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Abst rac t .  We study the notion of binding-time analysis for logic pro- 
grams. We formalise the unfolding aspect of an on-line partial deduction 
system as a Prolog program. Using abstract interpretation, we collect 
information about the run-time behaviour of the program. We use this 
information to make the control decisions about the unfolding at analysis 
time and to turn the on-line system into an off-line system. We report 
on some initial experiments. 

1 I n t r o d u c t i o n  

Partial evaluation and partial deduction are well-known techniques for special- 
ising respectively functional and logic programs. While both depart from the 
same basic concept, there is quite a divergence between their application and 
overall approach. In functional programming, the most widespread approach is 
to use off-li~e specialisers. These are typically very simple and fast specialisers 
which take (almost) no control decisions concerning the degree of specialisation. 
In th iscontext ,  the specialisation is performed as follows: First, a bi~di~g-~ime 
a~alysis (BTA) is performed on the program which annotates all its statements 
as either "reducible" or "non-reducible". The annotated program is then passed 
to the off-line specialiser, which executes the statements marked reducible and 
produces residual code for the statements marked non-reducible. In logic pro- 
gramming, the o~-li~e approach is almost the only one used. All work is done 
by a complex on-line specialiser which monitors the whole specialisation process 
and decides on the degree of specialisation while specialising the program. A 
few researchers have explored off-line specialisation, but lacking an appropriate 
notion of BTA, they worked with hand-annotated programs, something which 
is far from being practical. Until now, it was unclear how to perform BTA for 
logic programs. 

The current paper remedies this situation. It develops a BTA for logic pro- 
grams, not by translating the corresponding notions from functional program- 
ming to logic programming, but by departing from first principles. Given a logic 
program to be specialised, we develop a logic program which performs its on- 
line specialisation. The behaviour of this program is analysed and the results are 
used to take all decisions w.r.t, the degree of specialisation off-line. This turns 
the on-line specialiser into an off-line specialiser. A prototype has been built and 
the quality and speed of the off-line specialisation has been evaluated. 
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2 B a c k g r o u n d  

2.1 Partial Deduction 

In contrast to ordinary (full) evaluation, a partial evaluator receives a program P 
along with only part of its input, called the static input. The remaining part of 
the input, called the dynamic input, will only be known at some later point in 
time. Given the static input S, the partial evaluator then produces a specialised 
version Ps of P which, when given the dynamic input D, produces the same 
output as the original program P. The goal is to exploit the static input in order 
to derive a more efficient program. 

In the context of logic programming, full input to a program P consists of a 
goal G and evaluation corresponds to constructing a complete SLDNF-tree for 
P U (G}. The static input is given in the form of a partially instantiated goal G t 
(and the specialised program should be correct for all instances of GI). 

A technique which produces specialised programs is known under the name of 
partial deduction [18]. Its general idea is to construct a finite set of atoms A and 
a finite set of finite, but possibly incomplete SLDNF-trees (one for every 1 atom in 
A) which "cover" the possibly infinite SLDNF-tree for P U (G~}. The derivation 
steps in these SLDNF-trees correspond to the computation steps which have 
been performed beforehand and the specialised program is then extracted from 
these trees by constructing one specialised clause per non-failing branch. 

In partial deduction one usually distinguishes two levels of control: the global 
control, determining the set A, thus deciding which atoms are to be partially 
deduced, and the local control, guiding construction of the finite SLDNF-trees 
for each individual atom in A and thus determining what the definitions for the 
partially deduced atoms look like. 

2.2 Off- l lne vs. On- l ine  C o n t r o l  

The (global and local) control problems of partial evaluation and deduction 
in general have been tackled from two different angles: the so-called on-line 
versus off-line approaches. The on-line approach performs all the control deci- 
sions during the actual specialisation phase. The off-line approach on the other 
hand performs a (binding-time) analysis phase prior to the actual specialisation 
phase. This analysis starts from a description of which parts of the inputs will be 
"static" (i.e. sufficiently known) and provides binding-time annotation8 which 
encode the control decisions to be made by the specialiser, so that  the specialiser 
becomes much more simple and efficient. 

Partial evaluation of functional programs [8, 15] has mainly stressed off-line 
approaches, while supercompilation of functional [32, 31] and partial deduction 
of logic programs [13, 3, 1, 30, 25, 20] have concentrated on on-line control. 

On-line methods, usually obtain better specialisation, because no control 
decisions have to be taken beforehand, i.e. at a point where the full specialisation 

1 Formally, an SLDNF-tree is obtained from an atom or goal by what is called an 
unfolding rule. 
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information is not yet available. The main reasons for using the off-line approach 
are to make specialisation itself more efficient and, due to a simpler specialiser 
algorithm, enable effective self-application (specialisation of the specialiser) [16]. 

