
Integrating AORTA with Model-Based Data
Specification Languages

Steven Bradley 1, William Henderson 2, David Kendall 2, Adrian Robson 2

1 Department of Computer Science, Durham University, South Road, Durham, DH1
3LE, UK

2 Department of Computing, University of Northumbria at Newcastle, Ellison Place,
Newcastle upon Tyne, NE1 8ST, UK

Abst rac t . AORTA has been proposed as an implementable real-time
algebra for concurrent systems where event times, rather than values of
data, are critical. In this paper we discuss an extension to AORTA to
include a formal data model, allowing integration with a variety of model-
based data specification languages. An example is given using VDM with
AORTA to define a time-critical system with important data attributes,
and supporting software tools for AORTA and a simple imperative lan-
guage are described.

1 I n t r o d u c t i o n

Although many timed formalisms exist, AORTA [6] (Application-Oriented Real-
Time Algebra) is one of the few to consider how designs/specifications of con-
current systems can be implemented in a way that time behaviour can be guar-
anteed. Supporting tools exist which allow AORTA designs to be simulated,
formally verified, and code to be generated [8]. One of the ideas behind the de-
velopment of AORTA has been that formal methods are good for more than just
proof: an unambiguously defined semantics allows early exercising of designs by
simulation, and provides a basis for reliable code generation. Whilst proof re-
mains an important aspect of any formal technique, we argue that it is not only
the presentation of sound and complete proof theories or automatic verification
algorithms which should influence the design of languages, but also the provision
of facilities such as code generation and simulation.

AORTA only models formally the order and timing of events, and does not
deal with data. Implementation details such as values to be passed during com-
munication and the data transformations to be carried out during a given piece
of computation are given as annotations to the AORTA design, in the form of
fragments of C [5]. In this paper we examine the problem of introducing for-
mal models of data into AORTA designs, and how this affects the notation, the
semantics, the tool support and the development method. The approach given
here is different from some other proposals [13, 20,23, 25], in that rather than
integrating with a particular formal specification language, integration within a
relatively general framework (described in section 3) is suggested, which allows

55

instantiations with model-based languages such as VDM [18] or Z [21], or with
formally defined imperative languages. The formally specified data properties
are given as annotations to the basic AORTA design (section 4), in much the
same way that fragments of C code are, except that we give a formal semantics
to the arrangement (section 5). An example using VDM and AORTA is given
in section 6, and tool support for designs in a joint language is discussed in sec-
tion 7, along with some methodological considerations. Finally, our conclusions
axe presented in section 8. First of all, though, we introduce the basic language
of AORTA.

2 B a c k g r o u n d t o A O R T A

AORTA is a t imed process algebra which can be used as a design language
for communicating concurrent real-time systems. Its main novelty lies in its
(semi-automatic) implementability, which is discussed in detail elsewhere [6]. A
system is defined as a static parallel composition of processes, linked by explicit
communication channels. In its description of processes, AORTA inherits some
notation from CCS [19], but other ideas, such as communication channels, are
borrowed from elsewhere. Within a (sequential) process, actions can be offered,
which must be matched by a communicating partner before the process can
proceed, and a choice may be offered between a number of actions. As in CCS,
action prefix and choice (sometimes called summation) are represented by . and
+ respectively, with 0 for the null process which offers no actions. Recursion can
be written using the same equational format as used in CCS (e.g. h = a .h) ,
but all recursion must be guarded (i.e. all process names must appear inside
an action prefix). The other constructs do not have analogues in CCS, and are
concerned with including time information into the process description.

There are two constructs which are used to introduce time, and each of these
has a deterministic and nondeterministic form. The first construct is a delay
which causes the process to pause for the amount of time specified, during which
time no actions are offered - - t ime consuming operations such as computation
are represented in this way. As precise times are not always known, the delay
may be specified with an upper and lower bound, rather than a precise figure.
A process which delays for precisely t time units before behaving like S is writ-
ten [t] 8, and if the delay is bounded by times t l and t2 the process is written
[t 1, t 2] 8. The second construct is a time-out extension to summation, so that if
none of the branches of the choice are taken up within the given time, control is
transferred to another branch. Again, depending on how the time-out is imple-
mented a precise figure for the time at which control is transferred may not be
available, so an interval of possibilities can be given instead. A process S which
times out to process T if no communication happens within time t is written
8 [t> T, and if the time is bounded by t l and t2 it is written 8 [t l , t 2 > T. As
data is not handled by the basic language of AORTA, a data-dependent branch
is modelled as a nondeterministic choice between processes. Such a choice is
written P++Q, and is similar to the nondeterministic choice P [7 Q of CSP [17].

