
Synchronisation Analysis to Stop Tupling*

Wei-Ngan Chin 1 , Siau-Cheng Khoo 1 , and Tat-Wee Lee 2

1 National University of Singapore
2 Singapore Police Academy

Abst rac t . Tupling transformation strategy can be used to merge loops
together by combining recursive calls and also to eliminate redundant
calls for a class of programs. In the latter case, this transformation can
produce super-linear speedup. Existing works in deriving a safe and
automatic tupling only apply to a very limited class of programs. In
this paper, we present a novel parameter analysis, called synchronisation
analysis, to solve the termination problem for tupling. With it, we c a n

perform tupling on functions with multiple recursion and accumulative
arguments without the risk of non-termination. This significantly widens
the scope for tupling, and potentially enhances its usefulness. The anal-
ysis is shown to be of polynomial complexity; this makes tupling suitable
as a compiler optimisation.

1 I n t r o d u c t i o n

Source-to-source transformation can achieve global optimisation through special-
isation for recursive functions. Two well-known techniques are partial evaluation
[9] and deforestation [20]. Both techniques have been extensively investigated
[18, 8] to discover automatic algorithms and supporting analyses that can ensure
correct and terminating program optimisations.

Tupling is a lesser known but equally powerful transformation technique.
The basic technique works by grouping calls with common arguments together,
so that their multiple results can be computed simultaneously. When success-
fully applied, redundant calls can be eliminated, and multiple traversals of data
structures combined.

As an example, consider the Tower of Hanoi function.

hanoi(O,a,b,c) = ~;
hanoi(l q-n,a,b,c) = hanoi(n,a,e,b)-H-f(a,b)l-H-hanoi(n,c,b,a);

Note that q-q- denotes list catenation. The call hanoi(n,a,b,c) returns a list of
moves to transfer n discs from pole a to b, using c as a spare pole. The first pa-
rameter is a recursion parameter which strictly decreases, while the other three
parameters are permuting parameters which are bounded in values. (A formal
classification of parameters will be given later in Sec 2.) This definition contains
redundant calls, which can be eliminated. By gathering each set of overlapping
calls, which share common recursion arguments into a tupled function, the tu-
pling method introduces:
* This work was done while Lee was a recipient of a NUS Graduate Scholarship.

76

ht2(n,a,c,b) = (hanoi(n,a,c,b), hanoi(n,c,b,a) ;
ht3(n,a,b,c) = (hanoi(n,a,b,c), hanoi(n,b,c,a), hanoi(n,c,a,b)) ;

and transforms hanoi to the following :

hanoi(l+n,a,b,c) = let (u,v)=ht2(n,a,e,b) in u~+[(a,b)]+~v,
ht2(O,a,c,b) = (a,U);
ht2(l+n,a,c,b) = let (u,v,w)=ht3(n,a,b,c) in (~+~[(a,c)]+~v,w~+[(c,b)]~+.) ;
ht3(O,a,b,c) = (~,~,[~);
ht3(l+n,a,b,c) = let (u,v,w)=ht3(n,a,c,b)

in (u-H-[(a,b)]-H-v,w-H-[(b,c)]-t+u, v-Hr[(c,a)]+bw);
Despite a significant loss in modulari ty and clarity, the resulting tupled func-

tion is desirable as their better performance can be mission critical. Sadly, manual
and error-prone coding of such tupled functions are frequently practised by func-
tional programmers. Though the benefits of tupling are clear, its wider adoption
is presently hampered by the difficulties of ensuring that its transformation al-
ways terminates. This problem is crucial since it is possible for tupling to meet
infinitely many different tuples of calls, which can cause infinite number of tuple
functions to be introduced. Consider the knapsack definition below, where W(i)
and V(i) return the weight and value of some i-th item.

k n a p (O , w) = o ;

~ a v (l + n , w) = ~ w < W(l+n) then knav(n,w)
else max(knap (n, w),knap (n, w- W(l+n)) + V(1 +n) ;

Redundant calls exist but tupling fails to stop when it is performed on the above
function. Specifically, tupling encounters the following growing tuples of calls.

1. (knap(n,w),knap(n,w-W(l+n)))
2. (knap(nl , w),knap(nl, w- W(l +nl)),knap(nl,w- W(2 +nl)),

k~ap(n, , w- W(2+nl)- W(~ +n~)))
3. (k~aV(n2 , w),knap(n2, w- W (1+n~)),knav(n~, ~- W (2 +n~)- W (l + ~)),

k~ap(.~ , w- W(2 +n~)) ,k~ap(~ , . - W(3+n2)) ,knap(~ , w- W(3+n~)- W(l +n~)),
knav(n2 , w- W(34-n2)- W(2 +n2)),knap(n2 , w- W(34-n2)- W(Z +n2)- W(1 +n2)))

Why did tupling failed to stop in this case? It was because the calls of knap
overlap, but their recursion parameter n did not synchronise with an accumula-
tive parameter w.