Few authors discuss off-line specialisation in the context of logic programming 
[27, 17], mainly because so far no automated binding-time analysers have been 
developed. This paper aims to remedy this problem. 

3 T o w a r d s  B T A  f o r  p a r t i a l  d e d u c t i o n  

3.1 A n  on- l ine  specia l i ser  

The basic idea of BTA in functional programming is to model the flow of static 
input: the arguments of a function call flow to the function body, the result 
of a function flows back to the call expression. The expressions are annotated 
reducible when enough of their parameters are static, i.e. will be known at 
specialisation time, to allow the (partial) computation of the expression. Mod- 
elling the dataflow gives a system of inequalities over variables in a domain 
{static, dynamic} whose least solution yields the best annotation. 

This approach does not immediately translate to logic programs. Problems 
are that  the dataflow in unification is bidirectional and that the degree of in- 
stantiation of a variable can change over its lifetime (see also [17]). 

We follow a different approach and reconstruct binding-time analysis from 
first principles. We start with a Prolog program which performs the unfolding 
decisions of an on-line specialiser. However, whereas real on-line specialisers base 
their unfolding decisions on the history of the specialisation phase, ours bases 
its decisions solely on the actual arguments of the call (which can be more 
easily approximated off-line). This is in agreement with the off-line specialisers 
for functional languages which base their decision to evaluate or residualise an 
expression on the availability of the parameters of that  expression. The next step 
will be to analyse the behaviour of this program (the binding-time analysis) and 
to use the results to make the unfolding decisions at compile time. 

First we develop the on-line specialiser. Assuming that  for each predicate 
p/m a test predicate unfold_p/m exists which decides whether to unfold a call 
or not, we obtain an on-line specialiser by replacing each call p(t) by 

( unfold_p( ) memoise_p( )) 

A call to memoise_p(t) informs the specialiser that  the call p(t) has to be 
residualised. The specialiser has to check whether C a generalisation of) p(t) has 
already been specialised - - i f  not it has to initiate the specialisation of ( a gen- 
eralisation of) p(~)-- and has to perform appropriate renaming of predicates to 
ensure that  residual code calls the proper specialised version of the predicate it 
calls. 

Ezample 1 (Funny append). Consider the following on-line specialiser for a vari- 
ant, funnyapp/3 of the append~3 predicate in which the first two arguments of 
the recursive call have been swapped: 
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funnyapp ( [] ,X ,X). 
funnyapp([X]U'J ,V,[X[W]) : -  

(unfold_funnyapp(V,U,W) -> funnyapp(V,U,W) 
; memoise_funnyapp (V,U,W) 

unfold_fu~myapp(X,Y,Z) : -  ground(X). 
. 

Specialising this program for a query funnyapp(  [ a , b ] ,  L, 1~) results in the spe- 
cialised clause (the residual call is renamed as funnyappA)  

funnyapp([a,b] ,L, [a[R1]) : -  funnyappl(L,  [b] ,R1). 

Specialising the funnyapp program for the residual call funnyapp(L ,  [hi ,I~1) 
gives (after renaming) the clauses 

funnyappA ( [ ] ,  [b],  [b] ) .  
funnyapp_.l([XlU], [b] ,[X,blR]) : -  funnyapp_2(U, [] ,R). 

Once more specialising, now for the residual call funnyapp (U, [ ] ,  R), gives 
funnyapp_2 ( [ ] ,  [ ] ,  [] ) .  
funnyapp_2 ( [][ [U], [] ,  [X [U] ) .  

This completes the specialisation. Note that the sequence of residual calls is ter- 
minating in this example. In general, infinite sequences are possible. They can be 
avoided by generalising some arguments of the residual calls before specialising. 

In the above example, instead of using ground(X) as condition of unfolding, 
one could also use the test n i l t e r m i n a t e d ( X ) . T h i s  would allow to obtain the 
same level of specialisation for a query funnyappend(  [X, Y], L, It). This test is 
another example of a so called rigid or downward closed property: if it holds for 
a certain term, it holds also for all its instances. Such properties are well suited 
for analysis by means of abstract interpretation. 

3.2 F r o m  on - l i ne  t o  off- l ine 

"Ihrning the on-line specialiser into an off-line one requires to determine the 
u~fold_p/n predicates during a preceding analysis and to decide on whether to 
replace the (u~fold_p(~) --, p(~); memo/se(p(~))) construct either by p(~) or by 
memoise(p(~)). The decision has to be based on a safe estimate of the calls 
u~folg_p(~) which will occur during the specialisation. Computing such safe ap- 
proximations is exactly the purpose of abstract interpretation [9]. 

