
Reasoning about Classes in Object-Oriented
Languages: Logical Models and Tools

ULRICH HENSEL 1 MARIEKE HUISMAN 2 BART JACOBS 2 HENDRIK TEWS 1
1 Inst. Theor. Informatik, TU Dresden, D-01062 Dresden, Germany.

{hensel, t ews}@t cs. inf. tu-dresden, de
2 Dep. Comp. Sci., Univ. Nijmegen,

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.
{marieke ,bart}@cs .kun. nl

A b s t r a c t . A formal language CCSL is introduced for describing specifi-
cations of classes in object-oriented languages. We show how class speci-
fications in CCSL can be translated into higher order logic. This allows us
to reason about these specifications. In particular, it allows us (1) to de-
scribe (various) implementations of a particular class specification, (2) to
develop the logical theory of a specific class specification, and (3) to es-
tablish refinements between two class specifications.
We use the (dependently typed) higher order logic of the proof-assistant
PUS, so that we have extensive tool support for reasoning about class
specifications. Moreover, we describe our own front-end tool to PVS,
which generates from CCSL class specifications appropriate PVS theories
and proofs of some elementary results.

1 Introduction

During the last two decades, object-orientation has established itself in anal-
ysis, design and programming. At this moment, c ++ and JAVA are probably
the most popular object-oriented programming languages. Despite this appar-
ent success, relatively little work has been done on formal (logical) methods
for object-oriented programming. One of the reasons, we think, is that there is
no generally accepted formal computational model for object-oriented program-
ming. Such a model is needed as domain of reasoning.

One such formal model has recently emerged in the form of "coalgebras"
(explicitly e.g. in [21]). It should be placed in the tradition of behavioural speci-
fication, see also [6, 8, 4]. Coalgebras are the formal duals of algebras, see [14] for
background information. They consist of a (hidden) state space--typically writ-
ten as Self in this context- - together with several operations (or methods) acting
on Self. These operations may be attributes giving some information about ob-
jects (the elements of Self), or they may be procedures for modifying objects.
All access to elements of Self should go via the operations of the coalgebra.
In contrast, elements of abstract data types represented as algebras can only
be built via the "constructor" operations (of the algebra). We consider coalge-
bras together with initial states as classes, and elements of the carrier Self of a
coalgebra as (states of) objects of the class.

106

For verification purposes involving coalgebraic classes and objects we are in-
terested in the observable behavior and not in the concrete representation of
elements of Self. A behavior of an object in this context is the objects reaction
pattern, i.e. what we can observe via the attributes after performing internal
computations triggered by pressing procedure buttons. This naturally leads to
notions like bisimilarity (indistinguishability of objects via the available opera-
tions) and invariance.

Based on coalgebras, a certain format has been developed for class specifi-
cations, see [21,11, 10]. This format typically consists of three sections, describ-
ing the class specifications' methods, assertions, and creation-conditions--which
hold for newly created objects. We have developed this format into a formal lan-
guage CCSL, for Coalgebraic Class Specification Language, which will be sketched
below. Ad hoc representations of these class specifications in the higher order
logic of the proof-tool pvs [18, 17] have been used in [12, 13] to reason about
such classes--notably for refinement arguments. Further experiments with for-
mal reasoning about classes and objects have led us to a general representation
of CCSL class specifications in higher order logic. Below we explain this model
(in the logic of evs), and also a (preliminary version of a) front-end tool that we
use for generating such models from class specifications.

The code for this tool (called LOOP for Logw of Object-Oriented Program-
ming) is written in OCAML [22]. It basically performs three consecutive steps:
it first translates a CCSL class specification into some representation in OCAML;
this representation is then internally analysed and finally transformed into Pvs
theories and proof. The generated evs file contains several theories describing
the representation of the class specification, via appropriate definitions and asso-
ciated lemmas (e.g. stating that bisimilarity is an equivalence relation). Another
file that is generated by our tool contains instructions for proofs of the lemmas
in the PVS file. The architecture of our tool allows for easy extensions, e.g. to
accept JAVA [7] or EIFFEL [16] classes, or to generate files for other proof assis-
tants such as ISABELLE [19]. The diagram below describes (via the solid lines)
what our tool currently does, see Section 5 for some more details. The dashed
lines indicate possible future extensions.

C C S L class
specifications

lexing and ~ representation
parsing in OCAML

I -,f I
f

f
7

f
f

f
/

f
f

P V S t h e o r i e s

& proofs

I S A B E L L E

theories & proofs

The idea behind the dashed lines on the left is that classes in actual programming
languages should lead to executable class specifications, about which one can

107

reason. We have made some progress--which will be reported elsewhere--in
reasoning about JAVA classes in this setting. Here we concentrate on the upper
solid lines.

The paper is organised as follows. We star t in Sections 2 and 3 with an
elaborate discussion of two examples, involving a class specification of a regis-
ter in which one can store data at addresses, and a subclass specification of a
bounded register, in which writing is only allowed if the register is not full. This
involves overriding of the original write method. Then, in Section 4 we discuss
some further aspects of the way that we model class specifications and that we
reason about them. Finally, in Section 5, we describe the current stage of the
implementat ion of our front-end tool.

