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A b s t r a c t .  A formal language CCSL is introduced for describing specifi- 
cations of classes in object-oriented languages. We show how class speci- 
fications in CCSL can be translated into higher order logic. This allows us 
to reason about these specifications. In particular, it allows us (1) to de- 
scribe (various) implementations of a particular class specification, (2) to 
develop the logical theory of a specific class specification, and (3) to es- 
tablish refinements between two class specifications. 
We use the (dependently typed) higher order logic of the proof-assistant 
PUS, so that we have extensive tool support for reasoning about class 
specifications. Moreover, we describe our own front-end tool to PVS, 
which generates from CCSL class specifications appropriate PVS theories 
and proofs of some elementary results. 

1 Introduction 

During the last two decades, object-orientation has established itself in anal- 
ysis, design and programming. At this moment,  c ++ and JAVA are probably 
the most popular object-oriented programming languages. Despite this appar- 
ent success, relatively little work has been done on formal (logical) methods 
for object-oriented programming. One of the reasons, we think, is that  there is 
no generally accepted formal computational model for object-oriented program- 
ming. Such a model is needed as domain of reasoning. 

One such formal model has recently emerged in the form of "coalgebras" 
(explicitly e.g. in [21]). It should be placed in the tradition of behavioural speci- 
fication, see also [6, 8, 4]. Coalgebras are the formal duals of algebras, see [14] for 
background information. They consist of a (hidden) state space--typically writ- 
ten as Self in this context- - together  with several operations (or methods) acting 
on Self. These operations may be attributes giving some information about ob- 
jects (the elements of Self), or they may be procedures for modifying objects. 
All access to elements of Self should go via the operations of the coalgebra. 
In contrast, elements of abstract data  types represented as algebras can only 
be built via the "constructor" operations (of the algebra). We consider coalge- 
bras together with initial states as classes, and elements of the carrier Self of a 
coalgebra as (states of) objects of the class. 
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For verification purposes involving coalgebraic classes and objects we are in- 
terested in the observable behavior and not in the concrete representation of 
elements of Self. A behavior of an object in this context is the objects reaction 
pattern, i.e. what we can observe via the attributes after performing internal 
computations triggered by pressing procedure buttons. This naturally leads to 
notions like bisimilarity (indistinguishability of objects via the available opera- 
tions) and invariance. 

Based on coalgebras, a certain format has been developed for class specifi- 
cations, see [21,11, 10]. This format typically consists of three sections, describ- 
ing the class specifications' methods, assertions, and creation-conditions--which 
hold for newly created objects. We have developed this format into a formal lan- 
guage CCSL, for Coalgebraic Class Specification Language, which will be sketched 
below. Ad hoc representations of these class specifications in the higher order 
logic of the proof-tool pvs [18, 17] have been used in [12, 13] to reason about 
such classes--notably for refinement arguments. Further experiments with for- 
mal reasoning about classes and objects have led us to a general representation 
of CCSL class specifications in higher order logic. Below we explain this model 
(in the logic of evs), and also a (preliminary version of a) front-end tool that  we 
use for generating such models from class specifications. 

The code for this tool (called LOOP for Logw of Object-Oriented Program- 
ming) is written in OCAML [22]. It basically performs three consecutive steps: 
it first translates a CCSL class specification into some representation in OCAML; 
this representation is then internally analysed and finally transformed into Pvs 
theories and proof. The generated evs file contains several theories describing 
the representation of the class specification, via appropriate definitions and asso- 
ciated lemmas (e.g. stating that  bisimilarity is an equivalence relation). Another 
file that  is generated by our tool contains instructions for proofs of the lemmas 
in the PVS file. The architecture of our tool allows for easy extensions, e.g. to 
accept JAVA [7] or  EIFFEL [16] classes, or to generate files for other proof assis- 
tants such as ISABELLE [19]. The diagram below describes (via the solid lines) 
what our tool currently does, see Section 5 for some more details. The dashed 
lines indicate possible future extensions. 
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The idea behind the dashed lines on the left is that  classes in actual programming 
languages should lead to executable class specifications, about which one can 
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reason. We have made some progress--which will be reported elsewhere--in 
reasoning about  JAVA classes in this setting. Here we concentrate on the upper 
solid lines. 

The paper  is organised as follows. We star t  in Sections 2 and 3 with an 
elaborate discussion of two examples, involving a class specification of a regis- 
ter in which one can store data  at addresses, and a subclass specification of a 
bounded register, in which writing is only allowed if the register is not full. This 
involves overriding of the original write method.  Then, in Section 4 we discuss 
some further aspects of the way that  we model class specifications and that  we 
reason about  them. Finally, in Section 5, we describe the current stage of the 
implementat ion of our front-end tool. 

We shall be using the notation of PVS'S higher order logic when we describe 
our models. I t  is largely self-explanatory, and any non-standard aspects will be 
explained as we proceed. The LOOP front-end tool tha t  will be described in Sec- 
tion 5 is still under development. Currently, it does the basics of the translation 
from CCSL class specification to PVS theories and proofs (without any fancy GUI).  
It  may  take some t ime before it reaches a stable form. Instead of elaborating 
implementat ion details, this paper focuses on the basic ideas of our models. 