:- { grud (L1) } "eapl(Ll,L2,R) {grad(L1)}. 
~ap1 ( [] , x ,x ) .  
fapl([XIO],V,[X[W]) : -  {grnd(X,U)} 

(unf.~apl(V,U,W) {grnd(X,U, [I)} -> 
{g~.d(Z,U, V)} ~ap2(V,U,W) {gr.~(Z,U, V,W)} 

; {grnd(X,U))memo_fap3(V,U,W) {grad(X,U)} 
) {grnd(X,U)}. 

unf_fapl(X,Y,Z) : -  {grnd(u ground(X) {grnd(X, u 
memo_f ap3 (X ,Y ,Z). 
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By adding to the code of Example 1 the fact memoise.=funnyapp(X,Y,Z)., and 
an appropriate handling of the Prolog built-in g round / I ,  one can run a goal- 
dependent polyvariant groundness analysis (using e.g. PLAI coupled with the 
set-sharing domain) for a query where the first argument is ground and obtain the 
above annotated program. The annotated code for the version l ap2  is omit ted 
because it is irrelevant for us. Indeed, inspecting the annotations for un f_ fap l  
we see that  the analysis cannot infer the groundness of its first argument. So we 
decide off-line not to unfold, we cancel the test and the then branch and simplify 
the code into: 

:- {gr, d(L1)} fapl(L1,L2,R) {gr, d(Ll)}. 
~apl ([] ,X,X). 
fapl([XlU] ,V, [XIW]) :-  {grnd(X,U)} memo.=fap3(V,U,W) <grnd(X,U)}. 

The residual call to funnyappend has a different call pattern than the original 
call: its second argument is now ground. Thus we perform a second analysis and 
obtain (the annotated code for l ap4  is omitted): 

:- {9r, d(L2)} fap3(L1,L2,R) {9r, d(L2)}. 
~ap3([] ,X,X). 
fap3(I'X[U],V,[XIW]) :-  {gr, d(F)} 

(unf_.fap2(V,U,W) {grnd(F)}-> 
{grnd(F)} fap4(V,g,W) {gr, d(V)} 

; {grnd(V)} memo_fapS(V,U,W) {grnd(V)} 
) {gr.d(V)}.  

unf.iap2(X,Y,Z) :-  {grnd(X)} ground(X) {grnd(X)}. 
memo_.f ap5 (X ,Y ,Z). 

This time, the annotations for unf_:fap2 show that  the groundness test will 
definitely succeed. So we decide off-line always to unfold and only keep the then 
branch. Moreover, the fap4  call has the same call pattern as the original call to 
funnyapp,  so we also rename it as f a p l .  This yields the second code fragment: 

:- {grud(L2)} fap3(L1,L2,R) {grnd(L2)}. 
fap3([]  ,X,X). 
fap3([XIUJ,V,[X[W]) :- {grnd(V)} fapl(V,U,W) {grnd(V)} 

Applying the specialiser on these two code fragments for a query lap1 ( [a ,b] ,  L ,R) 
gives the same specialised code as in Example 1. However, this time, no calls to 
u n f o l d f u n n y a p p  have to be evaluated during specialisation. 

3.3 A u t o m a t i o n  

To weave the step by step analysis sketched above in a single analysis, a special 
purpose tool has to be built. We implemented a system based on the abstract do- 
main POS, also called PROP [24]. It describes the state of the program variables 
by means of positive boolean formulas, i.e., formulas built from +-*, A and V. Its 
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most  popular  use is for groundness analysis. In that  case, the formula X expresses 
that  the program variable X is (definitely) bound to a ground term, X ~-~ Y 
expresses that  X is bound to a ground te rm if[ Y is, so an eventual binding of X 
to a ground term will be propagated to Y. This domain is extended with false 
as bo t tom element and is ordered by boolean implication. Groundness analysis 
corresponds to checking the rigidity 2 of program variables w.r.t, the eermsize 
norm s and abstracts  a unification such as X = [Y[Z] by the boolean formula 
X *-* Y A Z. However POS can also be used with other semi-linear norms [4]. 
In e.g. normalised programs, it only requires to redefine the abstraction of the 
unifications. For example,  with the lisr norm 4, unification of X = [Y[Z] is 
abstracted as X *-* Z, and a formula X means that  the program variable X is 
bound to a term with a bounded listlength, i.e. either the t e rm is a ni l- terminated 
list, or has a main functor which is not a list constructor. 