To avoid the need for parameter synchronisation, previous proposals in [2, 7]
restrict tupling to only functions with a single recursion parameter, and without
any accumulative parameters. However, this blanket restriction also rules out
many useful functions with multiple reeursion and/or accumulative parameters
that could be tupled. Consider:

repl(Leaf(n),xs) = Leaf(head(xs));
revl(Node(1,r),xs) = Node(revl(1,xs),revl(r, sdrov(1,xs))) ;
sdrop(Leaf(n),xs) = ~ail(xs);
sdrop(Node(l,r),xs) = sdrop(r, sch'op(l, xs));

Functions repl and sdrop are used to replace the contents of a tree by the items
from another list, without any changes to the shape of the tree. Redundant sdrop
calls exist, causing repl to have a time complexity of O(n*) where n is the size of

77

the input tree. The two functions each has the first parameter being recursion and
the second being accumulative. For the calls which overlap, the two parameters
synchronise with each other (see Sac. 6 later). Hence, we can gather repl(l, xs)
and sdrop(l, xs) to form the following function:

~st~pO, xs) = (~eplO,~),~d~op(~,xs))

Applying tupling to rstup yields the following O(n) definition:

rs tup(Leaf(n) ,xs) = (Leaf(head(xs)) , tai l(xs)) ;
rs tup(node(1,r) ,xs) = let {(u,v)=rstup(1,xs); (a ,b)=rstup(r ,v)} in (Node(u,a) ,b) ;

This paper proposes a novel parameter analysis, called s ynchron i sa t i on anal-
ysis, to solve the termination problem for tupling. With it, we can considerably
widen the scope of tupling by selectively handling functions with multiple recur-
sion (and/or accumulative) parameters. If our analysis shows that the multiple
parameters synchronises for a given function, we guarantee that tupling will
stop when it is applied to the function. However, if our analysis shows possible
non-synchronisation, we must skip tupling. (This failure may be used to suggest
more advanced but expensive techniques, such as vector-based [3] or l i s t -based
[14] memoisations. These other techniques are complimentary to tupling since
they may be more widely applicable but yield more expensive codes.) Lastly, we
provide a costing for our analysis, and show that it can be practically imple-
mented.

In See. 2, we lay the foundation for the discussion of tupling transformation
and synchronisation analysis. See. 3 gives an overview of the tupling algorithm
and the two obstacles towards terminating transformation. See. 4 provides a
formal treatment of segments, which are used to determine synchronisation. In
Sac. 5, we formulate prevention of indefinite unfolding via investigation of the
behaviour of segment concatenation. In See. 6, we formally introduce synchro-
nisation analysis, and state the conditions that ensure termination of tupling
transformation. Sac. 7 describes related work, before a short conclusion in Sac. 8.
Due to space constraint, we refer the reader to [4] for more in-depth discussion
of related issues.

2 L a n g u a g e a n d N o t a t i o n s

We consider a strict first-order functional language.

De f in i t i on 1 (A S imple L a n g u a g e) . A program in our simple language con-
sists of sets of mutual-recursive functions:

P ::= [M,],"=0
M ::= [F,]~=0
F ::= {/(p,1 P,n) = t,},~=o
t ::= v I C(t l , t ,) I f (t l t ,)

l i f tl then t~ else t~ I Jet {p, = t,},"=0 in t
p ::= v I C (p l , . . . , p ,)

(Program)
(Set of Mut. Rec. Fns)
(Set of Equations)
(Expression)

(Pattern)

7 8

We allow use of infix binary da ta construction in this paper. Moreover, we
shall construct any Peano integer as a da ta constructed from 0 and l+n. Applying
the constructor, (1+), k times to a variable m will be abbreviated as k+m.

For clarity, we adopt the following multi-holes context notat ion :

D e f i n i t i o n 2 (M u l t i - h o l e s Context Notation). The RHS of an equation of
a function ?can be expressed as Er[t~,... , t ,] where tl, . . . , t~ are sub-expressions
occurring in the RHS. []

Safety of tupling t ransformation relies on the ability to determine systematic
change in the arguments of successive function calls. Such systematic change can
be described with appropriate operators, as defined below:

D e f i n i t i o n 3 (A r g u m e n t O p e r a t o r s) .

1. Each da ta constructor C of arity n in the language is associated with n
descend operators, which are da ta destructors. Notation-wise, let C(tl , . . . , tn)
be a da ta structure, then any of its corresponding da ta destructors is denoted
by C- ' , and defined as C-' C(t l , . . . , tn) = t,.

2. For each constant (i.e. variable-free constructor subterm), denoted by c in our
program, a constant operator c_ always return that constant upon application.

3. An identity, id, is the unit under function composition.
4. For any n-tuple argument (al ,an), the i *h selector, ~,, is defined as fi, (al,. . . ,

an) : a, .

5. An accumulative operator is any operator that is not defined above. For
instance, a da ta constructor, such as C described in i tem 1 above, is an
accumulative operator; and so is the tuple constructor (opl ,opt). []

Composit ion of operators is defined by (f o g) x = f (g x). A composit ion of
argument 6perators forms an operation path, denoted by op. It describes how
an argument is changed from a caller to a callee through call unfolding. This
can be determined by examining the relationship between the parameters and
the call arguments appearing in the RHS of the equation. For instance, consider
the equation g(x) = Eg[g(C(x,2))]. C(x,2) in the RHS can be constructed from
parameter x via the operation pa th : C o (id, 2).