2 A simple register: specification and modeling 

We start  by considering a simple register, which can store da ta  at an address. It  
contains read, write and erase operations, satisfying some obvious requirements. 
It  is described in our coalgebraic class specification language CCSL in Figure 1. 
The type constructor A ~+ Lift[A] adds a bo t tom element ' bo t '  to a type A, and 
keeps all elements a from A as up(a). A total function B -+ Lift[A] may  then be 
identified with a partial function B --+ A. We use square brackets [A1, . . . ,  Am] 
for the Cartesian product A1 • . . .  • An. 

Begin Register[ Data : Type, Address : Type ] : ClassSpec 

Method read : [Self, Address] -> Lift [Data] ; 

write : [Self, Address, Data] -> Self; 

erase : [Self, Address] -> Self 

Assertion read_write : PVS FORALL(a,b : Address, d : Data) 

read(write(x, a, d), b) = 

IF a = b THEN up(d) ELSE read(x, b) ENDIF ENDPVS 

read_erase : PVS FORALL(a,b : Address) : 

read(erase(x, a), b) = 

IF a = b THEN bot ELSE read(x, b) ENDIF ENDPVS 

Constructor new : Self 

Creation read_new : PVS FORALL(a:Address) : read(new,a) = bot ENDPYS 

End Register 

Fig. i. A register class specification in CCSL 

The types Data and Address are parameters in this specification, which can 

be suitably instantiated in a particular situation. What  is coalgebraic about  
such specifications is that  all methods act on Self, i.e. have Self as one of their 
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input  types 1 . Usually this type Self is not  wri t ten explicitly in object-oriented 
languages,  but  it is there implicit ly as the receiver of  me thod  invocations.  The  
const ructor  section declares new as a constructor  (wi thout  parameters)  for cre- 
at ing a new register. Notice tha t  assertions and creat ion-condit ions have names.  
The  PVS and E N D P V S  tags are used to delimit strings, which are basically 
boolean expressions in PVS ~. It is assumed tha t  x is a variable in Self. 

In order to reason (with PVS tool support)  about  such a Register class spec- 
ification, we first model  it in the higher order logic of  PVS. This  is wha t  our 
LOOP tool does a u t o m a t i c i l y .  It  generates several PVS theories to capture  this 
specification. Space restrictions prevent us f rom discussing all these theories in 
detail, so we concentra te  on the essentials. 

The  first step is to introduce a (single) type which captures the interface 
of  a class specification, via a labeled product .  For Register, this is done in the 
following PVS theory. 

RegisterInterface[ Self, Data, Address : TYPE ] : THEORY 

BEGIN 

RegisterIFace : TYPE = [# read : [Address -> Lift[Data]l, 

write : [Address, Data -> Self], 

erase : [Address-> Self] #] 

END RegisterInterface 

The  square brace nota t ion  [A1,. �9 An --+ B] is used in PVS for the type of  (total) 
functions with n inputs  f rom At ,  �9 �9 An and with result in B. Notice tha t  in the 
types  of  the operat ions  in this interface the input  type  Self is omi t t ed  3. This  is 
intended: a crucial step in our approach is tha t  we use coalgebras of the form 

c : [Self -> RegisterIFace[Self, Data, Address]] 

as models  of the me thod  section of the Register specification, with Self as state 
space. The  individual methods  can be extracted f rom such a coalgebra c via the 
definitions: 

r ead(c )  : [Se l f ,  Address -> L i f t [ D a t a ] ]  = 
LAMBDA(x : S e l f ,  a : Address) : r e a d ( c ( x ) ) ( a )  

wr i t e ( c )  : [Se l f ,  Address,  Data -> Se l f ]  = 
LAMBDA(x : Se l f ,  a : Address, d : Data) : w r i t e ( c ( x ) ) ( a , d )  

erase(c) : [Self, Address -> Self] = 

LAMBDA(x : Self, a : Address) : erase(c(x))(a) 

Thus  the individual methods  of  a class can be extracted f rom such a single 
coalgebra c. 

1 A bit more precisely, the methods can all be written, possibly using currying, of 
the form Self -+ F,(Self); and they can be combined into a single operation Self --~ 
F1(Self) x . . .  x F,(Self). 

2 Our front-end tool simply passes the string in PVS ... ENDPVS on to the PVS tool, 

where it is parsed and typechecked. 

s Categorically, the type RegisterlFace captures the functor associated with the sig- 
nature of operations in the class specification, see [14]. 
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Next, our formalisation deals with invariants and bisimulations. These are 
special kinds of predicates and relations on Self which are suitably closed under 
the above operations. For example, an invariant P C Self with respect to a 
Register coalgebra c satisfies, by definition: 

Va: Address, d: Data. P(write(c)(x, a, d)) 
P(z)  :~ Va:Address. P(erase(c)(z,a)).  