The analyser has to decide the outcome of the unfold_p test and has to 
decide which branch to take for further analysis while doing the analysis. Also 
it has to launch the analysis of the generalisations of the memoised calls. The 
generalisation we employ is to replace an argument  which is not rigid under 
the norm used in the analysis by the abstraction of a fresh variable. These 
requirements exclude the direct use of the abstract  compilat ion technique in the 
way advocated by e.g. [5]. One problem of the scheme of [5] is that  it handles 
constructs ( g r o u n d ( X )  ---, p(~); memoise(p(~)))  too inaccurately. The boolean 
formula is represented as a truth table, i.e. a set of tuples, and the analyser 
processes the t ruth table a tuple at a time. Therefore it cannot infer in a program 
point tha t  X is true, i.e. that  X is definitely ground, so it can never conclude 
that  the else branch cannot be taken. The other problem is that  the analyses 
launched for the memoised  calls should not interfere (i.e. output  should not flow 
back) with the analysis of the clauses containing the memoised calls. Note that  
defining memoise  as memoise_p(  X1,  . . . , X n  ) : -  copy(X1,  Y1), . . . , copy( X,~, Y,~ ), 
and abstract ing copy(X,  Y )  as X *-~ Y does not work: The abstract  success state 
of executing P ( Y 1 , . . . ,  Yn) will update  the abstractions of X 1 , . . . ,  X n .  

Our prototype binding-time analyser currently consists of ~ 800 lines of Pro- 
log code and uses XSB [29] as a generic tool for semantic-based program anal- 
ysis [6]. The boolean formulas from the POS domain are represented by their 
t ru th  tables. This representation enables abstract  operations to have straight- 
forward implementat ions based on the projection and equi-join operations of 
the relational algebra. The disadvantage is that  the size of t ruth  tables quickly 
increases with the number  of variables in a clause. The use of dedicated da ta  
structures like BDDs to represent the boolean formulas as in [33] often results 
in better  performance but at the expense of substantial  programming efforts. 

The main part  of the analyser can be seen as a source-to-source transfor- 
mat ion (i.e. abstract  compilation) that  given the program P to be analysed, 

A term is rigid w.r.t, a norm if all its instances have the same size w.r.t, the norm. 
3 The termsize norm [11] includes all subterms in the measure of the term. 
4 The listlength norm [11] includes only the tail of the list in the measure of the list 

(and measures other terms as 0); nil-terminated lists are rigid under this norm. 
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produces an abstract program p a  with suitable annotations. The abstract pro- 
gram can be directly run under XSB (using tabling to ensure termination).  The 
execution leaves the results of the analysis in the XSB tables. Each predicate p / n  
of P is abstracted to a predicate pa /2  whose arguments carry input and output  
sets of tuples. The core part of setting up the analysis is then to define the code 
for the abstract interpretation of each call (at a program point PP# of interest): 

( .nfold_p(X) --4 p(X); memoise_p(X) ). (1) 

is abstracted by the following code fragment: 

project(Args, TPPin, TC), 
(unfold_p(TC)-> 

unfold(TC,PP#), pa(TC,TR) 
; TR=TC, generalise(TC,TCG), memo(TCG,PP#), pa(TCG,_) ) ,  

equi_join( hrgs , TPPin, TR, TPPout), 
Predicates unfold/2 and memo/2  which abstract the behaviour of each call in 
the form of (1) above are tabled predicates which have no effect on the compu- 
tation, but only record information containing the results of the analysis. Their 
arguments are the current abstraction and the current program point. This infor- 
mation is then dumped from the XSB tables and is fed to the off-line specialiser. 
The variable TPPi,~ holds the t ruth table which represents the abstraction of the 
program state in the point prior to the call. The call to project/3 projects the 
t ru th  table on the positions hrgs  of the variables X participating in the call. The 
result is TC (Tuples of the Call). The predicate unfold_p/1 (currently supplied 
by the user for each predicate pin to be analysed) inspects TC to decide whether 
there is sufficient information to unfold the call. If it succeeds the then branch is 
taken which analyses the effects of unfolding pin. This is done by executing p~/2 
with TC as abstraction of the call state. The analysis returns TR as abstraction of 
the program state reached after unfolding pin. If the call to unfold_p~1 fails, the 
call is memoised, and the program state remains unchanged, so TR = TC. The 
generalisation of the memoised call also needs to be analysed; therefore the else 
branch first generalises the current state TC into TCG by erasing all dependencies 
for non-rigid arguments 5 and then calls p~/2 with TCG as initial state, but takes 
care not to use the returned abstract state as the bindings resulting from spe- 
cialising memoised calls do not flow back. These actions effectively realise the 
intended functionality of memoise_p/1. Finally, the new program state TR over 
the variables X has to be propagated to the other program variables described 
by the initial state TPPin. This is achieved simply by taking the equi-join over 
the hrgs  of TPPi,~ and TR. The new program state is described by TPPout. 

One of our examples (see Section 4.2) uses two different norms in the unfold 
tests: the term norm which tests for groundness, and the listlength norm which 
tests for the boundedness of lists (whether lists are nil-terminated). This does 
not pose a problem for our framework, we simply use a t ruth table which encodes 
two boolean formulas, one for the term norm and one for the listlength norm. 