We shall be using the notation of PVS'S higher order logic when we describe
our models. I t is largely self-explanatory, and any non-standard aspects will be
explained as we proceed. The LOOP front-end tool tha t will be described in Sec-
tion 5 is still under development. Currently, it does the basics of the translation
from CCSL class specification to PVS theories and proofs (without any fancy GUI).
It may take some t ime before it reaches a stable form. Instead of elaborating
implementat ion details, this paper focuses on the basic ideas of our models.

2 A simple register: specification and modeling

We start by considering a simple register, which can store da ta at an address. It
contains read, write and erase operations, satisfying some obvious requirements.
It is described in our coalgebraic class specification language CCSL in Figure 1.
The type constructor A ~+ Lift[A] adds a bo t tom element ' bo t ' to a type A, and
keeps all elements a from A as up(a). A total function B -+ Lift[A] may then be
identified with a partial function B --+ A. We use square brackets [A1, . . . , Am]
for the Cartesian product A1 • . . . • An.

Begin Register[Data : Type, Address : Type] : ClassSpec

Method read : [Self, Address] -> Lift [Data] ;

write : [Self, Address, Data] -> Self;

erase : [Self, Address] -> Self

Assertion read_write : PVS FORALL(a,b : Address, d : Data)

read(write(x, a, d), b) =

IF a = b THEN up(d) ELSE read(x, b) ENDIF ENDPVS

read_erase : PVS FORALL(a,b : Address) :

read(erase(x, a), b) =

IF a = b THEN bot ELSE read(x, b) ENDIF ENDPVS

Constructor new : Self

Creation read_new : PVS FORALL(a:Address) : read(new,a) = bot ENDPYS

End Register

Fig. i. A register class specification in CCSL

The types Data and Address are parameters in this specification, which can

be suitably instantiated in a particular situation. What is coalgebraic about
such specifications is that all methods act on Self, i.e. have Self as one of their

108

input types 1 . Usually this type Self is not wri t ten explicitly in object-oriented
languages, but it is there implicit ly as the receiver of me thod invocations. The
const ructor section declares new as a constructor (wi thout parameters) for cre-
at ing a new register. Notice tha t assertions and creat ion-condit ions have names.
The PVS and E N D P V S tags are used to delimit strings, which are basically
boolean expressions in PVS ~. It is assumed tha t x is a variable in Self.

In order to reason (with PVS tool support) about such a Register class spec-
ification, we first model it in the higher order logic of PVS. This is wha t our
LOOP tool does a u t o m a t i c i l y . It generates several PVS theories to capture this
specification. Space restrictions prevent us f rom discussing all these theories in
detail, so we concentra te on the essentials.

The first step is to introduce a (single) type which captures the interface
of a class specification, via a labeled product . For Register, this is done in the
following PVS theory.

RegisterInterface[Self, Data, Address : TYPE] : THEORY

BEGIN

RegisterIFace : TYPE = [# read : [Address -> Lift[Data]l,

write : [Address, Data -> Self],

erase : [Address-> Self] #]

END RegisterInterface

The square brace nota t ion [A1,. �9 An --+ B] is used in PVS for the type of (total)
functions with n inputs f rom At , �9 �9 An and with result in B. Notice tha t in the
types of the operat ions in this interface the input type Self is omi t t ed 3. This is
intended: a crucial step in our approach is tha t we use coalgebras of the form

c : [Self -> RegisterIFace[Self, Data, Address]]

as models of the me thod section of the Register specification, with Self as state
space. The individual methods can be extracted f rom such a coalgebra c via the
definitions:

r ead(c) : [Se l f , Address -> L i f t [D a t a]] =
LAMBDA(x : S e l f , a : Address) : r e a d (c (x)) (a)

wr i t e (c) : [Se l f , Address, Data -> Se l f] =
LAMBDA(x : Se l f , a : Address, d : Data) : w r i t e (c (x)) (a , d)

erase(c) : [Self, Address -> Self] =

LAMBDA(x : Self, a : Address) : erase(c(x))(a)

Thus the individual methods of a class can be extracted f rom such a single
coalgebra c.

1 A bit more precisely, the methods can all be written, possibly using currying, of
the form Self -+ F,(Self); and they can be combined into a single operation Self --~
F1(Self) x . . . x F,(Self).

2 Our front-end tool simply passes the string in PVS ... ENDPVS on to the PVS tool,

where it is parsed and typechecked.

s Categorically, the type RegisterlFace captures the functor associated with the sig-
nature of operations in the class specification, see [14].

109

Next, our formalisation deals with invariants and bisimulations. These are
special kinds of predicates and relations on Self which are suitably closed under
the above operations. For example, an invariant P C Self with respect to a
Register coalgebra c satisfies, by definition:

Va: Address, d: Data. P(write(c)(x, a, d))
P(z) :~ Va:Address. P(erase(c)(z,a)).

A bisimulation w.r.t, c is a relation R C_ Self x Self satisfying:

Va: Address. read(c)(z, a) = read(c)(y, a)
R(z, y) ~ Va: Address, d: Data. R(wri te(c)(x , a, d), write(c)(y, a, d))

Va: Address. R(erase(e)(z, a), erase(e)(y, a)).

Bisimilarity b i s ira? is then the greatest bisimulation relation. Interestingly, these
notions of invariant and bisimulation are completely determined by the class in-
terface RegisterIFace. They are generated automatically (by our tool) by induc-
tion on the structure of the types in the interface, based on liftings of these types
to predicates and relations, as introduced in [9] (see also [13]). These Pvs theo-
ries about invariants and bisimulations contain several standard lemmas (stating
e.g. that invariants are closed under finite conjunctions A and universal quantifi-
cation V), for which proof instructions are generated automatically (again using
induction).