56

In summary, a sequential process may be constructed from action prefixes,
summations (choices over prefixed processes), t ime delays, time-outs over choices,
nondeterministic choices and guarded recursion. The syntax is summarised in
Table 1. Each process has a behaviour in time which says which actions it is
prepared to engage in, or in other words, at which of its gates it ~s prepared to
engage in communication. Obviously, for communication to take place there has
to be more than one process in the system - - the composition of system from
its component processes is kept separate from process definition in AORTA.

)refix
:hoice
ielay
)ounded delay
;ime-out
)ounded time-out
mndeterministic choice
"ecursion

a . S
S1 + S2

[t] s
[t 1 , t 2] S

(S1 + . . . + Sn)[t>S
(S1 + . . . + S n) [t l , t 2 > S

S1 + + $2

equational definition

Table 1. Summary of AORTA sequential process syntax

Parallel composition of processes in AORTA is defined statically, by listing
the names of the processes, with I as a separator. Internal communication chan-
nels are also defined statically by giving the connection set, which lists pairs of
gates of processes. Each gate may be connected only once, and a gate may not
be connected to another gate of the same process. The parallel composition and
connectivity within a system is easily represented graphically. A small example
demonstrates most easily how process and system definition works in practice.

2.1 A C h e m i c a l P l a n t C o n t r o l l e r E x a m p l e

In this section we introduce a semi-realistic example, based on a chemical plant
controller. The controller has to monitor and log temperatures within a reaction
vessel, and respond to dangerously high temperatures by sounding an alarm.
Two rates of sampling must be provided, to be selected by the plant operator,
each of which has its own output format for a logging function. In order to ensure
safety of the plant, the temperature must be sampled at least every two seconds,
and if a reading lies outside the safety threshold the alarm must be sounded. This
system is described in more detail in [4], and is extended in section 6 to include
data information. More complex examples have also been defined in AORTA,
including a car cruise controller [6] and a parallel development of part of an
industrial submersible controller [5].

The design presented here involves two processes, one of which handles the
actual conversion of the data, while the other is used to tog the data, and to
control the rate at which data is sampled. There are two internal connections,
which are used to pass the converted data value, and to indicate a change in the

57

required sampling rate. The graphical representation of this system is shown in
figure 1.

w~ing in ~ download sci~ldata

waming in_l id- OOt gctdata

Convert ~ d Datalogger

chan~pecd

Fig. 1. Connectivity of the Chemical Plant Controller

The first of the two processes, Convert, accepts raw data on the gate in,
and compares it with a threshold value. Depending on this comparison, the data
conversion either takes place straight away, or is preceded by a warning signal.
During the actual conversion, which takes place in the Convert2 part of the
process, the calculation is done, and the result offered at the out gate, for con-
nection to the Datalogger process. This output is timed out, to ensure that
fresh data is always available, and that dangerously high input values are no-
ticed within a reasonable time. As well as accepting data input, the Convert
process allows the conversion mode to be changed, which in this case involves a
signal to Datalogger, and the recalculation of a lookup table. Again, if no com-
munication is available with the Datalogger process within about 1.5 seconds,
control is returned to the main sampling loop. Changing mode during conversion
is excluded by the choice (+) between in and mode.

Convert = in.(Convert2 ++ warning.Convert2)
+

mode.(changespeed.[O.3,0.4]Convert)[1.5,1.505>Convert

Convert2 = [0.001,0.004]
(out.Convert)[1.5,1.505>Convert

The Datalogger process is fairly simple. Data is accepted on the ge tda t a
gate, which is then stored (requiring a computation delay). The normal sampling
loop is driven by a time-out, which regularly requests new data. The period
of this loop depends on the current mode of operation (it is either about 1.0
seconds or about 0.25 seconds), and this mode of operation can be changed by
a speed message from the Convert process. As well as accepting mode change
commands, the Datalogger process accepts requests for the downloading of the

58

current data set to an external machine. In this case, the packet is constructed,
and sent out via the senddata gate. This may take a considerable period of time,
depending on the size of the packet and the nature of the communication link,
and is represented by the communication delay associated with senddata in the
connection set.