Changes in an n-tuple argument can be described by an n-tuple of opera-
tion paths, called a segment, and denoted by (opl , . . . ,op,) . For convenience, we
overload the notion id to represent an identity operation as well as a segment
containing tuple of identity operation paths.

Segments can be used in a function graph to show how the function arguments
are transformed:

De f in i t i on 4 (L a b e l l e d Ca l l G r a p h) . The labelled call graph of a set of mutual-
recursive functions F, denoted a s (NF , E F) , is a graph whereby each function
name from F is a node in NF; and each caller-callee transition is represented by
an arrow in EF, labelled with the segment information. []

79

((1+) - I o ~i, 1~2, 94, f]3)

\ /
I ano'l
/ \
((i+) - I 0 ~I, ~4, ~3, ~2)

Fig. 1. Labelled Call Graph of Hanoi defined in Sec. 1.

We use segments to characterise function parameters. The characterisation stems
from the way the parameters are changed across labelled call graph of mutual ly
recursive functions.

Def in i t ion 5 (C h a r a c t e r i s i n g P a r A m e t e r s / A r g u m e n t s) . Given an equation
of the form f(pl p ,) = t,

1. A group of f s parameters are said to be bounded parameters if their corre-
sponding arguments in each recursive call in t are derived via either con-
stants, identity, or application of selectors to this group of parameters.

2. The i th parameter of f is said to be a recursion parameter if it is not bounded
and the i th argument of each recursive call in t is derived by applying a series
of either descend operators or identity to the i *h parameter .

3. Otherwise, the Fs parameter is said to be an accumulative parameter. []

Correspondingly, an argument to a function call is called a recursion/accumu-
lative argument if it is located at the position of a recursion/accumulat ive pa-
rameter .

We can parti t ion a segment according to the kinds of parameters it has:

D e f i n i t i o n 6 (P r o j e c t i o n s o f S e g m e n t s) . Given a segment, s, characteris-
ing the parameters of an equation, we write ~rR(s)/TrA(S)/rrB(s) to denote the
(sub-)tuple of s, including only those operation paths which characterise the re-
curs ion/accumulat ive/bounded parameters. The sub-tuple preserves the original
ordering of the operation paths in the segment.

Furthermore, we write ~-K(s) to denote the sub-tuple of s excluding ~rB (s). []

As examples, the first parameter of function hanoi is a recursion parameter ,
whereas its other parameters are bounded. In the case of functions repl and sdrop
(defined in Sec. 1 too), both their first parameters are recursion parameters, and
their second parameters are accumulative.

Our analysis of segments requires us to place certain restrictions on the pa-
rameters and its relationship with the arguments. This is described as follows:

80

Definition 7 (R e s t r i c t i o n s o n P a r a m e t e r s) .

1. Each set of mutual-recursive functions (incl. recursive auxiliary functions),
M, has the same number of recursion/accumulative parameters but can have
an arbitrary number of bounded parameters.

2. Given an equation from M, the i th recursion/accumulative argument of any
recursive call in the RHS is constructed from the i th parameter of the equa-
tion. []

The second restriction above enables us to omit the selector operation from
the operation paths derived for recursion/accumulative parameters. Though re-
strictive, these requirements can be selectively lifted by pre-processing trans-
formation and/or improved analysis. Due to space constraint, the details are
described in a companion technical report [4].

3 Tupling Algorithm

Redundant calls may arise during executing of a function / when two (or more)
calls in f ' s RHS have overlapping recursion arguments. We define the notion of
overlapping below:

Definition 8 (Call Overlapping).

1. Two recursion arguments are said to overlap each other if they share some
common variables.

2. Two accumulative arguments are said to overlap each other if one is a sub-
structure of the other.

3. Two calls overlap if all its corresponding recursion and accumulative argu-
ments overlap. Otherwise, they are disjoint. []

For example, if two functions fl and f2 have only recursion arguments, then
fl(C1 (xl ,x2), C2 (x4, C1 (xs,x6))) and f2(C2 (x2,x3), C~ (x~,xT)) have overlapping recur-
sion arguments, whereas f l (C1 (xl ,x2), C2 (x4 , C1 (x~,x6))) and f2(x~ ,xT) are disjoint.

If two calls overlap, the call graphs initiated from them may overlap, and thus
contain redundancy. Hence, it is useful, during tupling transformation, to gather
the overlapping calls into a common function body with the hope that redundant
calls (if any) will eventually be detected and eliminated (via abstraction). Once
these redundant calls have been eliminated, what's left behind in the RHS will
be disjoint calls.