The next theory RegisterSemantics deals with the assertions and creation-
conditions. The two assertions in Figure 1 are translated into two predicates on
the carrier type Self of a Register coalgebra c: [Self --+ RegisterIFace[Self, Data,
Address]]. Assuming that z is a variable of type Self, we generate:

read_write?(c)(x) : bool =

FORALL(a,b : Address, d : Data) : read(c)(write(c)(x, a, d), b) =

IF a ~ b THEN up(d) ELSE read(c)(x, b) ENDIF

read_erase?(c)(x) : bool =

FORALL(a,b : Address) : read(c)(erase(c)(x, a), b) =

IF a = b THEN bot ELSE read(c)(x, b) ENDIF

For convenience, these predicates are collected in a single predicate:

l iegisterAssert?(c) : bool =
FORALL(x : Self) : read_write?(c)(x) AND read_erase?(c)(x)

Similarly, we put the creation-condition in a predicate

liegisterCreate?(c) : PliED[Self] =
{x : Self I FORALL(a : Address) : read(c)(x, a) = bet}

At this stage we are able to say what actually constitutes a class implementa-
tion that satisfies a class specification as in Figure 1: it is a coalgebra c: [Self--+
RegisterIFace[Self, Data, Address]] satisfying the predicate RegisterAssert?, to-
gether with some element new: Self satisfying the predicate RegisterCreate?(c).
This is formalised in the following theory using a (dependent!) labeled product.

110

RegisterClassStructure [Self, Data, Address : TYPE] : THEORY

BEGIN
IMPORTING ReEisterSemantics [Self, Data, Address]

RegisterClass : TYPE = [# clg : (ReEisterAssert?),

new : (RegisterCreate?(clg)) #]

END ReEist erClassStructure

The notation (P) for a predicate P: [A -> bool] on A:TYPE is used in PVS as

an abbreviation for the predicate subtype { x : A I P (x)) . A class thus consists of
a state space Self with appropriate operations (combined in a coalgebra c lg on
Self) and with an appropriate constructor new. An object of such a class is then
s imply an inhabi tant of the state space Self. Thus, in the way tha t we model
classes and objects, the methods are part of the class, and not of the object.
This is called the delegation implementat ion, in contrast to the embedding im-
plementation, where the operations are part of the object, see [1, Sections 2.1
and 2.2].

Once we have all this settled, we can start reasoning about the class specifi-
cation. The two things we can do immediately are: (1) describing an implemen-
tat ion of the specification, and (2) developing its theory. Both are user tasks:
the tool only provides theory frames which the user can fill in. We give a sketch
of what can be done.

As to (1), it is a wise strategy to write out an implementat ion, immediately
after finishing the specification. It is notoriously hard to write "good" specifi-
cations which capture the informal description of the mat te r in question and,
at the same time, are consistent in the logic used. This is sometimes called the
"ground problem". Usually, specialists have a good understanding of a particu-
lar implementat ion. Once this implementat ion is formally writ ten out it can be
checked against the assertions and creation-conditions.

For example, for the Register class specification, an obvious implementat ion
describes registers as partial functions from addresses to data. This can be done
via the Lift[-] type constructor, and yields as state space:

FunctionSpace : TYPE = [Address -> L i f t [Da ta]]

This type can be equipped with a suitable coalgebra structure and a constructor:

c : [FunctionSpace -> RegisterIFace[FunctionSpace, D a t a , A d d r e s s]] =
LAMBDA(f : FunctionSpace) :

(# read := LAMBDA(a : Address) : f(a),

write := LAMBDA(a : Address, d : Data) : f WITH [(a) := up(d)],

erase := LAMBDA(a : Address) : f WITH [(a) := bot] #)

new : Fu_nctionSpace = LAMBDA(a : Address) : bet

(The notat ion g WITH [(y) := z] is an abbreviat ion for LAMBDA x : IF x = y
THEN z ELSE g(x) ENDIF.) This coalgebra structure on the state space Function-
Space clearly captures our intuition, and it is not hard to prove tha t both propo-
sitions RegisterAssert?(c) and RegisterCreate?(c)(new) hold. Actually, Pvs can
prove both of them with a single command, (GRIND).

111

Of course, we can also define other implementations. For example, one can
define an implementat ion in which the sequence of operations applied to an
object is recorded for each address. This can be done by taking as state space:

HistorySpace : TYPE = [Address -> list[Lift[Data]]]

The implementat ion of the methods and constructor on this s tate space is left
to the interested reader. Again, (GRIND) in PVS proves that the assertions and
creation-conditions hold (for our implementat ion).

When class specifications are used as components in other classes (e.g. via
class-valued attributes, see Section 4) we need a model for them. Obvious choices
for a model are (1) an arbitrary, so-called "loose" model and (2) a final model.
Both are generated. Once we know that our class specification has a non-trivial
model (and hence that it is consistent) we can safely postulate the existence of
a loose model. A final model enables the use of subclasses for components, but
its existence is an open question in presence of binary methods. Due to a lack
of space, only the loose model is described here. It has the following form.