Datalogger = ge tda ta . [0. 001,0. 015]
(speed. Dat alogger2

+

download. [0.5,1.0] senddata. Datalogger)
[1.00,1. 005>Datalogger

Datalogger2 = ge tda ta . [0.001,0.015]
(speed. Dat alogger)

+

download. [0 .5,1.0] senddata. Datalogger2)
[0.25,0. 255>Dat alogger2

Having defined the individual processes, the full system is defined by the
processes which run in parallel, along with connections, both internal and ex-
ternal. As well as providing a textual format for the data presented in Fig 1,
communication delays are also associated with each communication channel.

(Convert i Datalogger)
< (Convert. changespeed, Datalogger. speed: 0.001,0.003),

(Convert. out , Dat alogger , ge tda ta : 0.001,0. 003),
(Convert. in , EXTERNAL: 0. 001,0. 003),
(Convert. warning,EXTERNAL: 0.001,0.003),
(Convert. mode, EXTERNAL : 0.001,0. 003),
(Datalogger. download, EXTERNAL: 0.001,0.003) ,
(Dat a logger , senddat a, EXTERNAL : 0.5,10.0) >

3 Data Model Assumptions

Having described the basic language of AORTA, we can now describe the ex-
tensions to handle data. There are two main types of functional specification
languages: model-based (such as Z [21], VDM-SL [18] and B [1]) and algebraic
(such as ACT ONE [20] and OBJ [15]). In a model-based language, an abstract
formal model of the data in the system is built, and operations are specified and
described as transformations on that model. An algebraic approach does not re-
quire a complete model to be built, and operations are specified only in terms of
each other. These two approaches are not entirely incompatible, as model-based
specifications can be written in an algebraic style, and models can be built into
an algebraic specification, but for the purposes of this paper the distinction is im-
portant,and we have chosen to use model-based languages. There are no pressing
reasons for choosing one model-based language over another in our model, and
in particular this work is equally applicable to Z, VDM, B, and formally defined

59

imperative languages. Rather than choosing one of these languages arbitrarily, a
general presentation is given here. Bowen and Hinchey, in their 'Ten Command-
ments of Formal Methods' [3] make the point that in industrial application of
formal methods it is important to fit in with existing working practices. This
point can be extended to the integration of formal methods, where integration
with a variety of formal methods has the advantage that~as little as possible
extra effort has to be made in learning new notations. Therefore we feel that
the loose coupling of AORTA with model-based specification languages, rather
than a particular language, is a strong point. The spec~cs of how VDM can be
used with AORTA are given with an example in section 6, and tool support for
AORTA with a simple imperative language is described in section 7.

We now describe a fairly general framework for the description of model-based
languages, and explain our assumptions. The basic model is that each process has
a set of possible states, States, over which the variable �9 may range. The state

includes evaluations for a set of state variables. Each variable A has a set of
values over which it may range, given by values(A). Variables can be read using
a projection ~.A, and may be updated using the standard notation ~[A = v]
where A is a variable name and v E values(A). Operations are represented using
a three-place relation on states, so an operation A which can act on state �9 to
give state ~ is written

~ 4~ t

The operation which changes nothing is then the identity relation on states E,
where

As well as accessing individual variables and performing operations on states,
decisions have to be made based on the data state, which requires the definition
of predicates on states, written p(r Finally, we will need two distinguished
state variables: A, with values(A) = None = {.l_}, and T, with values(T) as the
time domain in use (positive reals or natural numbers).

4 Extens ion of Syntax

According to [6], the abstract syntax for AORTA sequential expressions i s

s: := Z a,.S, I [t]S t - Z a"S'>'SI[t"t]SI Z a,.S,>,,S l IX

where t, tl and t2 (tl < t2) are time values taken from the time domain (either
the positive reals or the naturals), ai are gate names, and X is taken from a set
of process names used for recursion. A system expression is written as a product
of processes with a connection set K

P = I I Si < K >

60

On the whole, the translation from concrete syntax to abstract syntax is straight-
forward, but some restrictions are imposed. Choice, with or without time-out,
can only take place between communication events, otherwise parallel execution
of computation within a single process is required, or a counterintuitive form of
time nondeterminism must be adopted. ~ is used to represent choice, and E>
for time-outs. The syntax is extended for each of these constructs apart from
recursion, so rather than give the whole new syntax at once, the extensions are
dealt with in turn.

