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Abst rac t .  AORTA has been proposed as an implementable real-time 
algebra for concurrent systems where event times, rather than values of 
data, are critical. In this paper we discuss an extension to AORTA to 
include a formal data model, allowing integration with a variety of model- 
based data specification languages. An example is given using VDM with 
AORTA to define a time-critical system with important data attributes, 
and supporting software tools for AORTA and a simple imperative lan- 
guage are described. 

1 I n t r o d u c t i o n  

Although many timed formalisms exist, AORTA [6] (Application-Oriented Real- 
Time Algebra) is one of the few to consider how designs/specifications of con- 
current systems can be implemented in a way that  time behaviour can be guar- 
anteed. Supporting tools exist which allow AORTA designs to be simulated, 
formally verified, and code to be generated [8]. One of the ideas behind the de- 
velopment of AORTA has been that  formal methods are good for more than just 
proof: an unambiguously defined semantics allows early exercising of designs by 
simulation, and provides a basis for reliable code generation. Whilst proof re- 
mains an important  aspect of any formal technique, we argue that  it is not only 
the presentation of sound and complete proof theories or automatic verification 
algorithms which should influence the design of languages, but  also the provision 
of facilities such as code generation and simulation. 

AORTA only models formally the order and timing of events, and does not 
deal with data. Implementation details such as values to be passed during com- 
munication and the data  transformations to be carried out during a given piece 
of computation are given as annotations to the AORTA design, in the form of 
fragments of C [5]. In this paper we examine the problem of introducing for- 
mal models of data  into AORTA designs, and how this affects the notation, the 
semantics, the tool support and the development method. The approach given 
here is different from some other proposals [13, 20,23, 25], in that  rather than 
integrating with a particular formal specification language, integration within a 
relatively general framework (described in section 3) is suggested, which allows 
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instantiations with model-based languages such as VDM [18] or Z [21], or with 
formally defined imperative languages. The formally specified data  properties 
are given as annotations to the basic AORTA design (section 4), in much the 
same way that  fragments of C code are, except that  we give a formal semantics 
to the arrangement (section 5). An example using VDM and AORTA is given 
in section 6, and tool support  for designs in a joint language is discussed in sec- 
tion 7, along with some methodological considerations. Finally, our conclusions 
axe presented in section 8. First of all, though, we introduce the basic language 
of AORTA. 

2 B a c k g r o u n d  t o  A O R T A  

AORTA is a t imed process algebra which can be used as a design language 
for communicating concurrent real-time systems. Its main novelty lies in its 
(semi-automatic) implementability, which is discussed in detail elsewhere [6]. A 
system is defined as a static parallel composition of processes, linked by explicit 
communication channels. In its description of processes, AORTA inherits some 
notation from CCS [19], but  other ideas, such as communication channels, are 
borrowed from elsewhere. Within a (sequential) process, actions can be offered, 
which must be matched by a communicating partner before the process can 
proceed, and a choice may be offered between a number of actions. As in CCS, 
action prefix and choice (sometimes called summation) are represented by . and 
+ respectively, with 0 for the null process which offers no actions. Recursion can 
be written using the same equational format as used in CCS (e.g. h = a .h) ,  
but  all recursion must be guarded (i.e. all process names must appear inside 
an action prefix). The other constructs do not have analogues in CCS, and are 
concerned with including time information into the process description. 

There are two constructs which are used to introduce time, and each of these 
has a deterministic and nondeterministic form. The first construct is a delay 
which causes the process to pause for the amount of time specified, during which 
time no actions are offered - -  t ime consuming operations such as computation 
are represented in this way. As precise times are not always known, the delay 
may be specified with an upper and lower bound, rather than a precise figure. 
A process which delays for precisely t time units before behaving like S is writ- 
ten [ t ]  8, and if the delay is bounded by times t l  and t2 the process is written 
[ t  1, t 2 ]  8. The second construct is a time-out extension to summation, so that  if 
none of the branches of the choice are taken up within the given time, control is 
transferred to another branch. Again, depending on how the time-out is imple- 
mented a precise figure for the time at which control is transferred may not be 
available, so an interval of possibilities can be given instead. A process S which 
times out to process T if no communication happens within time t is written 
8 [t> T, and if the time is bounded by t l  and t2 it is written 8 [ t l , t 2 >  T. As 
data  is not handled by the basic language of AORTA, a data-dependent branch 
is modelled as a nondeterministic choice between processes. Such a choice is 
written P++Q, and is similar to the nondeterministic choice P [7 Q of CSP [17]. 
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In summary, a sequential process may be constructed from action prefixes, 
summations (choices over prefixed processes), t ime delays, time-outs over choices, 
nondeterministic choices and guarded recursion. The syntax is summarised in 
Table 1. Each process has a behaviour in time which says which actions it is 
prepared to engage in, or in other words, at which of its gates it ~s prepared to 
engage in communication. Obviously, for communication to take place there has 
to be more than one process in the system - -  the composition of system from 
its component processes is kept separate from process definition in AORTA. 