A bisimulation w.r.t, c is a relation R C_ Self x Self satisfying: 

Va: Address. read(c)(z, a) = read(c)(y, a) 
R(z, y) ~ Va: Address, d: Data. R(wri te(c)(x ,  a, d), write(c)(y, a, d)) 

Va: Address. R(erase(e)(z, a), erase(e)(y, a)). 

Bisimilarity b i s  ira? is then the greatest bisimulation relation. Interestingly, these 
notions of invariant and bisimulation are completely determined by the class in- 
terface RegisterIFace. They are generated automatically (by our tool) by induc- 
tion on the structure of the types in the interface, based on liftings of these types 
to predicates and relations, as introduced in [9] (see also [13]). These Pvs theo- 
ries about invariants and bisimulations contain several standard lemmas (stating 
e.g. that invariants are closed under finite conjunctions A and universal quantifi- 
cation V), for which proof instructions are generated automatically (again using 
induction). 

The next theory RegisterSemantics deals with the assertions and creation- 
conditions. The two assertions in Figure 1 are translated into two predicates on 
the carrier type Self of a Register coalgebra c: [Self --+ RegisterIFace[Self, Data, 
Address]]. Assuming that  z is a variable of type Self, we generate: 

read_write?(c)(x) : bool = 

FORALL(a,b : Address, d : Data) : read(c)(write(c)(x, a, d), b) = 

IF a ~ b THEN up(d) ELSE read(c)(x, b) ENDIF 

read_erase?(c)(x) : bool = 

FORALL(a,b : Address) : read(c)(erase(c)(x, a), b) = 

IF a = b THEN bot ELSE read(c)(x, b) ENDIF 

For convenience, these predicates are collected in a single predicate: 

l iegisterAssert?(c) : bool = 
FORALL(x : Self) : read_write?(c)(x) AND read_erase?(c)(x) 

Similarly, we put the creation-condition in a predicate 

liegisterCreate?(c) : PliED[Self] = 
{x : Self I FORALL(a : Address) : read(c)(x,  a) = bet} 

At this stage we are able to say what actually constitutes a class implementa- 
tion that  satisfies a class specification as in Figure 1: it is a coalgebra c: [Self--+ 
RegisterIFace[Self, Data, Address]] satisfying the predicate RegisterAssert?, to- 
gether with some element new: Self satisfying the predicate RegisterCreate?(c). 
This is formalised in the following theory using a (dependent!) labeled product. 
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RegisterClassStructure [Self, Data, Address : TYPE] : THEORY 

BEGIN 
IMPORTING ReEisterSemantics [Self, Data, Address] 

RegisterClass : TYPE = [# clg : (ReEisterAssert?), 

new : (RegisterCreate?(clg)) #] 

END ReEist erClassStructure 

The notation (P) for a predicate P: [A -> bool] on A:TYPE is used in PVS as 

an abbreviation for the predicate subtype { x : A I P ( x ) ) .  A class thus consists of 
a state space Self with appropriate  operations (combined in a coalgebra c lg  on 
Self) and with an appropriate  constructor new.  An object of such a class is then 
s imply an inhabi tant  of the state space Self. Thus,  in the way tha t  we model 
classes and objects, the methods are part  of the class, and not of the object. 
This is called the delegation implementat ion,  in contrast to the embedding im- 
plementation, where the operations are part  of the object, see [1, Sections 2.1 
and 2.2]. 

Once we have all this settled, we can start  reasoning about  the class specifi- 
cation. The two things we can do immediately are: (1) describing an implemen- 
tat ion of the specification, and (2) developing its theory. Both are user tasks: 
the tool only provides theory frames which the user can fill in. We give a sketch 
of what can be done. 

As to (1), it is a wise strategy to write out an implementat ion,  immediately 
after finishing the specification. It  is notoriously hard to write "good" specifi- 
cations which capture the informal description of the mat te r  in question and, 
at the same time, are consistent in the logic used. This is sometimes called the 
"ground problem".  Usually, specialists have a good understanding of a particu- 
lar implementat ion.  Once this implementat ion is formally writ ten out it can be 
checked against the assertions and creation-conditions. 

For example, for the Register class specification, an obvious implementat ion 
describes registers as partial functions from addresses to data.  This can be done 
via the Lift[-] type constructor, and yields as state space: 

FunctionSpace : TYPE = [Address ->  L i f t [Da ta ] ]  

This type can be equipped with a suitable coalgebra structure and a constructor: 

c : [FunctionSpace -> RegisterIFace[FunctionSpace,  D a t a ,  A d d r e s s ] ]  = 
LAMBDA(f : FunctionSpace) : 

(# read := LAMBDA(a : Address) : f(a), 

write := LAMBDA(a : Address, d : Data) : f WITH [(a) := up(d)], 

erase := LAMBDA(a : Address) : f WITH [(a) := bot] #) 

new : Fu_nctionSpace = LAMBDA(a : Address) : bet 

(The notat ion g WITH [(y) := z] is an abbreviat ion for LAMBDA x : IF x = y 
THEN z ELSE g(x) ENDIF.) This  coalgebra structure on the state space Function- 
Space clearly captures our intuition, and it is not hard to prove tha t  both propo- 
sitions RegisterAssert?(c) and RegisterCreate?(c)(new) hold. Actually, Pvs can 
prove both of them with a single command,  (GRIND).  
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Of course, we can also define other implementations.  For example, one can 
define an implementat ion in which the sequence of operations applied to an 
object is recorded for each address. This can be done by taking as state space: 

HistorySpace : TYPE = [Address -> list[Lift[Data]]] 

The implementat ion of the methods and constructor on this s tate space is left 
to the interested reader. Again, (GRIND) in PVS proves that  the assertions and 
creation-conditions hold (for our implementat ion).  