4.1 C o m m u n i c a t i o n

In the original abstract syntax, communication (and its extensions to choice
and time-out) uses only gate names, reflecting the pure synchronisation model
of the semantics [6]. Extending communication to include value-passing can be
achieved by associating a different gate name with each data value to be offered
or received (see [19]). While attractive from a theoretical point of view, as this
requires only a little syntactic sugaring, it does raise some practical difficulties
in implementation. Also, the abstract specification of data state transformation
via computation is difficult to incorporate into this model.

The approach adopted here is more akin to that adopted by LOTOS, with
its inclusion of the ACT ONE data language for value-passing [20]. Variable
names can be attached to communications as input or output parameters, using
a question mark for input and an exclamation mark for output. If a value is to
be read from gate a into variable A, this is written a?A.S, and if the value held
in the variable B is to be output on gate a, this is written a!B.S. In the general
case a gate may have input and output, written a?A!B.S, so the abstract syntax
form for choice is

a~ ? Ai!Bi.S~
iEI

If no data is associated with a communication then the input and output vari-
ables are both given as the distinguished variable A (which always has value 3_),
so that a.S is an abbreviation for a?A!.A.S. Similarly, a?B.S is an abbreviation
for a?B!A.S and a!B.S is an abbreviation for a?A!B.S. The variable 7" is used
to represent a perfect clock, and so cannot be used as a communication variable.
Communications within a time-out are adapted in exactly the same way as for
choice, giving the abstract syntax form

a, ? A,!B,.S,E> ~ S
iEI

and a corresponding deterministic form.

4.2 Computat ion

Within AORTA, computations are represented only by a time delay, but during
such delays a change of data state will usually take place. Operations which

61

change state are represented by transformation functions A, which are attached
to the time delay construct using braces. If an operation A takes between tl and
t2 time units to complete, this is represented by the abstract syntax form

Its,

Some computations will require access to a real time clock, for time-stamping
or time-averaging, so a special state variable T is used to represent a perfect
clock. In practice, a physical clock will not be perfect, as it may run at the
wrong speed, and may have its values discretised. This is modelled by defining
a physical clock function on the perfect clock, which gives a set of values related
to the perfect clock within some level of accuracy. During computations, time
can only be accessed via the physical clock function.

4.3 D a t a dependen t choice

Data dependent choice is represented as nondeterministic choice in AORTA,
using the (~ieI S~ notation. In order to give the conditions under which each
branch of the choice is to be taken, a predicate on the state is attached to each,
again using braces

Os,{p,}
iE I

Sometimes a degree of nondeterminism is helpful, so the predicates are allowed
to overlap (i.e. there can be j and k such that p~l (true) np'k 1 (true) is nonempty).
There must, however, always be one predicate which is true (i.e. V ~. Vie1 Pi (~)),
to ensure that some branch will be taken up.

Combining the extensions for communication, computation and data depen-
dent choice gives the full abstract syntax for AORTA terms with data informa-
tion

S::=~-~a,?A,!B,.S~ l tt{Zl}]S I ~-~a,?A,!B,.S~E>~S
i E l i E l

I [tl,t~{A}]S] ~--~a,?Ai!B,.S,t>~SI(~S,{p,}
i E l iE l

I x

where t, h and ta (tl < t2) are time values taken from the time domain (either
the positive reals or the naturals), Ai and Bi are state variable names, A is a
state transformation function, the Pi are predicates on the state, and X is taken
from a set of process names used for recursion.

5 E n r i c h e d S e m a n t i c s f o r A O R T A

The semantics defined in [6] gives a stratified set of operational transition rules
for defining a transition relation between AORTA terms. A similar approach is
adopted here, except that the transition system is enriched with the data state.

62

An interleaving semantic model is used, with time transitions represented by

(t)> and action transitions (i.e. communications) represented by --~. A transi-
tion system stratification is a technique whereby transition rules with negative
premises can be meaningfully included. By evaluating the transition system in
layers, or strata, it can be shown that no transition's validity depends on its own
negation, as circularities can be removed [16]. In our system, the lowest stratum
contains transitions between sequential expressions, the second contains all in-
ternal system communications, and the third (and highest) contains system time
transitions and external communications. By organising the transition system in
this way, the negative premise for the system time delay rule given below can be
consistently incorporated. This negative premise is essential to enforce maximal
progress, or T-urgency.