~A position is rigid if it has an "s" in each tuple e.g. generalise([p(s,,~,s), 
p(s,d,d)],TCG)yields TCG = [ p ( s , s , s ) ,  p ( s , s , d ) ,  p ( s , d , s ) ,  p ( s , d , d ) ] .  
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4 S o m e  E x p e r i m e n t s  a n d  B e n c h m a r k s  

We first discuss the p a r s e r  and l i f t s o l v e  examples from [17]. 

4.1 The  parser example  

A small generic parser for languages defined by grammars of the form S ::= aS]X 
(X is a placeholder for a terminal symbol as well as the first argument to nont/3;  
arguments 2 and 3 represent the string to be parsed as a difference list): 

nont(X,T,R) : -  t ( a ,T ,V) ,non t (X ,V ,R) .  
nont(X,T,R) : -  t (X ,T ,R) .  

t (x ,  [X IEsl ,Es). 
A termination analysis can easily determine that calls to t / 3  always terminate 
and that calls to nont /3  terminate if their second argument is ground. One can 
therefore derive the following unfold predicates: 

u n f  o l d _ t  (X, S1, $2).  
unfold_nont  (X,T,R) : -  ground(T) .  

Performing our analysis for the entry point :- .[grnd(X)} nont  (X . . . .  ) we obtain 
the following annotated program (dynamic arguments [i.e. non-ground ones] and 
non-reducible predicates [i.e. memoised ones] are underlined.): 

nont(X,T_,_R) : -  t ( a , T , V ) ,  nont(X,V,_R). 
nont(X,L_R) : -  t(X,T,_R). 
t (X, [X[Es],Es). 

Feeding this information into the off-line system LOGEN [17] and specialising 
n o n t  (c ,T,R), we obtain: 

nont__0([a[B],C) :- nont__0(B,C). 
nont__O([c[D],D). 

Analysing the same specialiser for :- {grnd(T)} nont (_,T,_) yields: 
nont(_X,T,_R) : -  t ( a , T , V ) ,  nont(X_,V,R). 
nont(X_,T,_R) : -  t(X_,T,_R). 
t(x_, Ix IEs] ,~s). 

Feeding this information into LOGEN and specialising nont (_X, [ a , a , c ]  ,R) yields: 
nont__O(c,~). 
nont__O(a,[c]). 
nont__O(a,[a,c]). 

4.2 The  liftsolve example  

The following program is a meta-interpreter for the ground representation, in 
which the goals are "lifted" to the non-ground representation for resolution. 
To perform the lifting, an accumulating parameter is used to keep track of the 
variables that have already been encountered and generated. The predicate rang 
and x_amg transform (a list of) ground terms (the first argument) into (a list 
of) non-ground terms (the second argument; the third and fourth arguments 
represent the incoming and outgoing accumulator respectively). The predicate 
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s o l v e  uses these predicates to "lift" clauses of a program in ground representation 
(its first argument) and then use them for resolution with a non-ground goal (its 
second argument) to be solved. 
s o l v e  (GrP, [] ).  
s o l v e  (GrP, [NsH I NsT] ) : - 

non_ground~aember (t  erm(clause,  [NsHINgBdy] ) ,GrP), 
s o l v e  (GrP ,NgBdy), s o l v e  (GrP ,NgT). 

non_sroundJuember(ggx, [GrHI_GrT]) :- make_uon_sround(GrH,ggX). 
non_groundJuember (NgX, [_GrHIGrT] ) :-  non_ground_~ember (NgX,GrT) . 
make_non_sround(G,NG) :-  nmg(G ,NG, [] ,_Sub) . 
ran8 (vat  (N) ,X, [ ] ,  [sub (N ,X)] ) .  
ran8 (vat  (N) ,X, [sub (N ,X)IT], [sub (N ,X)IT] ) .  
rang(var(N),X,[sub(H,Y)[T],[sub(N,Y)]T1]) :-  N \== M, mng(var(N),X,T,T1).  
nmg(term(F,Arss) , t erm(F,I lrgs )  ,InS,OutS) :-  lmng(Args,IArgs,InS,OutS). 
hnng( [] ,  [3 ,Sub,Sub). 
]:nng([HIT] , [IHIIT] ,InS,OutS) :- 

mng(H,IH,InS,InS1), lmng(T,IT,InSl,0utS). 
The following unfold predicates can be derived by a termination analysis: 

unfold__lmng(Gs,NGs ,InSub,0utSub) :- ground(Gs), bounded_list (InSub). 
unfoldmmg(G,NG,InSub,OutSub) :- ground(G), bounded_list (InSub). 
unfold~aakemon_ground(G,NG) :- ground(G). 
unfold_non_groundJnember (NgX,L) :-  ground(L).  
unfold_solve  (GrP,Query) :-  8round(GrP). 

