) :- 8round(GrP).

Analysing the specialiser for the entry point solve(ground,_) we obtain:

solve(GrP, D.
solve(GrP,[-NgH[SgT]) :-

non_ground_member(term(clause,[NgH[NgBdy]), GrP),
solve(GrP,SgBdy), solve(GrP,SgW).

non_ground_member(NgX,[GrH[_GrW]) :- make_non_ground(GrH,NgX).
non_ground_member(SgX,[_GrI-IIGrW]) :- non_ground_member(NgX,GrW).
make_non_ground(G,NG) :- mng(G,NG, ~,_Sub).
mng(var(N),X,[],[sub(N,X)]).
mng(var(N),X,[sub(N,X)IT], [sub(N,X)IT]).
mng(var(N),X_,[sub(M,Y)IT], [sub(M,Y)IT1]) :- N \== M, mng(var(N),X,T,Tl).
mng(term(F,Args),term(F,IArgs), InS,OutS) :- Imng(Args,IArgs, InS,OutS).
Imng(~,~_,Sub,Sub).

Imng([HIT],[IHIIT], InS,OutS) :- mng(H,IH,InS,InSl), Imngl(T,l _T, InSI,OutS) .

lmngl(~,[],Sub,Sub).
lmngl([HTT],[IH-[i~, InS,OutS) :- mngl(H,IH,InS,InS1), lmngl(T,IT, InSl,OutS).
mngl(var(N),X,~,[sub(N,X)]).
mngl(var(S),X,~sub(S,X)lT],[sub(N,X)lT]).
mngl(var(S),X, [sub(M,Y)IT],[sub(M,Y)IT1]) :- S \ = = M, mngl(var(N),X,T,T1).
mngl(term(F,Args),terra(F,IArgs), InS,OutS) :- Imngl(Args,IArgs, InS,OutS).

One can observe that the call lmagl(T,IT, InSl,0utS) has not been unfolded.
Indeed, the third argument InS1 is considered to be dynamic (non-ground) and
the call to unfold..l_am8 will thus not always succeed. However, based on the ter-
mination analysis, it is actually sufficient for termination if the third arguments

36

to mng and lmng are bounded lists (as the listlength norm can be used in the ter-
minat ion proof). If we use our prototype to also keep track of bounded lists we
obtain the desired result: the call lnmgl (T,IT,InS1 ,OutS) can be unfolded as the
first argument is ground and third argument can be inferred to be a bounded list.
By feeding the so obtained annotations into LOGEN [17] we obtain a specialiser
which removes (most of) the meta-interpretat ion overhead. E.g. specialising

solve (I t erm (clause, It erm (q, [vaz (1)]), term (p, [var (I)])]),

term(clause, [term(p, [term(a, [])])])], G)

yields the following residual program:
solve_0 ([]) .
s o l v e _ O (I t errs (q , [B]) I C]) : - s o l v e _ O (I t erm (p , [B])]) , s o l v e _ O (C) .
s o l v e _ O ([t e r m (p , [te rm(a , [])]) [D]) : - s o l v e _ O ([]) , s o l v e _ O (D) .

4.3 S o m e B e n c h m a r k s

We now study the efficiency and quality of our approach on a set of benchmarks.
Except for the p a r s e r benchmark all benchmarks come from the DPPD bench-
mark l ibrary [19]. We ran our prototype analyser, BTA, that performs binding-
t ime analysis and fed the result into the off-line compiler generator LOGEN [17]
in order to derive a specialiser for the task at hand. The ECCE on-line part ial
deduction system [19] has been used for comparison (settings are the same as
for ECCE-X in [20], i.e. a mixtus like unfolding, a global control based upon
characteristic trees but no use of conjunctive partial deduction). The interested
reader can consult [20] to see how ECCE compares with other systems.

All experiments were conducted on a Sun Ultra-1 running SunOS 5.5.1. ECCE
and LOGEN were run using Prolog by BIM 4.1.0. BTA was run on XSB 1.7.2.