)refix 
:hoice 
ielay 
)ounded delay 
;ime-out 
)ounded time-out 
mndeterministic choice 
"ecursion 

a . S  
S1 + S2 

[t] s 
[t  1 , t 2 ]  S 

(S1 + . . .  + Sn)[t>S 
(S1 + . . .  + S n ) [ t l , t 2 > S  

S1 + +  $2 

equational definition 

Table 1. Summary of AORTA sequential process syntax 

Parallel composition of processes in AORTA is defined statically, by listing 
the names of the processes, with I as a separator. Internal communication chan- 
nels are also defined statically by giving the connection set, which lists pairs of 
gates of processes. Each gate may be connected only once, and a gate may not 
be connected to another gate of the same process. The parallel composition and 
connectivity within a system is easily represented graphically. A small example 
demonstrates most easily how process and system definition works in practice. 

2.1 A C h e m i c a l  P l a n t  C o n t r o l l e r  E x a m p l e  

In this section we introduce a semi-realistic example, based on a chemical plant 
controller. The controller has to monitor and log temperatures within a reaction 
vessel, and respond to dangerously high temperatures by sounding an alarm. 
Two rates of sampling must be provided, to be selected by the plant operator,  
each of which has its own output  format for a logging function. In order to ensure 
safety of the plant, the temperature must be sampled at least every two seconds, 
and if a reading lies outside the safety threshold the alarm must be sounded. This 
system is described in more detail in [4], and is extended in section 6 to include 
data  information. More complex examples have also been defined in AORTA, 
including a car cruise controller [6] and a parallel development of part  of an 
industrial submersible controller [5]. 

The design presented here involves two processes, one of which handles the 
actual conversion of the data, while the other is used to tog the data,  and to 
control the rate at which data  is sampled. There are two internal connections, 
which are used to pass the converted data  value, and to indicate a change in the 
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required sampling rate. The graphical representation of this system is shown in 
figure 1. 

w~ing in ~ download sci~ldata 

waming in_l id- OOt gctdata 

Convert ~ d  Datalogger 

chan~pecd 

Fig. 1. Connectivity of the Chemical Plant Controller 

The first of the two processes, Convert, accepts raw data on the gate in, 
and compares it with a threshold value. Depending on this comparison, the data 
conversion either takes place straight away, or is preceded by a warning signal. 
During the actual conversion, which takes place in the Convert2 part of the 
process, the calculation is done, and the result offered at the out gate, for con- 
nection to the Datalogger process. This output is timed out, to ensure that 
fresh data is always available, and that dangerously high input values are no- 
ticed within a reasonable time. As well as accepting data input, the Convert 
process allows the conversion mode to be changed, which in this case involves a 
signal to Datalogger, and the recalculation of a lookup table. Again, if no com- 
munication is available with the Datalogger process within about 1.5 seconds, 
control is returned to the main sampling loop. Changing mode during conversion 
is excluded by the choice (+) between in and mode. 

Convert = in.(Convert2 ++ warning.Convert2) 
+ 

mode.(changespeed.[O.3,0.4]Convert)[1.5,1.505>Convert 

Convert2 = [0.001,0.004] 
(out.Convert)[1.5,1.505>Convert 

The Datalogger process is fairly simple. Data is accepted on the ge tda t a  
gate, which is then stored (requiring a computation delay). The normal sampling 
loop is driven by a time-out, which regularly requests new data. The period 
of this loop depends on the current mode of operation (it is either about 1.0 
seconds or about 0.25 seconds), and this mode of operation can be changed by 
a speed message from the Convert process. As well as accepting mode change 
commands, the Datalogger process accepts requests for the downloading of the 
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current data set to an external machine. In this case, the packet is constructed, 
and sent out via the senddata gate. This may take a considerable period of time, 
depending on the size of the packet and the nature of the communication link, 
and is represented by the communication delay associated with senddata in the 
connection set. 