Analysing the specialiser for the entry point solve(ground,_) we obtain: 

solve(GrP, D. 
solve(GrP,[-NgH[SgT]) :- 

non_ground_member(term(clause,[NgH[NgBdy]), GrP), 
solve(GrP,SgBdy), solve(GrP,SgW). 

non_ground_member(NgX,[GrH[_GrW]) :- make_non_ground(GrH,NgX). 
non_ground_member(SgX,[_GrI-IIGrW]) :- non_ground_member(NgX,GrW). 
make_non_ground(G,NG) :- mng(G,NG, ~,_Sub). 
mng(var(N),X,[],[sub(N,X)]). 
mng(var(N),X,[sub(N,X)IT], [sub(N,X)IT]). 
mng(var(N),X_,[sub(M,Y)IT], [sub(M,Y)IT1]) :- N \== M, mng(var(N),X,T,Tl). 
mng(term(F,Args),term(F,IArgs), InS,OutS) :- Imng(Args,IArgs, InS,OutS). 
Imng(~,~_,Sub,Sub). 

Imng([HIT],[IHIIT], InS,OutS) :- mng(H,IH,InS,InSl), Imngl(T,l _T, InSI,OutS) . 

lmngl(~,[],Sub,Sub). 
lmngl([HTT],[IH-[i~, InS,OutS) :- mngl(H,IH,InS,InS1), lmngl(T,IT, InSl,OutS). 
mngl(var(N),X,~,[sub(N,X)]). 
mngl(var(S),X,~sub(S,X)lT],[sub(N,X)lT]). 
mngl(var(S),X, [sub(M,Y)IT],[sub(M,Y)IT1]) :- S \ = =  M, mngl(var(N),X,T,T1). 
mngl(term(F,Args),terra(F,IArgs), InS,OutS) :- Imngl(Args,IArgs, InS,OutS). 

One can observe that  the call lmagl(T,IT, InSl,0utS) has not been unfolded. 
Indeed, the third argument InS1 is considered to be dynamic (non-ground) and 
the call to unfold..l_am8 will thus not always succeed. However, based on the ter- 
mination analysis, it is actually sufficient for termination if the third arguments 
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to mng and lmng are bounded lists (as the listlength norm can be used in the ter- 
minat ion proof). If  we use our prototype to also keep track of bounded lists we 
obtain the desired result: the call lnmgl (T,IT,InS1 ,OutS) can be unfolded as the 
first argument  is ground and third argument  can be inferred to be a bounded list. 
By feeding the so obtained annotations into LOGEN [17] we obtain a specialiser 
which removes (most of) the meta-interpretat ion overhead. E.g. specialising 

solve ( I t  erm (clause, It erm (q, [vaz (1) ] ), term (p, [var (I) ] ) ] ), 

term(clause, [term(p, [term(a, [] )] )] )], G) 

yields the following residual program: 
solve_0 ( [ ] ) .  
s o l v e _ O  ( I t  errs (q ,  [B] ) I C] ) : - s o l v e _ O  ( I t  erm (p ,  [B] ) ] ) ,  s o l v e _ O  ( C ) .  
s o l v e _ O ( [ t e r m ( p ,  [ te rm(a ,  [ ] ) ] )  [D]) : -  s o l v e _ O ( [ ] ) , s o l v e _ O ( D ) .  

4.3 S o m e  B e n c h m a r k s  

We now study the efficiency and quality of our approach on a set of benchmarks. 
Except for the p a r s e r  benchmark all benchmarks come from the DPPD bench- 
mark  l ibrary [19]. We ran our prototype analyser, BTA, that  performs binding- 
t ime analysis and fed the result into the off-line compiler generator LOGEN [17] 
in order to derive a specialiser for the task at  hand. The ECCE on-line part ial  
deduction system [19] has been used for comparison (settings are the same as 
for ECCE-X in [20], i.e. a mixtus like unfolding, a global control based upon 
characteristic trees but no use of conjunctive partial  deduction). The interested 
reader can consult [20] to see how ECCE compares with other systems. 

All experiments were conducted on a Sun Ultra-1 running SunOS 5.5.1. ECCE 
and LOGEN were run using Prolog by BIM 4.1.0. BTA was run on XSB 1.7.2. 