Applying tupling on a function thus at tempts to transform the function into
one in which every pair of calls in the new RHS are disjoint. Fig. 2 gives an
operational description of the tupling algori thmJ

There are two types of unfolds in the tupling algorithm: In Step 4.2, calls are
unfolded without instantiation; ie., a call is unfolded only when all its arguments
matches the LHS of an equation. On the other hand, in Step 4.4.2.2, a call is
selected and forced to unfold. This henceforth requires instantiation. Among the

1 Please refer to [10] for detail presentation.

8 1

1. Decide a set of recursive function calls to tuple, C.
2. Let E contains a set of equations (with C calls in their RHS) to transform.
3. Let D be empty. (D will be the set of tuple definitions.)
4. While E is not empty,
4.1.Remove an equation, say f (p l , p ,) = t, from E.
4.2.Modify t=r tl by repeatedly unfolding without instant iat ion each function

call to C in t.
4.3.Gather each subset of overlapping C calls, s,, and perform the following

tuples abstraction steps:
4.3.1. For each tuple s,, abstract the common substructure, tw, occurring in

the accumulative arguments of all calls in s~, and modify
= t lk' in t s , ~ let {v w ,,: J~=1 s,.

m = t ~k, in let {(v,,1,.) s[}~=i in tz. 4.3.2. Modify t l ~ let U,=l{v,,~ ,,~Jj=l . . , v =
4.4.For each tuple s[from ' TM transform to s, {s ,},=l , we " as follows :

Let { v l , . . . , v,} = Vars(s[) where Vars(e) returns free variables of e
4.4.1. If s[has < 1 function call, then s[' = s[. (No action taken.)
4.4.2. If there is no tuple definition for s[in D, then
4.4.2.1. Add a new definition, g (v l , . . . , v ,) = s[to D.
4.4.2.2. Instantiate g by unfolding (with instant iat ion) a call in s[that has

maximal recursion argument. This introduces several new equations
for g, which are then added to E.

4.4.2.3. Set s[' = g (v l , . . . , v ,) .
4.4.3. Otherwise, a tuple definition, of name say h, matching s[is found in D.
4.4.3.1. Fold s[against definition of h to yield a call to h, by setting

s:' = h(v, , . . . , v.).
4.5.Output a transformed equation

m = t l k , in l e t { (v , , l , . , v ) ,, ,n , . . = s, },=1 in tz. I (P l . , P n) = l e t U,=I {v,o wJ~=l . .
5. Halt.

F ig . 2. Tupfing Algorithm, T

cal ls avai lable , we choose to unfold a call hav ing m a x i m a l recurs ion a rgument s ;
t h a t is, the recurs ion a rgumen t s , t r ea t ed as a t ree-l ike d a t a s t ruc ture , is deepes t
in d e p t h a m o n g the calls.

A l t h o u g h effective in e l im ina t i ng r e d u n d a n t calls, execut ion of a l g o r i t h m 7-
m a y not t e r m i n a t e in genera l due to one of the fol lowing reasons: (1) S tep 4.2
m a y unfold calls indef ini te ly; (2) Step 4.4.2 m a y in t roduce inf in i te ly m a n y new
tup le def ini t ions as tup l ing encounters inf ini te ly m a n y different tuples .

We address these two t e r m i n a t i o n issues in See. 5 and See. 6 respect ively.
Bu t first, we give a fo rmal t r e a t m e n t of a lgeb ra of segments .

4 A l g e b r a o f S e g m e n t s

A set of segments forms an a lgebra under conca t ena t i on ope ra t ion .

82

D e f i n i t i o n 9 (C o n c a t e n a t i o n o f O p e r a t i o n P a t h s) . Concatenation of two
operation paths opl and op2, denoted by opl ; op2, is defined as op2 o opl. []

Definition 10 (Concatenation o f S e g m e n t s) . Concatenation of two segments
sl and s2, denoted by sl;s2, is defined componentwise as follows:

sl = (opl opn) &s2 (op'1 o p ') = ~ s l ; s 2 = (o p l ; o p ' l o p , , o p ,) . [3

A concatenated segment can be expressed more compact ly by applying the
following reduction rules:

1. For any operator O, id o 0 reduces to O, and O o id reduces to O.
2. V 01, ... , On and O, (01 o 0 On o O) reduces to (0 1 , . , On) o O.

Applying the above reduction rules to a segment yields a compacted segment.
Henceforth, we deal with compacted segments, unless we state otherwise.

Lastly, concatenating a segment, s, n times is expressed as s n. Such repetition
of segment leads to the notion of factors of a segment, as described below:

D e f i n i t i o n 11 (F a c t o r i s a t i o n o f S e g m e n t s) . Given segments s and f. f is
said to be a factor of s if (1) f i s a substring of s, and (2) 3n > 0. s = fn .
We call n the power of s wrt f. []

For example, (C -2, id) is a factor of (C-2o C-2oC -2, id), since (C -S, id)3 =
(C-2oC-~oC -2, id). It is trivial to see that every segment has at least one factor
- itself. However, when a segment has exactly one factor, it is called a prime
segment. An example of prime segment is (C-~loC~ 1, id).

Lemma 12 (Uniqueness of P r i m e Fac to r i sa t ion[10]) . Let s be a compacted
segment, there exists a unique prime segment f such that s = f k for some k>O.