Datalogger = ge tda ta .  [0. 001,0. 015] 
(speed. Dat alogger2 

+ 

download. [0.5,1.0]  senddata.  Datalogger) 
[1.00,1.  005>Datalogger 

Datalogger2 = ge tda ta .  [0.001,0.015] 
(speed. Dat alogger)  

+ 

download. [0 .5,1.0]  senddata.  Datalogger2) 
[0.25,0.  255>Dat alogger2 

Having defined the individual processes, the full system is defined by the 
processes which run in parallel, along with connections, both internal and ex- 
ternal. As well as providing a textual format for the data presented in Fig 1, 
communication delays are also associated with each communication channel. 

(Convert i Datalogger) 
< (Convert. changespeed, Datalogger. speed: 0.001,0.003),  

(Convert.  out ,  Dat alogger ,  ge tda ta :  0.001,0. 003), 
(Convert.  in ,  EXTERNAL: 0. 001,0. 003), 
(Convert. warning,EXTERNAL: 0.001,0.003),  
(Convert. mode, EXTERNAL : 0.001,0. 003), 
(Datalogger.  download, EXTERNAL: 0.001,0.003 ) ,  
(Dat a logger ,  senddat a, EXTERNAL : 0.5,10.0)  > 

3 Data Model Assumptions 

Having described the basic language of AORTA, we can now describe the ex- 
tensions to handle data. There are two main types of functional specification 
languages: model-based (such as Z [21], VDM-SL [18] and B [1]) and algebraic 
(such as ACT ONE [20] and OBJ [15]). In a model-based language, an abstract 
formal model of the data in the system is built, and operations are specified and 
described as transformations on that model. An algebraic approach does not re- 
quire a complete model to be built, and operations are specified only in terms of 
each other. These two approaches are not entirely incompatible, as model-based 
specifications can be written in an algebraic style, and models can be built into 
an algebraic specification, but for the purposes of this paper the distinction is im- 
portant,and we have chosen to use model-based languages. There are no pressing 
reasons for choosing one model-based language over another in our model, and 
in particular this work is equally applicable to Z, VDM, B, and formally defined 
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imperative languages. Rather than choosing one of these languages arbitrarily, a 
general presentation is given here. Bowen and Hinchey, in their 'Ten Command- 
ments of Formal Methods' [3] make the point that  in industrial application of 
formal methods it is important to fit in with existing working practices. This 
point can be extended to the integration of formal methods, where integration 
with a variety of formal methods has the advantage that~as little as possible 
extra effort has to be made in learning new notations. Therefore we feel that  
the loose coupling of AORTA with model-based specification languages, rather 
than a particular language, is a strong point. The spec~cs of how VDM can be 
used with AORTA are given with an example in section 6, and tool support for 
AORTA with a simple imperative language is described in section 7. 

We now describe a fairly general framework for the description of model-based 
languages, and explain our assumptions. The basic model is that  each process has 
a set of possible states, States, over which the variable �9 may range. The state 

includes evaluations for a set of state variables. Each variable A has a set of 
values over which it may range, given by values(A). Variables can be read using 
a projection ~.A, and may be updated using the standard notation ~[A = v] 
where A is a variable name and v E values(A). Operations are represented using 
a three-place relation on states, so an operation A which can act on state �9 to 
give state ~ is written 

~ 4~ t 

The operation which changes nothing is then the identity relation on states E, 
where 

As well as accessing individual variables and performing operations on states, 
decisions have to be made based on the data  state, which requires the definition 
of predicates on states, written p(r  Finally, we will need two distinguished 
state variables: A, with values(A) = None = {.l_}, and T, with values(T) as the 
time domain in use (positive reals or natural numbers). 