Benchmark 

depth.lam 
liftsolve.app 
liftsolve.app4 
match.kmp 
parser 
regexp.rl 

ECCE-PD 

0.34 s 
1.00 s 
12.32 s 
0.18 s 

0.06 s 
0.17 s 

BTA LOGEN PD [Ratio[ 

0.05 + 0.579 s 0.05 s 0.003 
0.079* + 1.841 s 0.05 s 0.006 s 

" " 0.014 s 
0.06 + 0.031 s 0.01 s 0.006 
0.03 + 0.01 s 0.02 s 0.001 
0.039 + 0.031 s 0.06 s 0.006 

Table I. Analysis and Specialisation Times 

In Table 1 one can see a summary  of the t ransformation times. The columns 
under BTA contain: the t ime to abstract  and compile the program § the t ime 
for execution of the abstracted program (both under XSB). The column un- 
der LOGEN contains the t ime to generate the specialiser with LOGAN using the 
so obtained annotations.  Observe, that  for any given initial annotation,  this 
has only to be performed o n c e :  the so obtained specialiser can then be used 
over and over again for different specialisation tasks. E.g. the same specialiser 
was used for the liftsolve, app and liftsolve, app4 benchmark. The '*' for 

liftsolve, app indicates the time for the abstract compilation only producing 

code for the groundness analysis. The extra arguments and instructions for the 
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bounded list analysis were added by hand (but will be generated automat ical ly  
in the next version of the prototype).  The column under P D  gives the t ime 
for the off-line specialisation. The last column of the table contains the ratio of 
running ECCE over running the specialisers generated by BTA -~- LOGEN. As can 
be seen, the specialisers produced by BTA --[- LOGEN run 28 - 880 times faster 
than ECCE. We conjecture that  for larger programs (e.g liftsolve with a very big 
object program) this difference can get even bigger. Also, for 3 benchmarks the 
combined t ime of running BTA --~ LOGEN and then the so obtained specialiser 
was less than running ECCE, i.e. our off-line approach fares well even in "one- 
shot" situations. Of course, to arrive at a fully automat ic  ( terminating) system 
one will still have to add the t ime for the terminat ion analysis, needed to derive 
the "unfold" predicates. 

Benchmark 

f l e p t h ,  l a i n  0.08 s 

1 
liftsolve .app 0.13 s 

1 

liftsolve.app4 0.17 s 

1 

mat ch. kmp 0.58 s 

1 

parser 0.20 s 
1 

regexp.rl 0.29 s 
1 

[[Original I ECCE ]BTA + LOGEN 

0.00 s 
32 

0.01 s 
13 

0.00 s 
> 34 
0.34 s 
1.71 

0.12 s 
1.74 

0.10 s 

2.9 

0.06 s 
1.33 

0.01 s 

13 
0.02 s 

6.5  

0.51 s 
1.14 

0.12 s 
1.74 

0.20 s 
1.5 

Table 2. Absolute Runtimes and Speedups 

Table 2 compares the efficiency of the specialised programs (for the run t ime 
queries see [19]; for the p a r s e r  example we ran nont(c, [a 17, c, b], [b]) 100 times). 
As was to be expected, the programs generated by the on-line specialiser ECCE 
outperform those generated by our off-line system. E.g. for the match ,  kmp bench- 
mark  EcCE is able to derive a Knuth-Morr is-Prat t  style searcher, while off-line 
systems (so far) are unable to achieve such a feat. However, one can see that  the 
specialised programs generated by BTA + LOGEN are still very satisfactory. The 
most  satisfactory application is l i ~ t s o l v e . a p p  (as well as l i f t s o l v e . a p p 4 ) ,  
where the specialiser generated by BTA + LOGEN runs 167 (resp. 880) t imes 
faster than ECCE while producing residual code of equal (resp. almost  equal) 
efficiency. In fact, the specialiser compiled the append object program from the 
ground representation into the non-ground one in just  0.006 s (to be compared 
with e.g. the compilers generated by SAGE [14] which run in the order of min- 
utes). Furthermore,  the t ime to produce the residual program and then running 
it is less than the t ime needed to run the original program for the given set of 
runtime queries. This nicely illustrates the potential  of our approach for appli- 
cations such as runtime code generation, where the specialisation t ime is (also) 
of prime importance.  
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5 Di scuss ion  

We have formulated a binding-time analysis for logic programs, and have re- 
ported on a prototype implementat ion and on an evaluation of its effectiveness. 
To develop the binding-time analysis, we have followed an original approach: 
Given a program P to be analysed we transform it into an on-line specialiser 
p rogram P ' ,  in which the unfolding decision are explicitly coded as calls to 
predicates unfold_p.  The on-line specialiser is different from usual ones in the 
sense that  it - -  like off-line specialisers - -  uses the availability of arguments  
to decide on the unfolding of calls. Next, we apply abstract  interpretation - - a  
binding-time ana lys i s - -  to gather information about  the run-t ime behaviour of 
P ' .  The information in the program points related to unfo ld_p  allows to decide 
whether the test will definitely succeed - - i n  which case the unfolding branch is 
r e ta ined- -  or will possibly fail - - i n  which case the branch yielding residual code 
is retained. The resulting program now behaves as an off-line specialiser as all 
unfolding decisions have been taken a t  analysis time. 