LooseRegisterClass[Data, Address : TYPE] : THEORY

BEGIN
LooseRegisterType : TYPE

IMPORTING RegisterClassStructure[LooseRegisterType, Data, Address]

loose_Register_existence : AXISM

EXISTS(cl : RegisterClass) : TRUE

LooseRegisterClass : RegisterClass

END LooseRegisterClass

In this theory the existence of an arbi trary model of the class specification is
guaranteed via an axiom. In principle this can be dangerous, because it may lead
to inconsistencies. However, as long as a non-trivial implementat ion has been
given (earlier) by hand, there is no such danger. The type LooseRegisterType
in this theory is simply postulated, and we know nothing about its internal
structure. This ensures that when this model is used as a component in another
class, no internal details can be accessed (simply because there are no such
details).

We turn to the second way to reason about a (translated) specification. Our
tool generates an almost empty Pvs theory frame called RegisterUserTheory.
This theory starts by declaring a coalgebra structure c satisfying the predicate
RegisterAssert?, together with a constructor satisfying the creation-condition
RegisterCreate?(c). Under these assumptions a user can start proving various
logical consequences of the assertions in the class specification. For example, a
useful proposition that can be proved in RegisterUserTheory is the following
characterisation of bisimilarity.

bisim_char : LEMMA

bisim?(c)(x,y) IFF FORALL(a : Address) : read(c) (x,a) -- read(c) (y,a)

This expresses that two objects (or states) x, y: Self are bisimilar (i.e. indistin-
guishable) w.r.t, the assumed (arbitrary) model c if and only if they give the
same read output at each address. Intuitively this may be clear: if we cannot see

112

a difference between two objects via reading, then using a write or erase will not
create a difference between these objects (because a read after a write or erase
is completely determined by the Register assertions).

Using this characterization, it is easy to prove, for example,

write_commutation : LEMMA

FORALL(a,b : Addresses, d,e : Data) : a /= b IMPLIES

bisim?(c)(write(c)(write(c)(x, a, d), b, e),

write(c) (write(c)(x, b, e), a, d))

This result says that one can exchange write operations at different addresses.
Notice that we are careful in only stating that the outcomes are bisimilar, and
not necessarily equal. We avoid the use of equality of objects/states, since we
regard these as hidden, and we restrict access to (public) methods. In addition,
the use of bisimilarity entails that the results that we prove also hold in im-
plementations where bisimilar states need not be (internally) equal, like in the
above HistorySpace model. There we can have equal reads at all addresses in
two states, even though the histories of these states are quite different. Hence
such states are bisimilar, but internally different.

At the end, it may be instructive to compare this coalgebraic way of com-
bining methods, with the approach taken in [1] (explicitly e.g. in Section 8.5.2).
There the methods of a class are combined in a slightly different manner, namely
in a labeled product, called "trait type":

RegisterTrait = [# read: Self-+ [Address -+ Lift[Data]],
write: Self--+ [Address, Data --+ Sell],
erase: Self --+ [Address --~ Sel t]#]

What we do is basically the same, except that our methods are combined "coal-
gebraieally", with the common input type Self on the outside. What is called a
"class type" in [1] is such a "trait type" together with a constructor new, see
the RegisterClass type above. Thus, when it comes to interfaces, there is no
real difference between our approach and the one in [1]. But we go further in
two essential ways: (a) we restrict the methods and constructors so that they
satisfy certain requirements (given in the assertions and creation-conditions in
the specification), and (b) we (automatically) generate appropriate notions of
invariance and bisimilarity for (the interface of) each class specification, and use
them systematically in reasoning about these specifications.

3 A b o u n d e d r e g i s t e r : i n h e r i t a n c e a n d o v e r r i d i n g

Having described an implementation for the Register class specification--and
developed part of its theory--we now introduce a new class specification Bound-
edRegister by inheritance. A bounded register is a subclass of a register, which
overrides the write operation and defines a new attribute count. A bounded reg-
ister can only store a limited number of data elements, and the count attr ibute is

113

Begin BoundedRegister[Data : Type, Address : Type, n : nat] : ClassSpec

Inherit from Register [Data, Address]

Method write : [Self,Address,Data] -> Self ;

count : Self-> nat
Assertion override_write_def : PVS FORALL(a : Address, d : Data) :

bisim?(write(x, a, d), IF count(x) < n OR up?(read(x,a))

THEN super_write(x, a, d)

ELSE x

ENDIF) ENDPVS

count_super_write : PVS FORALL(a : Address, d : Data) :

count(super_write(x, a, d)) ffi IF bot?(read(x,a))

THEN count(x) + 1

ELSE count (x)

ENDIF ENDPVS

count_erase : PVS FORALL(a : Address) :
count(erase(x, a)) ffi IF bot?(read(x, a))

THEN count (x)

ELSE max(O, count(x) - i)

ENDIF ENDPVS

Constructor new : Self

Creation count_new : PVS count(new) = 0 ENDPVS

End BoundedRegist er

Fig. 2. A bounded re~ster class specification in CCSL

used to keep track of how much data is currently stored. When the bounded reg-
ister is full (i.e. when its count is above a certain number n given as parameter),
a write operation does not have any effect; otherwise it acts as the write oper-
ation from the superclass Register. Further, the read and erase operations from
Register are used without modification. A CCSL class specification of a bounded
register is given in Figure 2. The predicates h o t ? and up? on L i f t [Data] tell
us whether an element x : L i f t [D a t a] is hot or up(d) , for some d : Data.

Again, our tool generates several PVS theories from this specification. This
section will discuss the essential consequences the use of inheritance (in combi-
nation with overriding) has on the generated theories.