To define the first stratum, we have to consider an important subset of se-
quential expressions, known as the regular expressions, on which the semantics
is defined (n.b. the semantics is undefined on non-regular expressions). Reg-
ular expressions have no nondeterminism or recursion before the next action,
and can easily be syntactically characterised. A regular sequential expression
is annotated with a data state ~, written S[~], and a set of eight sequential
expression transition rules (which are defined only on regular expressions) can
be given. The full set of rules can be found elsewhere [7], but two example rules
are given in figure 2, where we abbreviate the updating of the perfect clock us-
ing the definition ~+t iX ~[T = ~.T + t] which changes the state only by
adding t to the perfect clock variable. The semantics of data dependent choice

~ o~.s~c, ' S[el (-% s[e+,]

j E I
S; e Poss(S i, ~[Ai = v])

t ~?. !~ .B j , t E delays(aj)
~ , ~ ~.S,~, S[~] ~ [t{~}]S~[~[Aj = v]] v �9 values(At)

Fig. 2. Transition rules for sequential expressions with data

is not given by transition rules, but by the definition of the Poss function. Any
AORTA term which starts with (~ e l Si is not regular, so has to be regularised
when an action transition takes place. Without any data state information, the
choice between branches is nondeterministic, but by attaching predicates to the
branches, a data dependent choice can be made. The Poss function defines pos-
sible resolutions of nondeterminism which are used to regularise a process; again
details can be found elsewhere [7]. There are three rules for system expressions,
based on the transitions of sequential expressions, for internal communication,

63

external communication, and time progress. The rule for time progress is

Vi E l.Si[@~] ('))S'[~:]

rIiel Si[~i] < K > (-~ l'Iiel s~[~] < K >
Vff < t. [Iiel Age(Si[#i], t') < K > --~

The negative premise - -~ is used here to enforce the maximum progress prin-
ciple, and a simple priority on communication - - internal communication is
preferred to external communication. A more sophisticated prioritisation can be
achieved by making each communication dependent on all higher priority com-
munications being impossible. To retain the consistency of the transition system,
a more complex stratification must be used, with a different s t ra tum for each
priority level. The lowest priority level will always be for the time delay, so as to
enforce the maximum progress principle. Within the rule for time progress, the
function Age is used to represent the a process after a given amount of time has
passed. More formally, we define

Age(E, t) = E' t:~ E (t)~E'

In [6] a direct syntactic interpretation of Age is given, along with a theorem
relating it to the definition just given, which indirectly demonstrates tha t Age
is well-defined (i.e. it is a function).

6 An Example Using VDM

The chemical plant controller example of [4] is given here as an example of how
data specifications can be built into AORTA. VDM is used as the specification
language here, although other languages can equally well be used. Addressing
the data model assumptions given in section 3 in turn, we first have to consider
how the set of possible states of a process can be defined. In VDM this can be
done by defining a composite type, including fields for each of the state variables
of the process (including ,4 and 7"). Invariants on the data type can be used to
restrict the state space. The set of values for each state variable is defined by its
type. Selectors are used to provide projections for individual variables, and the
function gives an easy mechanism for updating:

~[A = v] = #(@, A ~ v)

Operations are simply VDM operations which take no argument and return
no result, but have the process state as a writable external, and no (i.e t r u e)
precondition. The identity function on states ~ is simply the operation

ID

e x t w r s : States
A-.-

p o s t s = s

64

Finally, predicates on states are defined simply as boolean valued functions
on states (i.e. of type States --+ B).