4 Extens ion  of  Syntax  

According to [6], the abstract syntax for AORTA sequential expressions i s  

s: :=  Z a,.S, I [t]S t -  Z a"S'>'SI[t"t ]SI Z a,.S,>,,S l IX 

where t, tl and t2 (tl < t2) are time values taken from the time domain (either 
the positive reals or the naturals), ai are gate names, and X is taken from a set 
of process names used for recursion. A system expression is written as a product 
of processes with a connection set K 

P =  I I  Si < K > 
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On the whole, the translation from concrete syntax to abstract syntax is straight- 
forward, but  some restrictions are imposed. Choice, with or without time-out, 
can only take place between communication events, otherwise parallel execution 
of computation within a single process is required, or a counterintuitive form of 
time nondeterminism must be adopted. ~ is used to represent choice, and E> 
for time-outs. The syntax is extended for each of these constructs apart  from 
recursion, so rather than give the whole new syntax at once, the extensions are 
dealt with in turn. 

4.1 C o m m u n i c a t i o n  

In the original abstract syntax, communication (and its extensions to choice 
and time-out) uses only gate names, reflecting the pure synchronisation model 
of the semantics [6]. Extending communication to include value-passing can be 
achieved by associating a different gate name with each data  value to be offered 
or received (see [19]). While attractive from a theoretical point of view, as this 
requires only a little syntactic sugaring, it does raise some practical difficulties 
in implementation. Also, the abstract specification of data  state transformation 
via computation is difficult to incorporate into this model. 

The approach adopted here is more akin to that  adopted by LOTOS,  with 
its inclusion of the ACT ONE data  language for value-passing [20]. Variable 
names can be attached to communications as input or output  parameters,  using 
a question mark for input and an exclamation mark for output.  If a value is to 
be read from gate a into variable A, this is written a?A.S, and if the value held 
in the variable B is to be output  on gate a, this is written a!B.S. In the general 
case a gate may have input and output,  written a?A!B.S, so the abstract syntax 
form for choice is 

a~ ? Ai!Bi.S~ 
iEI 

If no data  is associated with a communication then the input and output  vari- 
ables are both given as the distinguished variable A (which always has value 3_), 
so that  a.S is an abbreviation for a?A!.A.S. Similarly, a?B.S is an abbreviation 
for a?B!A.S and a!B.S is an abbreviation for a?A!B.S. The variable 7" is used 
to represent a perfect clock, and so cannot be used as a communication variable. 
Communications within a time-out are adapted in exactly the same way as for 
choice, giving the abstract syntax form 

a, ? A,!B,.S,E> ~ S 
iEI 

and a corresponding deterministic form. 

4.2 Computat ion  

Within AORTA, computations are represented only by a time delay, but  during 
such delays a change of data  state will usually take place. Operations which 
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change state are represented by transformation functions A, which are attached 
to the time delay construct using braces. If an operation A takes between tl and 
t2 time units to complete, this is represented by the abstract syntax form 

Its, 

Some computations will require access to a real time clock, for time-stamping 
or time-averaging, so a special state variable T is used to represent a perfect 
clock. In practice, a physical clock will not be perfect, as it may run at the 
wrong speed, and may have its values discretised. This is modelled by defining 
a physical clock function on the perfect clock, which gives a set of values related 
to the perfect clock within some level of accuracy. During computations, time 
can only be accessed via the physical clock function. 

4.3 D a t a  dependen t  choice 

Data dependent choice is represented as nondeterministic choice in AORTA, 
using the (~ieI S~ notation. In order to give the conditions under which each 
branch of the choice is to be taken, a predicate on the state is attached to each, 
again using braces 

Os,{p,} 
iE I  

Sometimes a degree of nondeterminism is helpful, so the predicates are allowed 
to overlap (i.e. there can be j and k such that p~l (true) np'k 1 (true) is nonempty). 
There must, however, always be one predicate which is true (i.e. V ~. Vie1 Pi (~)), 
to ensure that some branch will be taken up. 

Combining the extensions for communication, computation and data depen- 
dent choice gives the full abstract syntax for AORTA terms with data informa- 
tion 

S::=~-~a,?A,!B,.S~ l tt{Zl}]S I ~-~a,?A,!B,.S~E>~S 
i E l  i E l  

I [tl,t~{A}]S ] ~--~a,?Ai!B,.S,t>~SI(~S,{p,} 
i E l  iE l  

I x 

where t, h and ta (tl < t2) are time values taken from the time domain (either 
the positive reals or the naturals), Ai and Bi are state variable names, A is a 
state transformation function, the Pi are predicates on the state, and X is taken 
from a set of process names used for recursion. 