We model inheritance by letting the interface of the BoundedRegister not
only contain the operations write and count, but also the superclass as a field
(super_Register). This enables access to the methods of the superclass.

BoundedRegisterIFace : TYPE =

[# super_Register : RegisterIFace[Self, Data, Address],

write : [Address, Data-> Self],

count : nat #]

Now we provide access not only to the individual methods of the Bounded-

Register class but also to the methods from the superelass, via the following

definitions.

c : VAR [Self -> BoundedRegisterIFace[Self, Data, Address]]

super_Register(c) : [Self -> RegisterIFace[Self, Data, Address]] ffi

LAMBDA (x:Self) : super_Register(c(x))
read(c) : [[Self, Address] -> Lift[Data]] ffi

114

LAMBDA (x: Self, a:Address) : read(super_Register (c (x))) (a)
super_write(c) :[[Self, Address, Data] -> Self] --

LAMBDA (x:Self, a:Address, d:Data) : write(super_Register(c(x)))(a, d)

write(c) : [[Self, Address, Data] -> Self] =
LAMBDA (x:Self, a:Address, d:Data) : write(c(x))(a, d)

erase(c) : [Self, Address -> Self] =
LAMBDA(x : Self, a : Address) : erase(super_register(c(x)))(a)

count (c) : [Self -> nat] =
LAMBDA(x : Self) : count (c (x))

Via these explicit definitions, all methods of superclasses can be used in sub-
classes. The number of such definitions may be considerable when there are high
inheritance trees, but our tool generates all of them automatically. In fact, this
is one of the reasons for developing such a tool.

The write operation in the subclass specification in Figure 2 also occurs in
the superclass. This double occurrence is used to signal overriding. Our tool
recognizes it, and generates as a result two write operations. A "direct" one
from the current subclass (simply called r~rite) and an "indirect" one from the
superclass (called super_wri te) . Notice that the coalgebra c--used as variable
in this theory--combines both the structure of the subclass and the superclass.

The theories about invariants and bisimulations are generated incrementally,
i.e. they extend the predicates and relations on Register with appropriate clauses
for the additional methods of the subclass.

The assertions and creation-conditions of BoundedRegister are translated
into PVS predicates, just as in the Register example. The resulting predicate
BoundedRegisterAssert? combines these assertions with the assertions in Regis-
terAssert?. The predicate BoundedRegisterCreate? similarly combines the new
creation-conditions with the "super" creation-conditions from Register. This im-
plies that, although we override a method, we can still expect the superclass to
behave as specified.

BoundedRegisterhssert?(c) : bool =
RegisterAssert?[Self, Data, Address] (super_register(c))

AND FORALL(x : Self) : everride_write_def?(c)(x)
AND count_super_write?(c) (x)
AND count_erase?(c) (x)

BeundedRegisterCreate?(c) : PRED[Self] =

{x : Self ~ count(c)(x) = 0
AND RegisterCreate7 [Self, Data, Address] (super_register (c)) (x) }

The BoundedRegisterStrueture theory now contains an additional casting oper-
ation from BoundedRegisterClass to RegisterClass.

BoundedRegisterClass : TYPE =

[# clg : (BoundedRegisterAssertT),
new : (BeundedRegisterCreate? (clg)) #]

cast : [BoundedRegisterClass -> RegisterClass] =

LAMBDA(cl : BoundedRegisterClass) :
[# clg := super_Register(clg(cl)),

new := new(el) #]

115

(Well-definedness of cast involves proving two easy results.) When an imple-
mentation for a bounded register is described, definitions for the methods in
BoundedRegister (i.e. count and write) and for those in the superclass (i.e. read,
write, erase) have to be given. An obvious implementation of the bounded reg-
ister specification uses the Cartesian product [n a t , Func t ionSpace] as state
space, where Func t ionSpace is the state space of the first Register implemen-
tation in the previous section. The first component na t describes the value of
count. Appropriate operations on this state are easily defined, by re-using the
Register implementation on Funct ionSpace . The contents of the theory with
the loose model is not influenced by inheritance and also the way the theory is
generated is not altered.

4 M o d e l i n g o t h e r o b j e c t - o r i e n t e d a s p e c t s

This section briefly discusses how--and to what extend--various typically object-
oriented features are realised in our formalisation. Not all of the aspects that we
touch upon have fully crystalised into stable form, and the further development
and use of our tool may lead to certain changes.

C o m p o n e n t classes. When specifying a new class one often wishes to use
another class as a component. By component we mean an at tr ibute which is
an instance of another class. This is also known as an aggregation realising a
has-a relationship between two classes.
Begin Counter [n: posnat, val_init : nat] : CLASSSPEC

Method val : Self-> nat;

next : Self-> Self;

clear : Self -> Self

Assertion val_next : PVS val(next (x)) =

IF val(x) = n-I THEN 0 ELSE val(x)+l ENDIF

ENDPVS

val_init : PVS val_init <= n ENDPVS

val_clear : PVS val(clear(x)) = 0 ENDPVS

Constructor new : Self

Creation val_new : PVS val(new) = val_init ENDPVS

End Counter

Fig. 3. A counter (modulo n) class specification in CCSL

To demonstrate the use of components we adopt an example from [12]. Suppose
that we have a class Counter, which counts modulo a parameter n, as in Figure 3.
This class Counter is used (twice) as a component in the class specification of a
DoubleCounter in Figure 4. A DoubleCounter has two counters as components,
both counting modulo n. It has operations next, val and clear. The first counter
is incremented every t ime a next operation is executed. The second counter is
only incremented when the first counter reaches n.