Benchmark

depth.lam
liftsolve.app
liftsolve.app4
match.kmp
parser
regexp.rl

ECCE-PD

0.34 s
1.00 s
12.32 s
0.18 s

0.06 s
0.17 s

BTA LOGEN PD [Ratio[

0.05 + 0.579 s 0.05 s 0.003
0.079* + 1.841 s 0.05 s 0.006 s

" " 0.014 s
0.06 + 0.031 s 0.01 s 0.006
0.03 + 0.01 s 0.02 s 0.001
0.039 + 0.031 s 0.06 s 0.006

Table I. Analysis and Specialisation Times

In Table 1 one can see a summary of the t ransformation times. The columns
under BTA contain: the t ime to abstract and compile the program § the t ime
for execution of the abstracted program (both under XSB). The column un-
der LOGEN contains the t ime to generate the specialiser with LOGAN using the
so obtained annotations. Observe, that for any given initial annotation, this
has only to be performed o n c e : the so obtained specialiser can then be used
over and over again for different specialisation tasks. E.g. the same specialiser
was used for the liftsolve, app and liftsolve, app4 benchmark. The '*' for

liftsolve, app indicates the time for the abstract compilation only producing

code for the groundness analysis. The extra arguments and instructions for the

37

bounded list analysis were added by hand (but will be generated automat ical ly
in the next version of the prototype). The column under P D gives the t ime
for the off-line specialisation. The last column of the table contains the ratio of
running ECCE over running the specialisers generated by BTA -~- LOGEN. As can
be seen, the specialisers produced by BTA --[- LOGEN run 28 - 880 times faster
than ECCE. We conjecture that for larger programs (e.g liftsolve with a very big
object program) this difference can get even bigger. Also, for 3 benchmarks the
combined t ime of running BTA --~ LOGEN and then the so obtained specialiser
was less than running ECCE, i.e. our off-line approach fares well even in "one-
shot" situations. Of course, to arrive at a fully automat ic (terminating) system
one will still have to add the t ime for the terminat ion analysis, needed to derive
the "unfold" predicates.

Benchmark

f l e p t h , l a i n 0.08 s

1
liftsolve .app 0.13 s

1

liftsolve.app4 0.17 s

1

mat ch. kmp 0.58 s

1

parser 0.20 s
1

regexp.rl 0.29 s
1

[[Original I ECCE]BTA + LOGEN

0.00 s
32

0.01 s
13

0.00 s
> 34
0.34 s
1.71

0.12 s
1.74

0.10 s

2.9

0.06 s
1.33

0.01 s

13
0.02 s

6.5

0.51 s
1.14

0.12 s
1.74

0.20 s
1.5

Table 2. Absolute Runtimes and Speedups

Table 2 compares the efficiency of the specialised programs (for the run t ime
queries see [19]; for the p a r s e r example we ran nont(c, [a 17, c, b], [b]) 100 times).
As was to be expected, the programs generated by the on-line specialiser ECCE
outperform those generated by our off-line system. E.g. for the match , kmp bench-
mark EcCE is able to derive a Knuth-Morr is-Prat t style searcher, while off-line
systems (so far) are unable to achieve such a feat. However, one can see that the
specialised programs generated by BTA + LOGEN are still very satisfactory. The
most satisfactory application is l i ~ t s o l v e . a p p (as well as l i f t s o l v e . a p p 4) ,
where the specialiser generated by BTA + LOGEN runs 167 (resp. 880) t imes
faster than ECCE while producing residual code of equal (resp. almost equal)
efficiency. In fact, the specialiser compiled the append object program from the
ground representation into the non-ground one in just 0.006 s (to be compared
with e.g. the compilers generated by SAGE [14] which run in the order of min-
utes). Furthermore, the t ime to produce the residual program and then running
it is less than the t ime needed to run the original program for the given set of
runtime queries. This nicely illustrates the potential of our approach for appli-
cations such as runtime code generation, where the specialisation t ime is (also)
of prime importance.

38

5 Di scuss ion

We have formulated a binding-time analysis for logic programs, and have re-
ported on a prototype implementat ion and on an evaluation of its effectiveness.
To develop the binding-time analysis, we have followed an original approach:
Given a program P to be analysed we transform it into an on-line specialiser
p rogram P ' , in which the unfolding decision are explicitly coded as calls to
predicates unfold_p. The on-line specialiser is different from usual ones in the
sense that it - - like off-line specialisers - - uses the availability of arguments
to decide on the unfolding of calls. Next, we apply abstract interpretation - - a
binding-time ana lys i s - - to gather information about the run-t ime behaviour of
P ' . The information in the program points related to unfo ld_p allows to decide
whether the test will definitely succeed - - i n which case the unfolding branch is
r e ta ined- - or will possibly fail - - i n which case the branch yielding residual code
is retained. The resulting program now behaves as an off-line specialiser as all
unfolding decisions have been taken a t analysis time.