When class specifications are used as components in other classes (e.g. via 
class-valued attributes,  see Section 4) we need a model for them. Obvious choices 
for a model are (1) an arbitrary, so-called "loose" model and (2) a final model. 
Both are generated. Once we know that  our class specification has a non-trivial 
model (and hence that  it is consistent) we can safely postulate  the existence of 
a loose model. A final model enables the use of subclasses for components,  but 
its existence is an open question in presence of binary methods.  Due to a lack 
of space, only the loose model is described here. It  has the following form. 

LooseRegisterClass[Data, Address : TYPE] : THEORY 

BEGIN 
LooseRegisterType : TYPE 

IMPORTING RegisterClassStructure[LooseRegisterType, Data, Address] 

loose_Register_existence : AXISM 

EXISTS(cl : RegisterClass) : TRUE 

LooseRegisterClass : RegisterClass 

END LooseRegisterClass 

In this theory the existence of an arbi trary model of the class specification is 
guaranteed via an axiom. In principle this can be dangerous, because it may  lead 
to inconsistencies. However, as long as a non-trivial implementat ion has been 
given (earlier) by hand, there is no such danger. The type LooseRegisterType 
in this theory is simply postulated, and we know nothing about  its internal 
structure. This ensures that  when this model is used as a component  in another 
class, no internal details can be accessed (simply because there are no such 
details). 

We turn to the second way to reason about a (translated) specification. Our 
tool generates an almost empty  Pvs theory frame called RegisterUserTheory. 
This  theory starts  by declaring a coalgebra structure c satisfying the predicate 
RegisterAssert?, together with a constructor satisfying the creation-condition 
RegisterCreate?(c). Under these assumptions a user can start  proving various 
logical consequences of the assertions in the class specification. For example,  a 
useful proposition that  can be proved in RegisterUserTheory is the following 
characterisation of bisimilarity. 

bisim_char : LEMMA 

bisim?(c)(x,y) IFF FORALL(a : Address) : read(c) (x,a) -- read(c) (y,a) 

This expresses that  two objects (or states) x, y: Self are bisimilar (i.e. indistin- 
guishable) w.r.t, the assumed (arbitrary) model c if and only if they give the 
same read output  at each address. Intuitively this may  be clear: if we cannot see 
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a difference between two objects via reading, then using a write or erase will not 
create a difference between these objects (because a read after a write or erase 
is completely determined by the Register assertions). 

Using this characterization, it is easy to prove, for example, 

write_commutation : LEMMA 

FORALL(a,b : Addresses, d,e : Data) : a /= b IMPLIES 

bisim?(c)(write(c)(write(c)(x, a, d), b, e), 

write(c) (write(c)(x, b, e), a, d)) 

This result says that  one can exchange write operations at different addresses. 
Notice that  we are careful in only stating that  the outcomes are bisimilar, and 
not necessarily equal. We avoid the use of equality of objects/states,  since we 
regard these as hidden, and we restrict access to (public) methods. In addition, 
the use of bisimilarity entails that  the results that  we prove also hold in im- 
plementations where bisimilar states need not be (internally) equal, like in the 
above HistorySpace model. There we can have equal reads at all addresses in 
two states, even though the histories of these states are quite different. Hence 
such states are bisimilar, but internally different. 

At the end, it may be instructive to compare this coalgebraic way of com- 
bining methods, with the approach taken in [1] (explicitly e.g. in Section 8.5.2). 
There the methods of a class are combined in a slightly different manner,  namely 
in a labeled product, called "trait type": 

RegisterTrait = [# read: Self-+ [Address -+ Lift[Data]], 
write: Self--+ [Address, Data --+ Sell], 
erase: Self --+ [Address --~ Sel t ]#]  

What  we do is basically the same, except that  our methods are combined "coal- 
gebraieally", with the common input type Self on the outside. What  is called a 
"class type" in [1] is such a "trait type" together with a constructor new, see 
the RegisterClass type above. Thus, when it comes to interfaces, there is no 
real difference between our approach and the one in [1]. But we go further in 
two essential ways: (a) we restrict the methods and constructors so that they 
satisfy certain requirements (given in the assertions and creation-conditions in 
the specification), and (b) we (automatically) generate appropriate notions of 
invariance and bisimilarity for (the interface of) each class specification, and use 
them systematically in reasoning about these specifications. 