As we have seen, our tool automatically generates loose and final models
(without any internal structure) for every specification, and presents an option
for the user. Both these models can be used for components, but a final model
enables subclassing for components.

116

Begin DoubleCounter[n: posnat] : CLASSSPEC

Method val : Self -> nat;

first : Self-> Counter[n,0];

second : Self -> Counter[n,O] ;

next : Self -> Self;

clear : Self -> Self

Assertion val_def : PVS val(x) =

n * val(second(x)) +

val(first (x)) ENDPVS

first_next : PVS bisim?(first (next(x)), next (first (x))) ENDPVS

second_next : PVS bisim?(second(next(x)),

IF val(first(x)) = n-1

THEN next (second(x))

ELSE second(x) ENDIF) ENDPVS

first_clear : PVS bisim?(first (clear(x)) , clear(first (x))

ENDPVS

second_clear : PVS bisim? (second (clear (x)) , clear (second (x)))

ENDPVS

Constructor new : Self

Creation first_new: PVS bisim?(first(new), new) ENDPVS

second_new: PVS bisim?(second(new), new) E~IDPVS

End DoubleCount er

Fig. 4. A double counter class specification in CCSL

As an example, the interface for DoubleCounter, using a loose model for the
components, will be generated as follows.

DoubleCounterIFace : TYPE = [# val : nat,

first : LooseCounterType[n,0],

second : LooseCounterType[n,O],

next : Self,

clear : Self #]

When generating the other theories for DoubleCounter, components are handled
just as normal at tr ibutes (with bisimilarity as their equality relation).

R e f i n e m e n t . Earlier we mentioned how to implement a class specification and
how to develop its theory. A third impor tant activity is proving refinements be-
tween class specifications. We say that a "concrete" class refines an "abstract"
class when a model (i.e. an implementat ion) of the abstract class can be de-
scribed in terms of the concrete class. We construct this model as abstract(c):
[Self--+ AbstractIFace[Self, . . .]] , where c: [Self--+ ConcreteIFace[Self,...]] is an ar-
bi t rary model of the concrete class 4. Following [13] we do not need the entire s tate
space Self to obtain an "abstract" model, but we can restrict ourselves to the
subtype (P) of Self arising from an invariant P on Self (w. r. t. the abstract class).
Then abstract (c) restricts to an operation of type [(P) --+ Abst rac t IFace[(P) , . . .]] .
Of course, it has to be proven that the model satisfies the assertions and creation-
conditions of the abstract class, as expressed by the following lemma.

Abstract_refine : LEMMA

AbstractAssert? (abstract (c)) AND AbstractCreate? (abstract (c)) (new)

4 Such a model abstract(c) should actually incorporate models of all the superclasses
of the abstract class. Therefore, in practice, the model abstract(c) is best constructed
by first constructing all these "super" models.

117

As an example, we can prove that DoubleCounter with paramete r n refines a
counter modulo n ~. The model for this refinement uses the invariant that the
values of both component counters are bounded by n.

O v e r l o a d e d m e t h o d s . Some object-oriented languages allow overloading of
methods: multiple methods with the same name may occur in the same class as
long as their types are different. This is also possible in CCSL. PVS does allow
overloading of functions, but field names in a labeled produc t - -used as types of
interfaces--are not permit ted, hence we use ordinary products in interfaces with
overloading.

M u l t i p l e i n h e r i t a n c e . In our formalization we allow multiple inheritance (even
though some object-oriented languages do not). This requires coping with name
clashes, for instance: (1) if different superclasses define a method with the same
name, and (2) if one class is inherited twice via different paths. To solve the
first problem, the user can rename the conflicting methods in the INHERIT FROM
section in the CCSL specification, like in EIFFEL [16]. As an example, a class can
inherit both from Counter and from DoubleCounter in the following manner.

INHERIT FROM Counter[n,0] RENAMING val AS val_c AND

next AS next_c AND
c l e a r AS c l e a r _ c ,

DoubleCounter[n] RENAMING val AS val_d AND

next AS next_d AND

clear AS clear_d

This will lead to method definitions like

val_c(c) : [Self -> nat] =

LAMBDA(x : Self) : val(super_Counter(c(x)))

val_d(c) : [Self-> nat] =

LAMBDA(x : Self) : val (super_DoubleCounter (c (x)))

Renaming is also necessary for different instances of the same class. The second
problem of multiple paths to the same method is solved essentially by using sets
of ancestor methods.

C r e a t i o n w i t h p a r a m e t e r s . So far we have simply used 'new' in CCSL specifica-
tions as a constructor which returns a new instance of a class. In object-oriented
languages one can usually parametr ise such constructors with the initial values
of the attributes. Typically, in a point class (specification) with at tr ibutes f s t
and snd for first and second coordinate, one may wish to have new as a (binary)
constructor satisfying the following creation-conditions.

f s t (n e w (a , b)) = a AND s n d (n e w (a , b)) = b

This option also exists in CCSL: one can put constructors as functions with type
[A1, . . . , A,~] --4 Self in the constructor section. They are handled in evs via a
labeled product containing all these constructors, instead of a single construc-
tor new, as in the examples in Sections 2 and 3. Since we have not yet reached
agreement on whether or not constructors should be inherited in object-oriented
specifications, we included both options.