[]

5 P r e v e n t i n g I n d e f i n i t e U n f o l d i n g

We now provide a simple condition that prevents tupling transformation from
admit t ing indefinite unfolding at Step 4.2. This condition has been presented in
[2]. Here we rephrase it using segment notation, and extend it to cover multiple
recursion arguments.

We first define a simple cycle as a simple loop (with no repeating node, except
the first one) in a labelled call graph. The set of segments corresponding to the
simple cycles in a labelled call graph (N,E) is denoted as SCycle(N,E). This can
be computed in t ime of complexity O(INllEI 2) [10].

T h e o r e m 13 (Preventing Indefinite Unfolding). Le t F be a set of mutual-
recursive functions, each of which has non-zero number of recursion parameters .
I f V s 6 SCycle(NF,EF), rrR(s) ~ (id, id), then given a call to f E F with argu-
ments of finzte size, there exists a number N>O such that the call can be succes-
sively unfolded (without instantiat ion) not more than N times. []

83

6 S y n c h r o n i s a t i o n A n a l y s i s

We now present analysis that prevents tupling from generating infinitely many
new tuple functions at Step 4.4.2. The idea is to ensure the finiteness of syntac-
tically different (modulo variable renaming) tupled calls. As a group of bounded
arguments is obtained from itself by the application of either selectors, iden-
t i ty or constants operators, it can only have finitely many different structures.
Consequently, bounded arguments do not cause tupling transformation to loop
infinitely. Hence, we focus on determining the structure of recursion and ac-
cumulative arguments in this section. Specifically, we assume non-existence of
bounded arguments in our treatment of segments.

Since syntactic changes to call arguments are captured by series of segments,
differences in call arguments can be characterised by the relationship between
the corresponding segments. We discuss below a set of relationships between
segments.

Definit ion 14 (Leve l s o f S y n c h r o n i s a t i o n) . Two segments sl and s2 are said
to be :

t . level-1 synchronised, denoted by sl ~1 s2, if 3s[, s~.(sl;s~ = s2;s~). Otherwise,
they are said to be level-O synchronised, or simply, unsynchronised.

2. level-2 synchronised (sl ~2 s2) if 3s~, s'~.((s~;st = s2;s':) A (st = id V s~ = id)).
3. level-3 synchronised (sl ~3 s2) if 3 s.3n, m > 0.(sl = s n A s2 = sin).
4. level-4 synchronised (sl -~4 s2) if sl = s2. []

Levels 1 to 4 of synchronisation form a strict hierarchy, with synchronisation
at level i implying synchronisation at level j if i > j. Together with level-0, these
can help identify the termination property of tupling transformation.

Why does synchronisation play an important role in the termination of tu-
pling transformation? Intuitively, if two sequences of Segments synchronise, then
calls following these two sequences will have finite variants of argument struc-
tures. This thus enables folding (in Step 4.4.3) to take effect, and eventually
terminates the transformation.

In this section, we provide an informal account of some of the interesting
findings pertaining to tupling termination, as implied by the different levels of
synchronisation.

F i n d i n g 1. Transforming two calls with identical arguments but following level-O
synchronised segments will end up with disjoint arguments. 2

Example 15. Consider the following two equations for functions gl and g2 re-
spectively:
2 Sometimes, two apparently level-0 synchronised may turn into synchronisation of

other levels when they are prefixed with some initial segment. Initial segments may
be introduced by the argument structures of the two initially overlapping calls. Such
hidden synchronisation can be detected by extending the current technique to handle
"rotate/shift synchronisation" [5].

84

gl(Ct(xt,x2),C2(yl,y2)) = Egl[gl(Xl,yl)] ;

The segment leading to call gl (x l ,y l) is (C-~I,C~ 1), whereas that leading to
call g2(x~ ,y~) is (Cg 1 , C~2). These two segments are level-O synchronised. Suppose
that we have an expression containing two calls, to gl(u,v) and g2(u,v) respec-
tively, with identical arguments. Tupling-transform these two calls causes the
definition of a tuple function:

g_tup(u,v) = (gl(u,v), g2(u,v)) ;

which will then transform (through instantiation) to the following:

g_tup(C1 (111 ,u2),C2 (vl , v2)) = (Egl[gl(ux ,vl)],Eg2[g2(ul ,v2)]) ;
As the arguments of the two calls in the RHS above are now disjoint, tupling

terminates. However, the effect of tupling is simply an unfolding of the calls.
Thus, it is safe a but not productive to transform two calls with identical argu-
ments if these calls follow segments that are level-0 synchronised. []

F i n d i n g 2. Applying tuphng transformation on calls that follow level-2 synchro-
nised segments may not terminate.