3 A b o u n d e d  r e g i s t e r :  i n h e r i t a n c e  a n d  o v e r r i d i n g  

Having described an implementation for the Register class specification--and 
developed part of its theory--we now introduce a new class specification Bound- 
edRegister by inheritance. A bounded register is a subclass of a register, which 
overrides the write operation and defines a new attribute count. A bounded reg- 
ister can only store a limited number of data elements, and the count attr ibute is 
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Begin BoundedRegister[ Data : Type, Address : Type, n : nat ] : ClassSpec 

Inherit from Register [Data, Address] 

Method write : [Self,Address,Data] -> Self ; 

count : Self-> nat 
Assertion override_write_def : PVS FORALL(a : Address, d : Data) : 

bisim?(write(x, a, d), IF count(x) < n OR up?(read(x,a)) 

THEN super_write(x, a, d) 

ELSE x 

ENDIF) ENDPVS 

count_super_write : PVS FORALL(a : Address, d : Data) : 

count(super_write(x, a, d)) ffi IF bot?(read(x,a)) 

THEN count(x) + 1 

ELSE count (x) 

ENDIF ENDPVS 

count_erase : PVS FORALL(a : Address) : 
count(erase(x, a)) ffi IF bot?(read(x, a)) 

THEN count (x) 

ELSE max(O, count(x) - i) 

ENDIF ENDPVS 

Constructor new : Self 

Creation count_new : PVS count(new) = 0 ENDPVS 

End BoundedRegist er 

Fig. 2. A bounded re~ster class specification in CCSL 

used to keep track of how much data  is currently stored. When the bounded reg- 
ister is full (i.e. when its count is above a certain number n given as parameter),  
a write operation does not have any effect; otherwise it acts as the write oper- 
ation from the superclass Register. Further, the read and erase operations from 
Register are used without modification. A CCSL class specification of a bounded 
register is given in Figure 2. The predicates h o t ?  and up? on L i f t  [Data] tell 
us whether an element x : L i f t [ D a t a ]  is hot  or up(d) ,  for some d : Data. 

Again, our tool generates several PVS theories from this specification. This 
section will discuss the essential consequences the use of inheritance (in combi- 
nation with overriding) has on the generated theories. 

We model inheritance by letting the interface of the BoundedRegister not 
only contain the operations write and count, but  also the superclass as a field 
(super_Register). This enables access to the methods of the superclass. 

BoundedRegisterIFace : TYPE = 

[# super_Register : RegisterIFace[Self, Data, Address], 

write : [Address, Data-> Self], 

count : nat #] 

Now we provide access not only to the individual methods of the Bounded- 

Register class but also to the methods from the superelass, via the following 

definitions. 

c : VAR [Self -> BoundedRegisterIFace[Self, Data, Address]] 

super_Register(c) : [Self -> RegisterIFace[Self, Data, Address]] ffi 

LAMBDA (x:Self) : super_Register(c(x)) 
read(c) : [[Self, Address] -> Lift[Data]] ffi 
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LAMBDA (x: Self, a:Address) : read(super_Register (c (x)) ) (a) 
super_write(c) :[[Self, Address, Data] -> Self] -- 

LAMBDA (x:Self, a:Address, d:Data) : write(super_Register(c(x)))(a, d) 

write(c) : [[Self, Address, Data] -> Self] = 
LAMBDA (x:Self, a:Address, d:Data) : write(c(x))(a, d) 

erase(c) : [Self, Address -> Self] = 
LAMBDA(x : Self, a : Address) : erase(super_register(c(x)))(a) 

count (c) : [Self -> nat] = 
LAMBDA(x : Self) : count (c (x) ) 

Via these explicit definitions, all methods of superclasses can be used in sub- 
classes. The number of such definitions may be considerable when there are high 
inheritance trees, but our tool generates all of them automatically. In fact, this 
is one of the reasons for developing such a tool. 

The write operation in the subclass specification in Figure 2 also occurs in 
the superclass. This double occurrence is used to signal overriding. Our tool 
recognizes it, and generates as a result two write operations. A "direct" one 
from the current subclass (simply called r~rite)  and an "indirect" one from the 
superclass (called super_wri te ) .  Notice that  the coalgebra c--used as variable 
in this theory--combines both the structure of the subclass and the superclass. 

The theories about invariants and bisimulations are generated incrementally, 
i.e. they extend the predicates and relations on Register with appropriate clauses 
for the additional methods of the subclass. 

The assertions and creation-conditions of BoundedRegister are translated 
into PVS predicates, just  as in the Register example. The resulting predicate 
BoundedRegisterAssert? combines these assertions with the assertions in Regis- 
terAssert?. The predicate BoundedRegisterCreate? similarly combines the new 
creation-conditions with the "super" creation-conditions from Register. This im- 
plies that,  although we override a method, we can still expect the superclass to 
behave as specified. 