An issue to be discussed in more detail is the terminat ion of the speciali- 
sation. First, a specialiser has a global control component.  It  must  ensure that  
only a finite number  of a toms are specialised. In our prototype,  we generalise the 
residual calls before generating a specialised version: arguments  which are not 
rigid s w.r.t, the norm used in the unfolding condition are replaced by fresh vari- 
ables. This works well in practice but is not a sufficient condition for termination.  
In principle one could define the memoise_p predicates as: 

memoise_p(X) :- copy_term(X,Y), generalise(Y,Z), p(Z). 
and then generalise such that  quasi- termination [21] of the program, where calls 
to p are tabulated,  can be proven. In practice, the built-in copy_term/2 and 
the built-ins needed to implement g e n e r a l i s e / 2  will make this a non-trivial 
task. Secondly, there is the local control component.  It  must  ensure that  the 
unfolding of a particular a tom terminates.  This is decided by the code of the 
t ransformed program. Defining the unfold_p predicates by hand is error-prone 
and consequently not entirely reliable. In principle, one could replace the calls 
memoise_p by t r u e  and apply off-the-shelf tools for proving terminat ion of logic 
programs [22, 7]. Whether  these will do well depends on how well they handle 
the i f -  t h e n -  else construct used in deciding on the unfolding and the built- 
ins used in the rigidity test (e.g. the analysis has to infer that  X is bounded and 
rigid w.r.t, the norm in the program point following a test ground(X)) .  It  is 
likely that  small extensions to these tools will suffice to apply them successfully 
in proving termination of the unfolding ~, at least when the unfolding conditions 
are based on rigidity tests with respect to the norms used by those termination 
analysis tools. 

A more interesting approach for the local control problem is to automat ical ly  
generate unfolding conditions by program analysis. Actually, one could apply a 

s I.e., "static" from functional programming becomes "rigid w.r.t, a given norm." 
7 After a small extension by its author, the system of [22] could handle small examples. 

However, so far we have not done exhaustive testing. 
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more general scheme for handling the unfolding than the one used so far. Having 
for each predicate p /n  the original clauses with head p / n  and transformed clauses 
with head p t / n ,  the transformed clauses could be derived from the original by 
replacing each call q/m by: 

( t e r m i n a t e s _ q ( ~ )  -> q(~) 
; (unfold_q(~) -> qt(~) ; memoise_q(~) ) ) 

In [10], Decorte and De Schreye describe how the constraint-based termination 
analysis of [11] can be adapted to generate a finite set of "most general" ter- 
mination conditions (e.g. for append/3 they would generate rigidity w.r.t, the 
listlength norm of the first argument and rigidity w.r.t, the listlength norm 
of the third argument as the two most general termination conditions; for our 
funnyapp/3  they would generate rigidity of the first and second argument w.r.t. 
the listlength norm as the most general termination condition.). These condi- 
tions can be used to define the t e rmina tes_q  predicates. If they succeed, the 
call q(~) can be executed with the original code and is guaranteed to terminate. 
Moreover, as they are based on rigidity, they are very well suited to be approx- 
imated by our binding-time analysis. Actually, in all our benchmarks programs, 
we were using termination conditions for controlling the unfolding, so in fact 
we could have further improved the speed of the specialiser by not checking the 
condition on each iteration but using the above scheme. 

Generating unfold_q definitions is a harder problem. It is related to the 
generation of "safe" (i.e. termination ensuring) delay declarations in languages 
such as MU-Prolog and GSdel. This is a subtle problem as discussed in [28, 
23]. For example, the condition (nonvar(X) ; nonvar(Z))  is not safe for a call 
append(X,Y, Z); execution, and in our case unfolding, could go on infinitely for 
some non-linear calls (e.g. append( Eal L] ,Y,L)). Also the condition nonvar /1  
is not rigid. (For funnyapp/3 we had rigid conditions, however this is rather 
the exception than the rule.) A safe unfolding condition for append(X,Y,Z) is 
l i n e a r ( a p p e n d ( X , Y , Z ) ) ,  (nonvar(X);  nonvar(Z)) .  Linearity is well suited 
for analysis (e.g. [2]), but a test nonvar(X) is not. Moreover, unless X is ground, 
the test is typically not invariant over the different iterations of a recursive 
predicate. A solution could be to switch to a hybrid specialiser: deciding the 
linearity test at analysis-time and the simple nonvar tests at run-time. But as 
said above, perhaps due to lack of a good application (for languages with delay, 
speed is more important than safety), there seems to be no work on generating 
such conditions. 

Another hybrid approach is taken in a recent work independent of ours [26]. 
This work also starts from the termination condition. When it is violated, the size 
of the term w.r.t, the norm used in the termination condition and the maximal 
reduction of the size in a single iteration is used to compute the number of 
unfolding steps. The program is transformed and calls to be unfolded are given 
an extra argument initialised with the allowed number of unfolding steps. An 
on-line test checks the value of the counter and the call is residualised when the 
counter reaches zero. 
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