5 E n r i c h e d  S e m a n t i c s  f o r  A O R T A  

The semantics defined in [6] gives a stratified set of operational transition rules 
for defining a transition relation between AORTA terms. A similar approach is 
adopted here, except that the transition system is enriched with the data state. 
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An interleaving semantic model is used, with time transitions represented by 

(t)> and action transitions (i.e. communications) represented by --~. A transi- 
tion system stratification is a technique whereby transition rules with negative 
premises can be meaningfully included. By evaluating the transition system in 
layers, or strata, it can be shown that no transition's validity depends on its own 
negation, as circularities can be removed [16]. In our system, the lowest stratum 
contains transitions between sequential expressions, the second contains all in- 
ternal system communications, and the third (and highest) contains system time 
transitions and external communications. By organising the transition system in 
this way, the negative premise for the system time delay rule given below can be 
consistently incorporated. This negative premise is essential to enforce maximal 
progress, or T-urgency. 

To define the first stratum, we have to consider an important subset of se- 
quential expressions, known as the regular expressions, on which the semantics 
is defined (n.b. the semantics is undefined on non-regular expressions). Reg- 
ular expressions have no nondeterminism or recursion before the next action, 
and can easily be syntactically characterised. A regular sequential expression 
is annotated with a data state ~, written S[~], and a set of eight sequential 
expression transition rules (which are defined only on regular expressions) can 
be given. The full set of rules can be found elsewhere [7], but two example rules 
are given in figure 2, where we abbreviate the updating of the perfect clock us- 
ing the definition ~+t iX ~[T = ~.T + t] which changes the state only by 
adding t to the perfect clock variable. The semantics of data dependent choice 

~ o~.s~c, ' S[ el (-% s[ e+,] 

j E I  
S; e Poss(S i, ~[Ai = v]) 

t ~?. !~ .B j  , t E delays(aj) 
~ , ~  ~.S,~, S[~] ~ [t{~}]S~[~[Aj = v]] v �9 values(At) 

Fig. 2. Transition rules for sequential expressions with data 

is not given by transition rules, but by the definition of the Poss function. Any 
AORTA term which starts with ( ~ e l  Si is not regular, so has to be regularised 
when an action transition takes place. Without any data state information, the 
choice between branches is nondeterministic, but by attaching predicates to the 
branches, a data dependent choice can be made. The Poss function defines pos- 
sible resolutions of nondeterminism which are used to regularise a process; again 
details can be found elsewhere [7]. There are three rules for system expressions, 
based on the transitions of sequential expressions, for internal communication, 
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external communication, and time progress. The rule for time progress is 

Vi E l.Si[@~] ('))S'[~:] 

rIiel Si[~i] < K > (-~ l'Iiel s~[~]  < K > 
Vff < t. [Iiel Age(Si[#i], t') < K > --~ 

The negative premise - -~  is used here to enforce the maximum progress prin- 
ciple, and a simple priority on communication - -  internal communication is 
preferred to external communication. A more sophisticated prioritisation can be 
achieved by making each communication dependent on all higher priority com- 
munications being impossible. To retain the consistency of the transition system, 
a more complex stratification must be used, with a different s t ra tum for each 
priority level. The lowest priority level will always be for the time delay, so as to 
enforce the maximum progress principle. Within the rule for time progress, the 
function Age is used to represent the a process after a given amount of time has 
passed. More formally, we define 

Age(E, t )  = E' t:~ E (t)~E' 

In [6] a direct syntactic interpretation of Age is given, along with a theorem 
relating it to the definition just given, which indirectly demonstrates tha t  Age 
is well-defined (i.e. it is a function). 

6 An Example Using VDM 

The chemical plant controller example of [4] is given here as an example of how 
data  specifications can be built into AORTA. VDM is used as the specification 
language here, although other languages can equally well be used. Addressing 
the data  model assumptions given in section 3 in turn, we first have to consider 
how the set of possible states of a process can be defined. In VDM this can be 
done by defining a composite type, including fields for each of the state variables 
of the process (including ,4 and 7"). Invariants on the data  type can be used to 
restrict the state space. The set of values for each state variable is defined by its 
type. Selectors are used to provide projections for individual variables, and the 
# function gives an easy mechanism for updating: 

~[A = v] = #(@, A ~ v) 

Operations are simply VDM operations which take no argument and return 
no result, but  have the process state as a writable external, and no (i.e t r u e )  
precondition. The identity function on states ~ is simply the operation 

ID 

e x t  w r  s : States 
A-.- 

p o s t  s = s 
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Finally, predicates on states are defined simply as boolean valued functions 
on states (i.e. of type States --+ B). 