Example 16. Consider the binomial function, as defined below:

bi~(o,k) = 1;
b / n (/ + n , 0) = I ;
bin(l§247 -= if k>_n then 1 else bin(n,k)-t-bin(n,14-k) ;

Redundant call exists in executing the two overlapping calls bin(n,k) and bin(n, 1 +k)
Notice that the segments leading to these calls (((1-t-)-1,(1-t-) -1) and ((1+) -1,id))
are level-2 synchronised. Performing tupling transformation on (bin(n,k),bin(n, 1 +k)
will keep generating new set of overlapping calls at Step 4.4.2.2, as shown below:

1. (bin(n,k),bin(n,l+k))
2. (bm(1+n~,k),bin(nl,k),bm(nl,~+k))
3. (bi~(nl ,kl),bi~(n,,~ +kl),bin(n, ,2+k,))
4. (bi~(~ +n~,kl),bin(n~,kl),bin(n~,~ +k,),bin(n2,2+kx))

Hence, tupling transformation fails to terminate. []

Non-termination of transforming functions such as bin can be predicted from
the (non-)synchronisability of its two segments - - Given two sequences of seg-
ments, sl = ((1+) -1, (i+) -1) and s2 = ((1+) -1, id). If these two sequences are
constructed using only Sl and s2 respectively, then it is impossible for the two
sequences to be identical (though they overlap).

However, if two segments are level-3 synchronised, then it is;always possible
to build from these two segments, two sequences that are identical; thanks to
the following Prop. 17(a) about level-3 synchronisation.

3 with respect to termination of tupling transformation.

85

Property 17 (Propert ie s o f Level-3 Synchronisat ion) .
(a) Let fl, f2 be prime factors of sl and s2 respectively, then sl -~3 s2 ~ fl = f2.
(b) Level-3 synchronisation is an equivalence relation over segments (ie., it is

reflexive, symmetric, and transitive). []

This, thus, provides an opportunity for termination of tupling transforma-
tion. Indeed, the following theorem highlights such an opportunity.

T h e o r e m 18 (T e r m i n a t i o n I n d u c e d by Leve l -3 S y n c h r o n i s a t i o n) . Let F
be a set of mutual-recursive functions with S being the set of segments correspond-
ing to the edges in (NF,EF). Let C be an initial set of overlapping F-calls to be
tupled. I f

I. V s e SCyc le (NF,EF) . fiR(s) ~ (id, . . . , id) ,

2. V s1, $2 E S . -ff-B(S1) r~3 ~-B(S2).

then performing tuphng transformation on C terminates. []

The notion ~-~(s) was defined in Defn. 6. The first condition in Theorem 18
prevents infinite number of unfolding, whereas the level-3 synchronisation condi-
tion ensures that the number of different tuples generated during transformation
is finite. The proof is available in [4].

Example 19. Consider the equation of f defined below:

f(2+n,4+m,y) = Ef[f(l+n,X+m,C(y)),f(n,m,C(C(r)))l ;
Although the reeursion arguments in f(l+n, 24-rn, C(y)) and f(n,rn, C(C(y))) are con-
sumed at different rate, the argument consumption (and accumulating) patterns
for both calls are level-3 synchronised. Subjecting the calls to tupling transfor-
mation yields the following result:

f(24-n,4-t-m,y) = let {yl ---- C(y)} in lee {(u,v) -- [Aup(n,m,yl)} in F~[u,v] ;
fAup(l+n,2+m,y) -- let {y2 = C(y)} in let {(u,v) -- fAup(n,m,y2)} in (F~[u,v],u);

[]

Finally, since level-4 synchronisation implies level-3 synchronisation, Theorem 18
applies to segments of level-4 synchronisation as well.

In situation where segments are not all level-3 synchronised with one another,
we describe here a sufficient condition which guarantees termination of tupling
transformation. To begin with, we observe from Prop. 17(b) above that we can
parti t ion the set of segments S into disjoint level-3 sets of segments. Let Hs =
{ [sl], ..., [sk] } be such a partition. By Prop. 17(a), all segments in a level-3
set Is,] share a unique prime factor, s say, such that all segments in [s,] can be

expressed as {~1 ~" '}. We then define HCF([s,]) = ~cd(pl P"'), where gcd
computes the greatest common divisor. HCF([s,]) is thus the highest common
factor of the level-3 set [s,].

Defini t ion 20 (Set of I~ighest C o m m o n Factors) . Let S be a set of seg-
ment. The set of highest common factors of S, HCFSet(S), is defined as

86

HCFSet(S) = { HCF([s,]) I [s,] e zT~ }.

The following theorem states a sufficient condition for preventing infinite
definition during tupling transformation 4

T h e o r e m 21 (P r e v e n t i n g In f in i t e D e f i n i t i o n) . Let F be a set of mutual-
recursive functions. Let S be the set of segments corresponding to the edges in
(NF,EF). Let C be a set of overlapping calls occurring in the RH S of an equation
in F. I f V sl, s2 6 HCFSet(S) . -~'~(sl) ~o -~-~(s2), then performing tupling trans-
formation on C wzll generate a finzte number of different tuples. []

A proof of the theorem is available in [10, 4].