BoundedRegisterhssert?(c) : bool = 
RegisterAssert?[Self, Data, Address] (super_register(c)) 

AND FORALL(x : Self) : everride_write_def?(c)(x) 
AND count_super_write?(c) (x) 
AND count_erase?(c) (x) 

BeundedRegisterCreate?(c) : PRED[Self] = 

{x : Self ~ count(c)(x) = 0 
AND RegisterCreate7 [Self, Data, Address] (super_register (c)) (x) } 

The BoundedRegisterStrueture theory now contains an additional casting oper- 
ation from BoundedRegisterClass to RegisterClass. 

BoundedRegisterClass : TYPE = 

[# clg : (BoundedRegisterAssertT), 
new : (BeundedRegisterCreate? (clg)) #] 

cast : [BoundedRegisterClass -> RegisterClass] = 

LAMBDA(cl : BoundedRegisterClass) : 
[# clg := super_Register(clg(cl)), 

new := new(el) #] 
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(Well-definedness of cast involves proving two easy results.) When an imple- 
mentation for a bounded register is described, definitions for the methods in 
BoundedRegister (i.e. count and write) and for those in the superclass (i.e. read, 
write, erase) have to be given. An obvious implementation of the bounded reg- 
ister specification uses the Cartesian product [ n a t ,  Func t ionSpace ]  as state 
space, where Func t ionSpace  is the state space of the first Register implemen- 
tation in the previous section. The first component na t  describes the value of 
count. Appropriate operations on this state are easily defined, by re-using the 
Register implementation on Funct ionSpace .  The contents of the theory with 
the loose model is not influenced by inheritance and also the way the theory is 
generated is not altered. 

4 M o d e l i n g  o t h e r  o b j e c t - o r i e n t e d  a s p e c t s  

This section briefly discusses how--and to what extend--various typically object- 
oriented features are realised in our formalisation. Not all of the aspects that  we 
touch upon have fully crystalised into stable form, and the further development 
and use of our tool may lead to certain changes. 

C o m p o n e n t  classes.  When specifying a new class one often wishes to use 
another class as a component.  By component we mean an at tr ibute which is 
an instance of another class. This is also known as an aggregation realising a 
has-a relationship between two classes. 
Begin Counter [ n: posnat, val_init : nat] : CLASSSPEC 

Method val : Self-> nat; 

next : Self-> Self; 

clear : Self -> Self 

Assertion val_next : PVS val(next (x)) = 

IF val(x) = n-I THEN 0 ELSE val(x)+l ENDIF 

ENDPVS 

val_init : PVS val_init <= n ENDPVS 

val_clear : PVS val(clear(x)) = 0 ENDPVS 

Constructor new : Self 

Creation val_new : PVS val(new) = val_init ENDPVS 

End Counter 

Fig. 3. A counter (modulo n) class specification in CCSL 

To demonstrate the use of components we adopt an example from [12]. Suppose 
that  we have a class Counter, which counts modulo a parameter  n, as in Figure 3. 
This class Counter is used (twice) as a component in the class specification of a 
DoubleCounter in Figure 4. A DoubleCounter has two counters as components, 
both counting modulo n. It has operations next, val and clear. The first counter 
is incremented every t ime a next operation is executed. The second counter is 
only incremented when the first counter reaches n. 

As we have seen, our tool automatically generates loose and final models 
(without any internal structure) for every specification, and presents an option 
for the user. Both these models can be used for components, but a final model 
enables subclassing for components. 
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Begin DoubleCounter[ n: posnat ] : CLASSSPEC 

Method val : Self -> nat; 

first : Self-> Counter[n,0]; 

second : Self -> Counter[n,O] ; 

next : Self -> Self; 

clear : Self -> Self 

Assertion val_def : PVS val(x) = 

n * val(second(x)) + 

val(first (x)) ENDPVS 

first_next : PVS bisim?(first (next(x)), next (first (x))) ENDPVS 

second_next : PVS bisim?(second(next(x)), 

IF val(first(x)) = n-1 

THEN next (second(x)) 

ELSE second(x) ENDIF) ENDPVS 

first_clear : PVS bisim?(first (clear(x)) , clear(first (x)) 

ENDPVS 

second_clear : PVS bisim? (second (clear (x)) , clear (second (x)) ) 

ENDPVS 

Constructor new : Self 

Creation first_new: PVS bisim?(first(new), new) ENDPVS 

second_new: PVS bisim?(second(new), new) E~IDPVS 

End DoubleCount er 

Fig. 4. A double counter class specification in CCSL 

As an example,  the interface for DoubleCounter, using a loose model for the 
components,  will be generated as follows. 

DoubleCounterIFace : TYPE = [# val : nat, 

first : LooseCounterType[n,0], 

second : LooseCounterType[n,O], 

next : Self, 

clear : Self #] 

When generating the other theories for DoubleCounter,  components  are handled 
just  as normal  at tr ibutes (with bisimilarity as their equality relation). 