To construct the set of (data) states for the Conver t  process, we use five 
s ta te  variables, including the perfect clock T and the dummy J[ . There  are 
two gates of the Conver t  process which carry data,  namely in  and out:  the 
s tate  variables associated with these gates are input:Rawdata and output:Temp 
respectively. A lookup table is used for the conversion, and this is stored in the 
s ta te  variable table:Lookuptable. With the t ime domain represented as the type 
Time, the composite type representing the s tate  of Conver t  is given by 

Convert :: input : Rawdata 
output : Temp 

table : Lookuptable 
7" : Time 
A : None 

Within Conver t ,  there are two computations: the first converts raw da ta  to a 
temperature ,  using a lookup table, and the second recalculates the lookup table 
for a different conversion mode. Assuming tha t  we have the function evaluate 
then the conversion operation is defined as 

DOCONVERSION 

e x t  w r  cony : Convert 
1 

p o s t  cony = #(c'-6"~nv, output ~ evaluate(input, table)) 

Changing conversion mode depends on a function newtable which recalculates 
the lookup table, so the operation for changing mode is defined as 

CHANGEMODE 

e x t  w r  c o n v  : Convert 

p o s t  conv= #( c~-J~nv, table ~-~ newtable('table) ) 

To specify the behaviour of nondeterministic choice, a predicate on the s tate  
must  be at tached to each branch of the choice. In the Conver t  process, the 
behaviour depends on whether the raw data  value exceeds a threshold value; if 
so a warning signal must be sent. The predicates which we are interested in are 

convertdatahigh : Convert --+ B 

convertdatahigh(conv) iX input(conv) > threshold 

and a corresponding predicate convertdataok which assume tha t  we have 
defined a total  order > on Rawdata and tha t  the value threshold:Rawdata is 
defined. Attaching these new da ta  constructs to the Conver t  process gives the 
definition 

Convert = in?input. 

(Convert2 {convertdataok) ++ 
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warning. Convert2 {convertdatah• 
+ 

mode. (changespeed. 
[0.3, O. 4 {CHANGEMODE}] Convert) [i. 5,1. 505>Convert 

Convert2 = [0.001,0.004 {DOCONVERSION}] 
(out ! output. Convert) [i. 5,1. 505>Convert 

The Datalogger  process has its own set of states, defined by the composite 
type 

Datalogger :: input : Temp 
packet : Loggerpacket 

history : ( Temp x Time)* 
T : Time 
T : Time 
A : None 

Two of the variables, input and packet are used to carry data for communica- 
tion on gates ge tda t a  and senddata, while history is used to record data with 
time stamps. The variable T is used for the physical clock, as well as the usual 
7" and ,4 variables. Two computations are associated with Datalogger,  which 
correspond to adding a data item (with time stamp) to the store, and making up 
a data packet for downloading. To get the time stamp value from the clock, we 
require the function possclocks which returns the possible physical clock values 
at a given time. The data which is input from the g e t d a t a  port is added to 
history with the operation 

A DDDA TA 
ext  wr  mk-Datalogger(h, i ,p,  t l ,  t2, a) : Datalogger 

A . - -  A - - -  

p o s t  t l  E possclocks(t2) A h = cons((t l ,  i), h ) A t2 = t2 

Finally, assuming the function makepacket we can define the operation 

M A K E P A C K E T  
ex t  wr  mk-Datalogger( i, p, h, t l ,  t2, a) : Datalogger 

A..-- g_.._ 

pos t  p = makepacket( h ) A h = [] A t2 = t2 

There are no nondeterministic choices in the Datalogger  process, so the full 
version of the process, including data information, is 

Datalogger  = g e t d a t a ? i n p u t .  [0 .01,0.015 {ADDDATA}] 
(speed. Datalogger2 

+ 

download. [0 .5 ,1 .0  {MAKEPACKET}] 
senddat a ! packet .  Datalogger)  

[1 .00 ,1 .  005>Datalogger 
Datalogger2 = g e t d a t a ? i n p u t .  [0 .01,0 .015 {ADDDATA}] 

(speed. Datalogger  
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+ 

download. [0.5,1.0 {MAKEPACKET}] 
senddata ! packet. Dat alogger2) 

[0.25,0. 255>Dat alogger2 

Having defined the individual processes, the system composition is given as 
before, using the i operator and a connection set, but with the addition of initial 
data states for each of the processes within the parallel composition. 