An issue to be discussed in more detail is the terminat ion of the speciali-
sation. First, a specialiser has a global control component. It must ensure that
only a finite number of a toms are specialised. In our prototype, we generalise the
residual calls before generating a specialised version: arguments which are not
rigid s w.r.t, the norm used in the unfolding condition are replaced by fresh vari-
ables. This works well in practice but is not a sufficient condition for termination.
In principle one could define the memoise_p predicates as:

memoise_p(X) :- copy_term(X,Y), generalise(Y,Z), p(Z).
and then generalise such that quasi- termination [21] of the program, where calls
to p are tabulated, can be proven. In practice, the built-in copy_term/2 and
the built-ins needed to implement g e n e r a l i s e / 2 will make this a non-trivial
task. Secondly, there is the local control component. It must ensure that the
unfolding of a particular a tom terminates. This is decided by the code of the
t ransformed program. Defining the unfold_p predicates by hand is error-prone
and consequently not entirely reliable. In principle, one could replace the calls
memoise_p by t r u e and apply off-the-shelf tools for proving terminat ion of logic
programs [22, 7]. Whether these will do well depends on how well they handle
the i f - t h e n - else construct used in deciding on the unfolding and the built-
ins used in the rigidity test (e.g. the analysis has to infer that X is bounded and
rigid w.r.t, the norm in the program point following a test ground(X)) . It is
likely that small extensions to these tools will suffice to apply them successfully
in proving termination of the unfolding ~, at least when the unfolding conditions
are based on rigidity tests with respect to the norms used by those termination
analysis tools.

A more interesting approach for the local control problem is to automat ical ly
generate unfolding conditions by program analysis. Actually, one could apply a

s I.e., "static" from functional programming becomes "rigid w.r.t, a given norm."
7 After a small extension by its author, the system of [22] could handle small examples.

However, so far we have not done exhaustive testing.

39

more general scheme for handling the unfolding than the one used so far. Having
for each predicate p /n the original clauses with head p / n and transformed clauses
with head p t / n , the transformed clauses could be derived from the original by
replacing each call q/m by:

(t e r m i n a t e s _ q (~) -> q(~)
; (unfold_q(~) -> qt(~) ; memoise_q(~)))

In [10], Decorte and De Schreye describe how the constraint-based termination
analysis of [11] can be adapted to generate a finite set of "most general" ter-
mination conditions (e.g. for append/3 they would generate rigidity w.r.t, the
listlength norm of the first argument and rigidity w.r.t, the listlength norm
of the third argument as the two most general termination conditions; for our
funnyapp/3 they would generate rigidity of the first and second argument w.r.t.
the listlength norm as the most general termination condition.). These condi-
tions can be used to define the t e rmina tes_q predicates. If they succeed, the
call q(~) can be executed with the original code and is guaranteed to terminate.
Moreover, as they are based on rigidity, they are very well suited to be approx-
imated by our binding-time analysis. Actually, in all our benchmarks programs,
we were using termination conditions for controlling the unfolding, so in fact
we could have further improved the speed of the specialiser by not checking the
condition on each iteration but using the above scheme.

Generating unfold_q definitions is a harder problem. It is related to the
generation of "safe" (i.e. termination ensuring) delay declarations in languages
such as MU-Prolog and GSdel. This is a subtle problem as discussed in [28,
23]. For example, the condition (nonvar(X) ; nonvar(Z)) is not safe for a call
append(X,Y, Z); execution, and in our case unfolding, could go on infinitely for
some non-linear calls (e.g. append(Eal L] ,Y,L)). Also the condition nonvar /1
is not rigid. (For funnyapp/3 we had rigid conditions, however this is rather
the exception than the rule.) A safe unfolding condition for append(X,Y,Z) is
l i n e a r (a p p e n d (X , Y , Z)) , (nonvar(X); nonvar(Z)) . Linearity is well suited
for analysis (e.g. [2]), but a test nonvar(X) is not. Moreover, unless X is ground,
the test is typically not invariant over the different iterations of a recursive
predicate. A solution could be to switch to a hybrid specialiser: deciding the
linearity test at analysis-time and the simple nonvar tests at run-time. But as
said above, perhaps due to lack of a good application (for languages with delay,
speed is more important than safety), there seems to be no work on generating
such conditions.