A note on the complexity of this analysis: We notice from Theorem 21 that
the main task of synchronisation analysis is to determine that all segments in
HCFSet(S) are level-0 synchronised. This involves expressing each segment in
S as its prime factorisation, partitioning S under level-3 synchronisation, com-
puting the highest common factors for each partition, and lastly, determining if
HCFSet(S) is level-0 synchronised. Conservatively, the complexity of synchroni-
sation analysis is polynomial wrt the number of segments in S and the maximum
length of these segments.

Theorem 22 summarises the results of Theorem 13 and Theorem 21.

T h e o r e m 22 (T e r m i n a t i o n o f T u p l i n g T r a n s f o r m a t i o n) . Let F be a set of
mutual-recursive functions, each of which has non-zero number of recursion pa-
rameters. Let S be the set of segments correspond to the edges in (NF,EF). Let C
a set of overlapping calls occurring in the RH~q of an equation in F. I f

1. V s 6 SCycIe(NF,EF) . rrR(s) r (id,...,id), and
2. u sl, s2 6 HCFSet(S) . 9--~(s,) "o 9-~(s2),

then performing tuplmg transformation on C will terminate. []

7 Related Work

One of the earliest mechanisms for avoiding redundant calls is memo-functions
[13]. Memo-functions are special functions which remember/s tore some or all of
their previously computed function calls in a memo-table, so that re-occurring
calls can have their results retrieved from the memo-table rather than re-computed
Though general (with no analysis required), memo-functions are less practical
since they rely on expensive run-time mechanisms.

4 It is possible to extend Theorem 21 further by relaxing its premises. In particular,
we can show the prevention of infinite definition in the presence of segments that are
level-2 synchronisation, provided such segment can be broken down into two sub-
segment, of which one is level-3 synchronised with some of the existing segments,
and the other is level-0 synchronised [10].

87

Other transformation techniques (e.g. tupling and tabulation) may result
in more efficient programs but they usually require program analyses and may
be restricted to sub-classes of programs. By focusing on a restricted bi-linear
self-recursive functions, Cohen [6] identified some algebraic properties, such as
periodic commutative, common generator, and explicit descent relationships, to
help predict redundancy patterns and corresponding tabulation schemes. Un-
fortunately, this approach is rather limited since the functions considered are
restricted. In addition, the algebraic properties are difficult to detect, and yet
limited in scope. (For example, the Tower-of-Hanoi function does not satisfy any
of Cohen's algebraic properties, but can still be tupled by our method.)

Another approach is to perform dwect search of the DG. Pettorossi [16] gave
an informal heuristic to search the DG (dependency graph of calls) for eureka
tuples. Later, Proietti & Pettorossi [17] proposed an Elimination Procedure,
which combines fusion and tupling, to eliminate unnecessary intermediate vari-
ables from logic programs. To ensure termination, they only handled functions
with a singl e recursion parameter, while the accumulative parameters are gen-
eralised whenever possible. No attempt is made to analyse the synchronizability
of multiple recursion/accumulating parameters.

With the aim of deriving incremental programs, Liu and Teitelbaum [12, 11]
presented a three-stage method to cache, incrementalize and prune user pro-
grams. The caching stage gathers all intermediate and auxiliary results which
might be needed to incrementalize, while pruning removes unneeded results.
While their method may be quite general, its power depends largely on the in-
crementalize stage, which often requires heuristics and deep intuitions. No guar-
antee on termination, and the scope of this difficult stage is presently offered.

Ensuring termination of transformers has been a central concern for many
automatic transformation techniques. Though the problem of determining ter-
mination is in general undecidable, a variety of analyses can be applied to give
meaningful results. In the case of deforestation, the proposals range from sim-
ple pure treeless syntactic form [20], to a sophisticated constraint-based analysis
[18] 5 to stop the transformation. Likewise, earlier tupling work [2, 7] were based
simply on restricted functions. In [2], the transformable functions can only have
a single recursion parameter each, while accumulative parameters are forbid-
den. Similarly, in the calculational approach of [7], the allowed functions can
only have a single recursion parameter each, while the other parameters are
lambda abstracted, as per [15]. When lambda abstractions are being tupled,
they yield effective elimination of multiple traversals, but not effective elimina-
tion of redundant function-type calls. For example, if functions sdrop and repl
are lambda-abstracted prior to tupling, then redundant calls will not be properly
eliminated.

By engaging a more powerful synchronisation analysis for multiple parame-
ters, we have managed to extend considerably the class of functions which could
be tupled safely. Some initial ideas of our synchronisation analysis can be found
in [5]. The earlier work is informal and incomplete since it did not cover accumu-

5 from which the title of this paper was inspired

88

lative parameters. The present proposal is believed to be comprehensive enough
to be practical.

8 C o n c l u s i o n

There is little doubt that tupled functions are extremely useful. Apart from the
elimination of redundant calls and multiple traversals, tupled function are often
hnear with respect to the common arguments (i.e. each now occurs only once in
the RHS of the equation). This linearity property has a number of advantages,
including:

- It can help avoid space leaks that are due to unsynchronised multiple traver-
sals of large data structures, via a compilation technique described in [19].

- It can facilitate deforestation (and other transformations) that impose a
linearity restriction [20], often for efficiency and/or termination reasons.