7 T o o l  S u p p o r t  a n d  M e t h o d o l o g i c a l  C o n s i d e r a t i o n s  

The emphasis of AORTA is on practicality, in that implementation and simu- 
lation issues have been considered alongside verification; designs written in the 
language can be represented purely in ASCII; implementations are based on 
generated C. One crucial aspect of a practical design method is the availability 
of supporting software tools, and research tools for graphical simulation, model- 
checking via graph generation, and code generation have been provided. These 
were all originally written for the basic language without a formal data model, 
where all computational aspects were represented by implementation fragments 
written in C. 

In order to provide support for AORTA extended with a formal data model, 
some generalisation of the tool set was required. One possible approach would 
have been to choose a formal language for data, such as VDM, and to attempt 
a one-off integration of the AORTA tool set with some supporting tools for 
the data language. This would have the advantage that it might not require 
too much work, and could provide a fairly tight coupling, but would have the 
obvious disadvantages of inapplicability to other languages and tools. Instead a 
more general approach was adopted, whereby an abstract data language interface 
was specified, (based on the data model assumptions given in section 3) and the 
integration done at that level. In this way, integration with a new language or 
tool set involves providing an interpretation of the abstract notions of value, 
variable, state, computation, predicate and so on. The obvious advantage of this 
approach is in its flexibility, with the disadvantages that the tools which are to 
be integrated may need to be adapted to fit the interface provided. 

The actual support which is provided for the data enriched language mostly 
falls into the area of simulation, which we introduced in section I as an important 
part of a formal method. For the basic language the tool set offers simulation as 
a technique for exercising the semantics, by choosing time and action transitions 
from a menu. Although this is helpful for a detailed exploration of the behaviour 
of a design, the more complete description given by a design with data allows 
a more dynamic simulation to be offered as well; one in which the processes of 
the design are simulated by concurrently executing threads, which communicate 
and evolve spontaneously in time. Put another way, we can now provide a di- 
rect interpreter for the combined language. The new support provides such a 
simulator, which allows any AORTA design annotated with formally specified 
data operations to be executed. Implementation code is provided as a separate 
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annotation to the design, so that if the data formalism is supported by code 
generation, then the whole of the design (including data parts) can be used to 
generate complete implementation code directly. 

Our initial experiment into providing a formal data language has used a sim- 
ple formally defined imperative language with sequence, choice and iteration, 
and integer, boolean and enumerated data types. This language is substantially 
smaller than VDM, for example, but serves to demonstrate that a useful inte- 
gration is possible. Furthermore, as the computation data relation is a function, 
direct interpretation is possible, and the language is explicit enough to allow 
direct code generation. In fact, this is just the sort of language that formal re- 
finements from Z, B or VDM aim to produce, so it may be that two levels of data 
formalism should be provided: one for an abstract, possibly implicit, specifica- 
tion, and one for an explicit description, closely related to an implementation, 
and derived by a verified refinement from the specification. However, some ap- 
proaches, such as that adopted by the IFAD VDM-Toolbox [11] are based on 
writing explicit specifications in the first place, and hence providing code genera- 
tion and interpretation facilities directly. In such cases as these, direct integration 
with AORTA is possible, without the need for an intermediate language. 

The discussion about whether implicit specification and refinement, or ex- 
plicit specification and code generation is better is outside the scope of this 
paper, but we note that in order to satisfy our earlier criterion of integration 
with as wide a range of approaches as possible, we should be able to deal with 
both. This is possible because of a further level of generality built in to the tool 
support for AORTA, beyond that of a general data language. Not only is the 
actual type of data language with which designs can be annotated quite general, 
but the number and type of annotations themselves is general. For instance, for 
AORTA with the simple imperative language, annotations can be provided at 
each point in the syntax tree for the textual form of the data part, for its internal 
representation as a relation on states, or whatever, for the implementation code 
associated with it, and for information concerning the graphical presentation of 
the syntax. However, the notion of annotation is general, and the implementation 
of the tool set modularised such that the addition of new annotations, perhaps 
for a more abstract data specification, or perhaps for proofs of correctness, or 
perhaps for timing information about the code, is quite straightforward. Having 
provided different kinds of annotation, the tool then needs to be configured to 
say which will be used in code generation, which are to be used in simulation, 
and which in verification etc. 