R e f i n e m e n t .  Earlier we mentioned how to implement a class specification and 
how to develop its theory. A third impor tant  activity is proving refinements be- 
tween class specifications. We say that  a "concrete" class refines an "abstract" 
class when a model (i.e. an implementat ion) of the abstract  class can be de- 
scribed in terms of the concrete class. We construct this model as abstract(c):  
[Self--+ AbstractIFace[Self, . . . ]] ,  where c: [Self--+ ConcreteIFace[Self,...]] is an ar- 
bi t rary model of the concrete class 4. Following [13] we do not need the entire s tate  
space Self to obtain an "abstract" model, but  we can restrict ourselves to the 
subtype (P) of Self arising from an invariant P on Self (w. r. t. the abstract  class). 
Then abstract  (c) restricts to an operation of type [(P) --+ Abst rac t IFace[(P) , . . . ] ] .  
Of  course, it has to be proven that  the model satisfies the assertions and creation- 
conditions of the abstract  class, as expressed by the following lemma. 

Abstract_refine : LEMMA 

AbstractAssert? (abstract (c)) AND AbstractCreate? (abstract (c)) (new) 

4 Such a model abstract(c) should actually incorporate models of all the superclasses 
of the abstract class. Therefore, in practice, the model abstract(c) is best constructed 
by first constructing all these "super" models. 
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As an example,  we can prove that  DoubleCounter with paramete r  n refines a 
counter modulo n ~. The model for this refinement uses the invariant that  the 
values of both  component  counters are bounded by n. 

O v e r l o a d e d  m e t h o d s .  Some object-oriented languages allow overloading of 
methods: multiple methods with the same name may occur in the same class as 
long as their types are different. This is also possible in CCSL. PVS does allow 
overloading of functions, but  field names in a labeled produc t - -used  as types of 
interfaces--are  not permit ted,  hence we use ordinary products in interfaces with 
overloading. 

M u l t i p l e  i n h e r i t a n c e .  In our formalization we allow multiple inheritance (even 
though some object-oriented languages do not). This requires coping with name 
clashes, for instance: (1) if different superclasses define a method with the same 
name, and (2) if one class is inherited twice via different paths.  To solve the 
first problem, the user can rename the conflicting methods in the INHERIT FROM 
section in the CCSL specification, like in EIFFEL [16]. As an example,  a class can 
inherit both  from Counter and from DoubleCounter in the following manner.  

INHERIT FROM Counter[n,0] RENAMING val AS val_c AND 

next AS next_c AND 
c l e a r  AS c l e a r _ c ,  

DoubleCounter[n] RENAMING val AS val_d AND 

next AS next_d AND 

clear AS clear_d 

This will lead to method definitions like 

val_c(c) : [Self -> nat] = 

LAMBDA(x : Self) : val(super_Counter(c(x))) 

val_d(c) : [Self-> nat] = 

LAMBDA(x : Self) : val (super_DoubleCounter (c (x))) 

Renaming is also necessary for different instances of the same class. The second 
problem of multiple paths to the same method is solved essentially by using sets 
of ancestor methods.  

C r e a t i o n  w i t h  p a r a m e t e r s .  So far we have simply used 'new'  in CCSL specifica- 
tions as a constructor which returns a new instance of a class. In object-oriented 
languages one can usually parametr ise  such constructors with the initial values 
of the attributes.  Typically, in a point class (specification) with at tr ibutes f s t  
and snd for first and second coordinate, one may  wish to have new as a (binary) 
constructor satisfying the following creation-conditions. 

f s t ( n e w ( a ,  b ) )  = a AND s n d ( n e w ( a ,  b ) )  = b 

This option also exists in CCSL: one can put constructors as functions with type 
[A1, . . . ,  A,~] --4 Self in the constructor section. They are handled in evs  via a 
labeled product  containing all these constructors, instead of a single construc- 
tor new, as in the examples in Sections 2 and 3. Since we have not yet reached 
agreement on whether or not constructors should be inherited in object-oriented 
specifications, we included both options. 

S u b t y p i n g .  The usual object-oriented view is that  inheritance (subclassing) im- 
plies subtyping (see [1, Section 3.2]), namely of the form: in every place where an 
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object from a superclass is expected, an object from a subclass may be used as 
well. This is because all methods from the superclass also exist in the subclass-- 
possibly in overridden form, but still with the same type. Precisely this aspect 
of subclassing exists in our formalisation because all methods from superclasses 
are explicitly (re-)defined in subclasses, see the definitions of r e a d ( c )  etc. for 
bounded registers in Section 3. This "structural" subtyping (see again [1, Sec- 
tion 3.2]) arises because the Register interface is part  of the Boundedl~egister 
interface. Also we use explicit casting operations from subclasses to superclasses, 
as described for bounded registers in Section 3. Such casting operations are gen- 
erated for components as final models. 
B i n a r y  m e t h o d s .  Binary methods are a topic of intense debate in the object- 
oriented community, see [3]. They are allowed in many object-oriented languages, 
but  can lead to various problems (notably type insecurities). A standard example 
of a binary method is the union (or intersection) operation in a class (specifica- 
tion) of sets (over some parameter type A). 