To construct the set of (data) states for the Conver t process, we use five
s ta te variables, including the perfect clock T and the dummy J[. There are
two gates of the Conver t process which carry data, namely in and out: the
s tate variables associated with these gates are input:Rawdata and output:Temp
respectively. A lookup table is used for the conversion, and this is stored in the
s ta te variable table:Lookuptable. With the t ime domain represented as the type
Time, the composite type representing the s tate of Conver t is given by

Convert :: input : Rawdata
output : Temp

table : Lookuptable
7" : Time
A : None

Within Conver t , there are two computations: the first converts raw da ta to a
temperature , using a lookup table, and the second recalculates the lookup table
for a different conversion mode. Assuming tha t we have the function evaluate
then the conversion operation is defined as

DOCONVERSION

e x t w r cony : Convert
1

p o s t cony = #(c'-6"~nv, output ~ evaluate(input, table))

Changing conversion mode depends on a function newtable which recalculates
the lookup table, so the operation for changing mode is defined as

CHANGEMODE

e x t w r c o n v : Convert

p o s t conv= #(c~-J~nv, table ~-~ newtable('table))

To specify the behaviour of nondeterministic choice, a predicate on the s tate
must be at tached to each branch of the choice. In the Conver t process, the
behaviour depends on whether the raw data value exceeds a threshold value; if
so a warning signal must be sent. The predicates which we are interested in are

convertdatahigh : Convert --+ B

convertdatahigh(conv) iX input(conv) > threshold

and a corresponding predicate convertdataok which assume tha t we have
defined a total order > on Rawdata and tha t the value threshold:Rawdata is
defined. Attaching these new da ta constructs to the Conver t process gives the
definition

Convert = in?input.

(Convert2 {convertdataok) ++

65

warning. Convert2 {convertdatah•
+

mode. (changespeed.
[0.3, O. 4 {CHANGEMODE}] Convert) [i. 5,1. 505>Convert

Convert2 = [0.001,0.004 {DOCONVERSION}]
(out ! output. Convert) [i. 5,1. 505>Convert

The Datalogger process has its own set of states, defined by the composite
type

Datalogger :: input : Temp
packet : Loggerpacket

history : (Temp x Time)*
T : Time
T : Time
A : None

Two of the variables, input and packet are used to carry data for communica-
tion on gates ge tda t a and senddata, while history is used to record data with
time stamps. The variable T is used for the physical clock, as well as the usual
7" and ,4 variables. Two computations are associated with Datalogger, which
correspond to adding a data item (with time stamp) to the store, and making up
a data packet for downloading. To get the time stamp value from the clock, we
require the function possclocks which returns the possible physical clock values
at a given time. The data which is input from the g e t d a t a port is added to
history with the operation

A DDDA TA
ext wr mk-Datalogger(h, i ,p, t l , t2, a) : Datalogger

A . - - A - - -

p o s t t l E possclocks(t2) A h = cons((t l , i), h) A t2 = t2

Finally, assuming the function makepacket we can define the operation

M A K E P A C K E T
ex t wr mk-Datalogger(i, p, h, t l , t2, a) : Datalogger

A..-- g_.._

pos t p = makepacket(h) A h = [] A t2 = t2

There are no nondeterministic choices in the Datalogger process, so the full
version of the process, including data information, is

Datalogger = g e t d a t a ? i n p u t . [0 .01,0.015 {ADDDATA}]
(speed. Datalogger2

+

download. [0 .5 ,1 .0 {MAKEPACKET}]
senddat a ! packet . Datalogger)

[1 .00 ,1 . 005>Datalogger
Datalogger2 = g e t d a t a ? i n p u t . [0 .01,0 .015 {ADDDATA}]

(speed. Datalogger

66

+

download. [0.5,1.0 {MAKEPACKET}]
senddata ! packet. Dat alogger2)

[0.25,0. 255>Dat alogger2

Having defined the individual processes, the system composition is given as
before, using the i operator and a connection set, but with the addition of initial
data states for each of the processes within the parallel composition.

7 T o o l S u p p o r t a n d M e t h o d o l o g i c a l C o n s i d e r a t i o n s

The emphasis of AORTA is on practicality, in that implementation and simu-
lation issues have been considered alongside verification; designs written in the
language can be represented purely in ASCII; implementations are based on
generated C. One crucial aspect of a practical design method is the availability
of supporting software tools, and research tools for graphical simulation, model-
checking via graph generation, and code generation have been provided. These
were all originally written for the basic language without a formal data model,
where all computational aspects were represented by implementation fragments
written in C.