How then are such tools and languages to be used to develop systems? We 
suggest that early simulation is important, as it allows problems in the design 
to be detected before too much of the implementation detail is fixed. Similar ar- 
guments are given for the early application of specification and proof techniques 
during system development. The aim of this work is not necessarily to replace 
proof in system development, but rather to avoid wasted effort during proof by 
detecting and eliminating as many errors as possible by simulation, which can 
be thought of as high-level testing. With the addition of an interpretation for 



68 

data two kinds of simulation are now possible. In the first, in which the processes 
evolve spontaneously, a design error may be detected and corrected immediately, 
or further, more detailed simulation, based on the semantics, may be required 
to locate the problem. Having satisfactorily tested the design, it may at this 
point be appropriate to attempt a formal correctness proof. Note that further 
work is required on proof techniques in a combined language (see section 8). 
Having verified the correctness of the design, further work will be required to 
produce the implementation. If code generation of data properties is not auto- 
matic then refinement to code, with proofs, will be required. Also, static analysis 
of code (possibly with user intervention) to extract timing information will we 
required, as inputs to the scheduling calculations, which are used to verify that 
the implementation timing will match that given in the design [4]. 

8 C o n c l u s i o n s  

AORTA is a timed process algebra-based design language, so comparison might 
be made with other timed process algebras; however so many timed process al- 
gebras have been defined that even a cursory list of references would be too long 
for the scope of this paper, so the reader is referred elsewhere [9], and direct 
references given only for (a version of) Timed CCS [26], Timed CSP [22], and 
(a version of) Timed LOTOS [2]. At this level the main distinctive feature of 
AORTA is the ability to generate implementations about which timing guaran- 
tees can be made. 

This paper has shown how it is possible to build a formal data model into 
AORTA and how tool support for simulation and implementation generation 
techniques and tools can be extended. Further work needs to be done on the 
use of model-checking techniques in association with data properties. One possi- 
ble approach is to provide a (verified) refinement of the data associated with the 
state spaces, so that required data properties still hold, but that the state space is 
finite. Once the state space has been reduced to a finite size, data properties can 
be represented as propositions labelling timed graphs, so that model-checking 
of properties like 'The alarm will come on within 5 seconds of receiving a tem- 
perature reading above the safe limit' becomes possible. The abstraction to the 
trivial state space where all data information is ignored has been shown to be 
equivalent to the original semantics [9], so we can at least still perform simple 
model-checking with assurance of correctness. 

Other research has covered some of the aspects of this work. MOSCA provides 
a formalism combining CCS, VDM and time, but without providing implemen- 
tation techniques [25] whilst RAISE [24] and LOTOS [20, 27] provide data mod- 
elling in concurrent systems, with some implementation techniques, but no time. 
Work has also been done with timed extensions to LOTOS [2], which already has 
the data language ACT-ONE included, but in this case no implementation tech- 
niques are provided. A different kind of approach involves introducing time into 
data specification languages such as Z [10, 13, 14], with the closest work to ours 
being that by Fidge et al [12], which allows the timed refinement of concurrent 
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systems, including reasoning about implementations by embedding scheduling 
theory into the Z model. This approach can only be described as 'different' to 
ours, with the relative merits and demerits associated with the two being the 
usual ones associated with refinement as opposed to code generation techniques. 
Also, most of their work has been associated with providing the proof theory (as 
would be expected for a refinement calculus), whereas our work has focussed on 
implementation aspects. 

In summary, then, this paper has shown how a fairly general formal data  
model can be integrated syntactically and semantically into AORTA. Tool sup- 
port  for simulation and code generation has been discussed, and an example of 
using AORTA with VDM has been included. Proof  support  needs further work, 
although some suggestions have been made, so some may raise the question as to 
what purpose a formal semantics serves where no proof support is to be offered. 
In our introduction, we argued that  formal methods and good for more than just 
proof, and we feel that  this has been borne out by the provision of useful simu- 
lation tools, and also a clear statement of the necessary assumptions about  the 
data  model, which have formed the basis of tool support for the data-enriched 
language. 
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