. o ,  

elem? : [Self, A -> bool]; 

add, delete : [Self, A -> Self]; 

union, intersection : [Self, Self -> Self]; 

, o ,  

Typically, a binary (or n-ary, for n > 1) method takes multiple inputs of type 
Self. Methods of type [Self, A1 , ' - - ,  A,] --4 F(Self) are allowed in CCSL under the 
following two restrictions: (1) if Self occurs in Ai then Ai = Self, (2) Self occurs 
only positively in F.  
L a t e  b i n d i n g .  Consider a Point class specification with attributes f s t  and s n d  
(as above) and with a move method satisfying: 

f s t ( m o v e ( x , d a , d b ) )  -- f s t ( x )  + d a  AND s n d ( m o v e ( x , d a , d b ) )  -- s n d ( x )  + db  

Suppose now that  we often need the move operation with parameters da = db = 
1, and decide to define it explicitly as more l (x )  = move(x,  1, i ) .  Late binding 
means that  if we later override move in a subclass of Point, then the morel  
method will change accordingly: its definition will then use the overridden move. 
At this moment we have an ad hoc solution to model late binding, and we are 
still testing its appropriateness in various examples. 

5 T h e  f r o n t - e n d  LOOP too l  

Thus far we have seen how (CCSL)  class specifications can be translated into 
higher order logic. This translation is done automatically by our tool, which is 
constructed as a front-end to a proof assistant. In general, front-end tools pro- 
vide a higher level interface tailored to a specific application domain [2, 20, 23, 
15, 5]. They vary in the degree of sophistication and user support. While simple 
systems feature theory blueprints where the user fills out special slots in combi- 
nation with specialised high level tactics [2, 5], more advanced approaches define 
a special language and provide command line compilers [20] or even interactive 
user interfaces [15]. 
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Our development aims at an environment in which the user can specify classes 
in several languages and frameworks and can then reason about their properties 
and relationships in a suitable proof assistant of choice. Ultimately, we desire a 
tool, called LOOP (for: Logic of Object-Oriented Programming), which provides 
an interactive (emacs) shell for the proof assistant. Thus far, as a first step, 
we focus on the compiler, which generates for a given class specification the 
corresponding theory and proof representations for the target proof assistant. It 
should be easy to extend the tool to other object-oriented languages and proof 
assistants. Also, it should come with a suitable graphical user interface. These 
aims influenced the choice of the implementation language and the architecture 
of the compiler. 

We use the typed functional language Objective Caml (OCAML) [22], the 
current release of the French ML dialect CAML. Objective Caml provides, above 
the strict typing and readable syntax of an ML dialect, a typed module system, 
command line compilers with the capability of generating native machine code, 
lexer and parser generators, and an extensive library including an X-Window 
interface. 

The architecture of the compiler (see Figure 5) exploits standard compiler 
construction techniques. It is organised in a number of passes which work on 
fixed interface data  structures. This enables us to easily plug-in modules for 
other input languages (than CCSL) and other target proof assistants (than PVS). 

CCSL ~ [ ~  
" string > ~ stream I~" . . . .  ]~class_type 

I type checker ] 

I inheritance an~lyser I 

i theory generator i 

the~ ype~-[ pretty printer] Pvs ~o 
strings 

Fig. 5. Tool architecture 

The compiler basically consists of the input modules lexer and parser, the 
internal modules (the vertical part in Figure 5), and the pretty printer. The lexer 
and parser are generated by the OCAML tools OCAMLLEX and OCAMLYACC which 
resemble the well-known LEX and YAcc from c programming environments. Pars- 
ing a (CCSL) string yields an internal symbolic class represented as a value of 
the complicated, inductively defined OCAML type c lass_ type .  The parser can 
be replaced by any other function which generates values of class_~ype. All in- 
ternal passes have input and output values in this type. The real work is carried 
out at a symbolic level. Extra steps can easily be inserted. After type check- 
ing and performing several semantic checks (for instance to determine the full 
inheritance tree of a class) the final internal pass produces symbolic theories 
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and proofs as values of the OCAML type theo ry_ type .  This latter pass is the 
workhorse of the whole system. Finally, a target specific pret ty printer converts 
the symbolic representation for PVS (or another proof assistant). 

Currently, the compiler accepts CCSL class specifications in a file name.beh 
and generates the corresponding theories and proofs as described in the previ- 
ous sections. For instance, compilation of a file r e g i s t e r . b e h  containing the 
simple specification from Figure 1 will generate the files r e g i s t e r . p v s  and 
r e g i s t e r . p r f .  The file r e g i s g e r . p v s  can then be loaded, parsed, and type 
checked in PVS. Before filling out the theory frames as described above the user 
can prove automatically all the standard lemmas with the p r o o f - f i l e  com- 
mand. 

Conclusions and future work 

We have elaborated a way to model object-oriented class specifications in higher 
order logic in such detail that  it is amenable to tool support. Future work, as 
already mentioned at various points in this paper, involves: elaboration of the 
formal definition of CCSL (including e.g. visibility modifiers and late bindings), 
completion of the implementation of the LOOP tool, definition of appropriate 
tactics, stepwise refinement, development of various extensions to the tool and 
of course: use of the tool in reasoning about various object-oriented systems. 
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