In order to provide support for AORTA extended with a formal data model,
some generalisation of the tool set was required. One possible approach would
have been to choose a formal language for data, such as VDM, and to attempt
a one-off integration of the AORTA tool set with some supporting tools for
the data language. This would have the advantage that it might not require
too much work, and could provide a fairly tight coupling, but would have the
obvious disadvantages of inapplicability to other languages and tools. Instead a
more general approach was adopted, whereby an abstract data language interface
was specified, (based on the data model assumptions given in section 3) and the
integration done at that level. In this way, integration with a new language or
tool set involves providing an interpretation of the abstract notions of value,
variable, state, computation, predicate and so on. The obvious advantage of this
approach is in its flexibility, with the disadvantages that the tools which are to
be integrated may need to be adapted to fit the interface provided.

The actual support which is provided for the data enriched language mostly
falls into the area of simulation, which we introduced in section I as an important
part of a formal method. For the basic language the tool set offers simulation as
a technique for exercising the semantics, by choosing time and action transitions
from a menu. Although this is helpful for a detailed exploration of the behaviour
of a design, the more complete description given by a design with data allows
a more dynamic simulation to be offered as well; one in which the processes of
the design are simulated by concurrently executing threads, which communicate
and evolve spontaneously in time. Put another way, we can now provide a di-
rect interpreter for the combined language. The new support provides such a
simulator, which allows any AORTA design annotated with formally specified
data operations to be executed. Implementation code is provided as a separate

67

annotation to the design, so that if the data formalism is supported by code
generation, then the whole of the design (including data parts) can be used to
generate complete implementation code directly.

Our initial experiment into providing a formal data language has used a sim-
ple formally defined imperative language with sequence, choice and iteration,
and integer, boolean and enumerated data types. This language is substantially
smaller than VDM, for example, but serves to demonstrate that a useful inte-
gration is possible. Furthermore, as the computation data relation is a function,
direct interpretation is possible, and the language is explicit enough to allow
direct code generation. In fact, this is just the sort of language that formal re-
finements from Z, B or VDM aim to produce, so it may be that two levels of data
formalism should be provided: one for an abstract, possibly implicit, specifica-
tion, and one for an explicit description, closely related to an implementation,
and derived by a verified refinement from the specification. However, some ap-
proaches, such as that adopted by the IFAD VDM-Toolbox [11] are based on
writing explicit specifications in the first place, and hence providing code genera-
tion and interpretation facilities directly. In such cases as these, direct integration
with AORTA is possible, without the need for an intermediate language.

The discussion about whether implicit specification and refinement, or ex-
plicit specification and code generation is better is outside the scope of this
paper, but we note that in order to satisfy our earlier criterion of integration
with as wide a range of approaches as possible, we should be able to deal with
both. This is possible because of a further level of generality built in to the tool
support for AORTA, beyond that of a general data language. Not only is the
actual type of data language with which designs can be annotated quite general,
but the number and type of annotations themselves is general. For instance, for
AORTA with the simple imperative language, annotations can be provided at
each point in the syntax tree for the textual form of the data part, for its internal
representation as a relation on states, or whatever, for the implementation code
associated with it, and for information concerning the graphical presentation of
the syntax. However, the notion of annotation is general, and the implementation
of the tool set modularised such that the addition of new annotations, perhaps
for a more abstract data specification, or perhaps for proofs of correctness, or
perhaps for timing information about the code, is quite straightforward. Having
provided different kinds of annotation, the tool then needs to be configured to
say which will be used in code generation, which are to be used in simulation,
and which in verification etc.

How then are such tools and languages to be used to develop systems? We
suggest that early simulation is important, as it allows problems in the design
to be detected before too much of the implementation detail is fixed. Similar ar-
guments are given for the early application of specification and proof techniques
during system development. The aim of this work is not necessarily to replace
proof in system development, but rather to avoid wasted effort during proof by
detecting and eliminating as many errors as possible by simulation, which can
be thought of as high-level testing. With the addition of an interpretation for

68

data two kinds of simulation are now possible. In the first, in which the processes
evolve spontaneously, a design error may be detected and corrected immediately,
or further, more detailed simulation, based on the semantics, may be required
to locate the problem. Having satisfactorily tested the design, it may at this
point be appropriate to attempt a formal correctness proof. Note that further
work is required on proof techniques in a combined language (see section 8).
Having verified the correctness of the design, further work will be required to
produce the implementation. If code generation of data properties is not auto-
matic then refinement to code, with proofs, will be required. Also, static analysis
of code (possibly with user intervention) to extract timing information will we
required, as inputs to the scheduling calculations, which are used to verify that
the implementation timing will match that given in the design [4].