S u b t y p i n g . The usual object-oriented view is that inheritance (subclassing) im-
plies subtyping (see [1, Section 3.2]), namely of the form: in every place where an

118

object from a superclass is expected, an object from a subclass may be used as
well. This is because all methods from the superclass also exist in the subclass--
possibly in overridden form, but still with the same type. Precisely this aspect
of subclassing exists in our formalisation because all methods from superclasses
are explicitly (re-)defined in subclasses, see the definitions of r e a d (c) etc. for
bounded registers in Section 3. This "structural" subtyping (see again [1, Sec-
tion 3.2]) arises because the Register interface is part of the Boundedl~egister
interface. Also we use explicit casting operations from subclasses to superclasses,
as described for bounded registers in Section 3. Such casting operations are gen-
erated for components as final models.
B i n a r y m e t h o d s . Binary methods are a topic of intense debate in the object-
oriented community, see [3]. They are allowed in many object-oriented languages,
but can lead to various problems (notably type insecurities). A standard example
of a binary method is the union (or intersection) operation in a class (specifica-
tion) of sets (over some parameter type A).

. o ,

elem? : [Self, A -> bool];

add, delete : [Self, A -> Self];

union, intersection : [Self, Self -> Self];

, o ,

Typically, a binary (or n-ary, for n > 1) method takes multiple inputs of type
Self. Methods of type [Self, A1 , ' - - , A,] --4 F(Self) are allowed in CCSL under the
following two restrictions: (1) if Self occurs in Ai then Ai = Self, (2) Self occurs
only positively in F.
L a t e b i n d i n g . Consider a Point class specification with attributes f s t and s n d
(as above) and with a move method satisfying:

f s t (m o v e (x , d a , d b)) -- f s t (x) + d a AND s n d (m o v e (x , d a , d b)) -- s n d (x) + db

Suppose now that we often need the move operation with parameters da = db =
1, and decide to define it explicitly as more l (x) = move(x, 1, i) . Late binding
means that if we later override move in a subclass of Point, then the morel
method will change accordingly: its definition will then use the overridden move.
At this moment we have an ad hoc solution to model late binding, and we are
still testing its appropriateness in various examples.

5 T h e f r o n t - e n d LOOP too l

Thus far we have seen how (CCSL) class specifications can be translated into
higher order logic. This translation is done automatically by our tool, which is
constructed as a front-end to a proof assistant. In general, front-end tools pro-
vide a higher level interface tailored to a specific application domain [2, 20, 23,
15, 5]. They vary in the degree of sophistication and user support. While simple
systems feature theory blueprints where the user fills out special slots in combi-
nation with specialised high level tactics [2, 5], more advanced approaches define
a special language and provide command line compilers [20] or even interactive
user interfaces [15].

119

Our development aims at an environment in which the user can specify classes
in several languages and frameworks and can then reason about their properties
and relationships in a suitable proof assistant of choice. Ultimately, we desire a
tool, called LOOP (for: Logic of Object-Oriented Programming), which provides
an interactive (emacs) shell for the proof assistant. Thus far, as a first step,
we focus on the compiler, which generates for a given class specification the
corresponding theory and proof representations for the target proof assistant. It
should be easy to extend the tool to other object-oriented languages and proof
assistants. Also, it should come with a suitable graphical user interface. These
aims influenced the choice of the implementation language and the architecture
of the compiler.

We use the typed functional language Objective Caml (OCAML) [22], the
current release of the French ML dialect CAML. Objective Caml provides, above
the strict typing and readable syntax of an ML dialect, a typed module system,
command line compilers with the capability of generating native machine code,
lexer and parser generators, and an extensive library including an X-Window
interface.

The architecture of the compiler (see Figure 5) exploits standard compiler
construction techniques. It is organised in a number of passes which work on
fixed interface data structures. This enables us to easily plug-in modules for
other input languages (than CCSL) and other target proof assistants (than PVS).

CCSL ~ [~
" string > ~ stream I~"]~class_type

I type checker]

I inheritance an~lyser I

i theory generator i

the~ ype~-[pretty printer] Pvs ~o
strings

Fig. 5. Tool architecture

The compiler basically consists of the input modules lexer and parser, the
internal modules (the vertical part in Figure 5), and the pretty printer. The lexer
and parser are generated by the OCAML tools OCAMLLEX and OCAMLYACC which
resemble the well-known LEX and YAcc from c programming environments. Pars-
ing a (CCSL) string yields an internal symbolic class represented as a value of
the complicated, inductively defined OCAML type c lass_ type . The parser can
be replaced by any other function which generates values of class_~ype. All in-
ternal passes have input and output values in this type. The real work is carried
out at a symbolic level. Extra steps can easily be inserted. After type check-
ing and performing several semantic checks (for instance to determine the full
inheritance tree of a class) the final internal pass produces symbolic theories

120

and proofs as values of the OCAML type theo ry_ type . This latter pass is the
workhorse of the whole system. Finally, a target specific pret ty printer converts
the symbolic representation for PVS (or another proof assistant).