Another hybrid approach is taken in a recent work independent of ours [26].
This work also starts from the termination condition. When it is violated, the size
of the term w.r.t, the norm used in the termination condition and the maximal
reduction of the size in a single iteration is used to compute the number of
unfolding steps. The program is transformed and calls to be unfolded are given
an extra argument initialised with the allowed number of unfolding steps. An
on-line test checks the value of the counter and the call is residualised when the
counter reaches zero.

40

A c k n o w l e d g e m e n t s

M. Bruynooghe and M. Leuschel are supported by the Fund for Scientific Research
- Flanders Belgium (FWO). K. Sagonas is supported by the Research Council of the
K.U. Leuven. Some of the present ideas originated from discussions and joint work
with Jesper JCrgensen, and from the PhD. work of Dirk Dussart [12], to both of whom
we are very grateful. We thank Bart Demoen, Stefaan Decorte, Bern Martens, Danny
De Schreye and Sandro Etalle for interesting discussions, ideas and comments.

R e f e r e n c e s

1. R. Bol. Loop Checking in Partial Deduction. The Journal of Logic Programming,
16(1&2):25-46, May 1993.

2. M. Bruynooghe, M. Codish, and A. Mulkers. Abstracting unification: a key step in
the design of logic program analyses. In Computer Science Today, pages 406-442.
Springer-Verlag, LNCS Vol. 1000, 1995.

3. M. Bruynooghe, D. De Schreye, and B. Martens. A General Criterion for Avoid-
ing Infinite Unfolding During Partial Deduction. New Generation Computing,
11(1):47-79, 1992.

4. M. Codish and B. Demoen. Deriving Polymorphic Type Dependencies for Logic
Programs Using Multiple Incarnations of Prop. In B. Le Charlier, editor, Pro-
ceedings of the First International Symposium on Static Analysis, number 864 in
LNCS, pages 281-297, Namur, Belgium, September 1994. Springer-Verlag.

5. M. Codish and B. Demoen. Analysing Logic Programs using "Prop"-ositional
Logic Programs and a Magic Wand. Journal of Logic Programming, 25(3):249-
274, December 1996.

6. M. Codish, B. Demoen, and K. Sagonas. Semantic-Based Program Analysis for
Logic-Based Languages using XSB. K.U. Leuven TR CW 245. December 1996.

7. M. Codish and C. Taboch. A Semantic Basis for Termination Analysis of Logic
Programs and its Realization using Symbolic Norm Constraints. In Proceedings of
the Sizth International Conference on Algebraic and Logic Programming, number
1298 in LNCS, pages 31-45. Springer-Verlag, September 1997.

8. C. Consel and O. Danvy. Tutorial Notes on Partial Evaluation. In Proceedings
of the ACM Conference on Principles of Programming Languages, pages 493-501,
Charleston, South Carolina, January 1993. ACM Press.

9. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Conference Record of the Fourth ACM Symposium on Principles of Programming
Languages, pages 238-252, Los Angeles, California, January 1977. ACM.

10. S. Decorte and D. De Schreye. Termination Analysis: Some Practical Properties
of the Norm and Level Mapping Space. TR, Dept. Comp. Science, K.U. Leuven.

11. S. Decorte and D. De Schreye. Demand-driven and Constraint-based Automatic
Termination Analysis for Logic Programs. In L. Naish, editor, Proceedings of the
Fourteenth International Conference on Logic Programming, pages 78-92, Leuven,
Belgium, July 1997. The MIT Press.

12. D. Dussart. Topics in Program Specialisation and Analysis for Statically Typed
Functional Languages. PhD thesis, Katholieke Universiteit Leaven, May 1997.

13. J. Gallagher and M. Bruynooghe. The Derivation of an Algorithm for Program
Specialisation. Nen~ Generation Computing, 9(3,4):305-333, 1991.

14. C. A. Gurr. A Self-Applicable Partial Evaluator for the Logic Programming Lan-
guage GJdel. PhD thesis, Department of Computer Science, University of Bristol.