- It can improve opportunity for uniqueness typing [1], which is good for stor-
age overwriting and other optimisations.

Because of these nice performance attributes, functional programmers often
go out of their way to write such tupled functions, despite them being more
awkward, error-prone and harder to write and read.

In this paper, we have shown the effectiveness and safeness of tupling trans-
formation, when coupled with synchronisation analyses. Furthermore, not only
do we generalise the analyses from handling of single recursion argument to that
of multiple recursion arguments, we also bring together both recursion and accu-
mulative arguments under one framework for analysis. These have considerably
widened the scope of functions admissible for safe tupling. Consequently, the
tupling algorithm T and associated synchronisation analysis could now be used
to improve run-time performance, whilst preserving the clar i ty/modulari ty of
programs.

A c k n o w l e d g m e n t s We thank the annonymous referees for their valuable com-
ments and Peter Thiemann for his contribution to earlier work.

R e f e r e n c e s

1. E. Barendsen and J.E.W. Smetsers. Conventional and uniqueness typing in graph
rewrite systems. In 13th Conference on the Foundations of Software Technology
Theoretical Computer Science, pages 45-51, Bombay, India, December 1993.

2. Wei-Ngan Chin. Towards an automated tupling strategy. In ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manipulation,
pages 119-132, Copenhagen, Denmark, June 1993. ACM Press.

3. Wei-Ngan Chin and Masami Hagiya. A bounds inference method for vector-based
memoisation. In 2nd ACM SIGPLAN Intl. Conference on Functional Program-
mmg, pages 176-187, Amsterdam, Holland, June 1997. ACM Press.

89

4. W.N. Chin, S.C. Khoo, and T.W. Lee. Synchronisation analysis to stop tupling -
extended abstract. Technical report, Dept of IS/CS, NUS, Dec 1997.
http : I/www. iscs .nus. sgl-khoosc/paper/synTech, ps. gz.

5. W.N. Chin, S.C. Khoo, and P. Thiemann. Synehronisation analyses for multiple
recursion parameters. In lntl Dagstuhl Seminar on Partial Evaluation (LNCS
1110), pages 33-53, Germany, February 1996.

6. Norman H. Cohen. Eliminating redundant recursive calls. ACM Trans. on Pro-
gramming Languages and Systems, 5(3):265-299, July 1983.

7. Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling calculation eliminates
multiple traversals. In 2nd ACM SIGPLAN International Conference on Func-
tional Programming, pages 164-175, Amsterdam, Netherlands, June 1997. ACM
Press.

8. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice Hall, 1993.

9. N.D. Jones, P. Sestoft, and H. Sondergaard. An experiment in partial evaluation:
the generation of a compiler generator. Journal of LISP and Symbolic Computa-
tion, 2(1):9-50, 1989.

t0. Tat Wee Lee. Synchronisation analysis for tupling. Master's thesis, DISCS, Na-
tional University of Singapore, 1997.
http://www, iscs .nus. sg/-khoosc/paper/itw_thesis, ps. gz.

11. Y A. Liu, S D. Stoner, and T. Teitelbaum. Discovering auxiliary information for
incremental computation. In 23rd ACM Symposium Principles of Programming
Languages, pages 157-170, St. Petersburg, Florida, January 1996. ACM Press.

12. Y A. Liu and T. Teitelbaum. Caching intermediate results for program improve-
ment. In A CM SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, pages 190-201, La Jolla, California, June 1995. ACM Press.

13. Donald Michie. Memo functions and machine learning. Nature, 218:19-22, April
1968.

14. A. Pettorossi and M. Proietti. Program derivation via list introduction. In IFIP TC
2 Working Conf. on Algorithmic Languages and Calculi, Le Bischenberg, France,
February 1997. Chapman & Hall.

15. A. Pettorossi and A. Skowron. Higher order generalization in program derivation.
In TAPSOFT 87, Pisa, Italy, (LNCS, vol 250, pp. 306-325), March 1987.

16. Alberto Pettorossi. A powerful strategy for deriving programs by transformation.
In 3rd ACM LISP and Functional Programming Conference, pages 273-281. ACM
Press, 1984.

17. M. Proietti and A. Pettorossi. Unfolding - definition - folding, in this order for
avoiding unnecessary variables in logic programs. In Proceedings of PLILP, Passau,
Germany, (LNCS, vol 528, pp. 347-258) Berlin Heidelberg New York: Springer,
1991.

18. H. Seidl and M.H. Serensen. Constraints to stop higher-order deforestation. In
2~th ACM Symposium on Principles of Programming Languages, Paris, France,
January 1997. ACM Press.

19. Jan Sparud. How to avoid space-leak without a garbage collector. In A CM Con-
ference on Functional Programming and Computer Architecture, pages 117-122,
Copenhagen, Denmark, June 1993. ACM Press.

20. Phil Wadler. Deforestation: Transforming programs to eliminate trees. In European
Symposium on Programming, Nancy, France, (LNCS, vol 300, pp. 344-358), March
1988.