Currently, the compiler accepts CCSL class specifications in a file name.beh
and generates the corresponding theories and proofs as described in the previ-
ous sections. For instance, compilation of a file r e g i s t e r . b e h containing the
simple specification from Figure 1 will generate the files r e g i s t e r . p v s and
r e g i s t e r . p r f . The file r e g i s g e r . p v s can then be loaded, parsed, and type
checked in PVS. Before filling out the theory frames as described above the user
can prove automatically all the standard lemmas with the p r o o f - f i l e com-
mand.

Conclusions and future work

We have elaborated a way to model object-oriented class specifications in higher
order logic in such detail that it is amenable to tool support. Future work, as
already mentioned at various points in this paper, involves: elaboration of the
formal definition of CCSL (including e.g. visibility modifiers and late bindings),
completion of the implementation of the LOOP tool, definition of appropriate
tactics, stepwise refinement, development of various extensions to the tool and
of course: use of the tool in reasoning about various object-oriented systems.

Acknowledgements

We thank David Griffioen for helpful discussions.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Comp. Sci.
Springer, 1996.

2. M. Archer and C. Heitmeyer. TAME: A specialized specification and verification
system for timed automata. In A. Bestavros, editor, Work In Progress (WIP)
Proceedings of the 17th IEEE Real-Time Systems Symposium (RTSS'96), pages
3-6, Washington, DC, December 1996. The WIP Proceedings is available at
http ://www. cs. bu. edu/pub/ieee-rt s/rt ss96/wip/proceedings.

3. K. Bruce, L. Cardelli, G. Castagna, The Hopkins Objects Group, G. Leavens, and
B. Pierce. On binary methods. Theory ~ Practice of Object Systems, 1(3), 1996.

4. C. C[rstea. Coalgebra Semantics for Hidden Algebra: parametrised objects and in-
heritance. To appear in: Workshop on Algebraic Development Techniques (Springer
LNCS), 1998.

5. A. Dold, F.W. von Henke, H. Pfeifer, and H. Ruefl. Formal verification of transfor-
mations for peephole optimization. In FME '97: Formal Methods: Their Industrial
Application and Strengthened Foundations, Lecture Notes in Computer Science.

6. J.A. Goguen and G. Malcolm. An extended abstract of a hidden agenda. In
J. Meystel, A. Meystel, and R. Quintero, editors, Proceedings of the Conference
on Intelligent Systems: A Semiotic Perspective, pages 159-167. Nat. [nst. Stand.
& Techn., 1996.

121

7. J. Gosfing, B. Jay, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

8. R. Hennicker, M. Wirsing, and M. Bidoit. Proof systems for structured specifica-
tions with observability operators. Theor. Comp. Sci., 173(2):393-443, 1997.

9. C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational
setting. Information 8A Computation (to appear).

10. B. Jacobs. Inheritance and cofree constructions. In P. Cointe, editor, European
Conference on Object-Oriented Programming, number 1098 in Lect. Notes Comp.
Sci., pages 210-231. Springer, Berlin, 1996.

11. B. Jacobs. Objects and classes, co-algebraically. In B. Freitag, C.B. Jones,
C. Lengauer, and H.-J. Schek, editors, Object-Orientation with Parallelism and
Persistence, pages 83-103. Kluwer Acad. Publ., 1996.

12. B. Jacobs. Behaviour-refinement of coalgebraic specifications with coinductive
correctness proofs. In M. Bidoit and M. Dauchet, editors, TAPSOFT'97: Theory
and Practice of Software Development, number 1214 in Lect. Notes Comp. Sci.,
pages 787-802. Springer, Berlin, 1997.

13. B. Jacobs. Invariants, bisimulations and the correctness of coalgebraic refinements.
In M. Johnson, editor, Algebraic Methodology and Software Technology, number
1349 in Lect. Notes Comp. Sci., pages 276-291, Berlin, 1997.

14. B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS
Bulletin, 62:222-259, 1997.

15. J. Knappman. A PVS based tool for developing programs in the refinement cal-
culus. Master's thesis, Inst. of Comp. Sci. & Appl. Math., Christian-Albrechts-
Univ. of Kiel, 1996. http://,ww.informatik.uni-kiel.de/inf/deRoever/
DipiJKm. html

16. B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2 nd rev. edition,
1997.

17. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas. PVS: Combining
specification, proof checking, and model checking. In R. Alur and T.A. Henzinger,
editors, Computer Aided Verification, number 1102 in Lect. Notes Comp. Sci.,
pages 411-414. Springer, Berlin, 1996.

18. S. Owre, J.M. Rushby, N. Shankar, and F. yon Henke. Formal verification for
fault-tolerant architectures: Prolegomena to the design of PVS. 1EEE Trans. on
Softw. Eng., 21(2):107-125, 1995.

19. L.C. Paulson. Isabelle: A Generic Theorem Prover. Number 828 in Lect. Notes
Comp. Sci. Springer, Berlin, 1994.

20. C.H. Pratten. An Introduction to Proving AMN Specifications with PVS
and the AMN-Proof Tool. http ://www. dsse. ecs. soton, ac. uk/~chplamn_proof/
papers, html.

21. H. Reichel. An approach to object semantics based on terminal co-algebras, Math.
Struct. in Comp. Sci., 5:129-152, 1995.

22. D. R~my and J. Vouillon. Objective ML: A simple object-oriented extension of
ML. In Princ. of Progr. Lang., pages 40-53. ACM Press, 1997.

23. J.U. Skakkebaek. A Verification Assistant for a Real Time Logic. PhD thesis, Dep.
of Computer Science, Techn. Univ. Denmark, 1994.