4J

15. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Eraluation and Automatic
Program Generation. Prentice Hall International Series in Computer Science, 1993.

16. N. D. Jones, P. Sestoft, and It. SCndergaard. MIX: a Self-applicable Partial Eval-
uator for experiments in Compiler Generation. LISP and Symbolic Computation,
2(1):9-50, 1989.

17. J. J~rgensen and M. Leuschel. Efficiently Generating Efficient Generating Exten-
sions in Prolog. In O. Danvy, R. Glfick, and P. Thiemann, editors, Proceedings of
the 1996 Dagstuhl Seminar on Partial Evaluation, number 1110 in LNCS, pages
238-262, SchloB Dagstuhl, February 1996. Springer-Verlag.

18. J. Komorowsld. Partial Evaluation as a means for inferencing data structures in
an Applicative Language: A Theory and Implementation in the case of Prolog.
In Proceedings of the A CM Conference on Principles of Programming Languages,
pages 255-267, Albuquerque, New Mexico, January 1982. ACM.

19. M. Leuschel. The ECCE partial deduction system and the D P P D library of bench-
marks. Obtainable via h t tp ://www. os. lmleuven, ac .be/~lpai, 1996.

20. M. Leuschel, B. Martens, and D. De Schreye. Controlling Generalisation and
Polyvariance in Partial Deduction of Normal Logic Programs. A CM Trans. Prog.
Lang. Syst., 20, 1998. To Appear.

21. M. Leuschel, B. Martens, and K. Sagonas. Preserving Termination of Tabled Logic
Programs While Unfolding. In N. Fuchs, editor, Proceedings of LOPSTR'97: Logic
Program Synthesis and Transformation, LNCS, Leuven, Belgium, July 1997.

22. N. Lindenstrauss and Y. Sagiv. Automatic Termination Analysis of Logic Pro-
grams. In L. Naish, editor, Proceedings of the Fourteenth International Conference
on Logic Programming, pages 63-77, Leuven, Belgium, July 1997. The MIT Press.

23. E. Marchiori and F. Teusink. Proving Termination of Logic Programs with Delay
Declarations. In J. W. Lloyd, editor, Proceedings of the 1995 International Logic
Programming Symposium, pages 447-461, Portland, Oregon, December 1995.

24. K. Marriott and H. SCndergaard. Precise and Efficient Groundness Analysis for
Logic Programs. ACM Letters on Progr. Lang. and Syst., 2(1-4):181-196, 1993.

25. B. Martens and D. De Schreye. Automatic Finite Unfolding Using Well-Founded
Measures. The Journal of Logic Programming, 28(2):89-146, August 1996.

26. J. Martin. Sonic Partial Deduction. Technical Report, Dept. Elec. and Comp. Sc.,
University of Southampton, January 1998.

27. T. Mogensen and A. Bondorf. Logimix: A self-applicable partial evaluator for Pro-
log. In K.-K. Lau and T. Clement, editors, Logic Program Synthesis and Trans-
formation. Proceedings of LOPSTR'9$, pages 214-227. Springer-Verlag, 1992.

28. L. Naish. Coroutining and the Construction of Terminating Logic Programs. Tech-
nical Report TR 92/5, Dept. Computer Science, University of Melbourne, 1992.

29. K. Sagonas, T. Swift, and D. S. Warren. XSB as an Efficient Deductive Database
Engine. In Proceedings of the ACM SIGMOD International Conference on the
Management of Data, pages 442-453, Minneapolis, Minnesota, May 1994. ACM.

30. D. Sahlin. Mixtus: An Automatic Partial Evaluator for Full Prolog. New Genera-
tion Computing, 12(1):7-51, 1993.

31. M. H. SCrensen and R. Gliick. An Algorithm of Generalization in Positive Super-
compilation. In J. W. Lloyd, editor, Proceedings of the 1995 International Logic
Programming Symposium, pages 465-479, Portland, Oregon, December 1995.

32. V. F. Turchin. The Concept of a Supercompilcr. ACM 2Zeans. Prog. Lang. Syst.,
8(3):292-325, July 1986.

33. P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Evaluation of the Domain
Prop. Journal of Logic Programming, 23(3):237-278, June 1995.