8 C o n c l u s i o n s

AORTA is a timed process algebra-based design language, so comparison might
be made with other timed process algebras; however so many timed process al-
gebras have been defined that even a cursory list of references would be too long
for the scope of this paper, so the reader is referred elsewhere [9], and direct
references given only for (a version of) Timed CCS [26], Timed CSP [22], and
(a version of) Timed LOTOS [2]. At this level the main distinctive feature of
AORTA is the ability to generate implementations about which timing guaran-
tees can be made.

This paper has shown how it is possible to build a formal data model into
AORTA and how tool support for simulation and implementation generation
techniques and tools can be extended. Further work needs to be done on the
use of model-checking techniques in association with data properties. One possi-
ble approach is to provide a (verified) refinement of the data associated with the
state spaces, so that required data properties still hold, but that the state space is
finite. Once the state space has been reduced to a finite size, data properties can
be represented as propositions labelling timed graphs, so that model-checking
of properties like 'The alarm will come on within 5 seconds of receiving a tem-
perature reading above the safe limit' becomes possible. The abstraction to the
trivial state space where all data information is ignored has been shown to be
equivalent to the original semantics [9], so we can at least still perform simple
model-checking with assurance of correctness.

Other research has covered some of the aspects of this work. MOSCA provides
a formalism combining CCS, VDM and time, but without providing implemen-
tation techniques [25] whilst RAISE [24] and LOTOS [20, 27] provide data mod-
elling in concurrent systems, with some implementation techniques, but no time.
Work has also been done with timed extensions to LOTOS [2], which already has
the data language ACT-ONE included, but in this case no implementation tech-
niques are provided. A different kind of approach involves introducing time into
data specification languages such as Z [10, 13, 14], with the closest work to ours
being that by Fidge et al [12], which allows the timed refinement of concurrent

69

systems, including reasoning about implementations by embedding scheduling
theory into the Z model. This approach can only be described as 'different' to
ours, with the relative merits and demerits associated with the two being the
usual ones associated with refinement as opposed to code generation techniques.
Also, most of their work has been associated with providing the proof theory (as
would be expected for a refinement calculus), whereas our work has focussed on
implementation aspects.

In summary, then, this paper has shown how a fairly general formal data
model can be integrated syntactically and semantically into AORTA. Tool sup-
port for simulation and code generation has been discussed, and an example of
using AORTA with VDM has been included. Proof support needs further work,
although some suggestions have been made, so some may raise the question as to
what purpose a formal semantics serves where no proof support is to be offered.
In our introduction, we argued that formal methods and good for more than just
proof, and we feel that this has been borne out by the provision of useful simu-
lation tools, and also a clear statement of the necessary assumptions about the
data model, which have formed the basis of tool support for the data-enriched
language.

R e f e r e n c e s

1. J-R Abrial. The B-Book. Cambridge University Press, 1996.
2. T Bolognesi and F Lucidi. LOTOS-like process algebras with urgent or timed

interactions. In K R Parker and G A Rose, editors, Formal Description Techniques
IV, FORTE '91, Sydney, pages 249-264. Elsevier, November 1991.

3. J P Bowen and M G Hinchey. Ten commandments of formal methods. IEEE
Software, 28(4):56-63, April 1995.

4. S Bradley, W Henderson, D Kendall, and A Robson. A formally based hard real-
time kernel. Microprocessors and Microsystems, 18(9):513-521, November 1994.

5. S Bradley, W Henderson, D Kendall, A Robson, and S Hawkes. A formal design
and implementation method for real-time embedded systems. In P Milligan and
K Kuchinski, editors, PPnd EUROMICRO Conference (EUROMICRO 96), Prague,
pages 77-84. IEEE, September 1996.

6. S Bradley, W D Henderson, D Kendall, and A P Robson. Application-Oriented
Real-Time Algebra. Software Engineering Journal, 9(5):201-212, September 1994.

7. S Bradley, W D Henderson, D Kendall, and A P Robson. Modelling data in a
real-time algebra. Technical Report NPC-TRS-95-1, Department of Computing,
University of Northumbria, UK, 1995.

8. S Bradley, W D Henderson, D Kendall, and A P Robson. Validation, verifica-
tion and implementation of timed protocols using AORTA. In Piotr Dembinski
and Marek Sredniawa, editors, Protocol Specification, Testing and Verification XV
(PSTV '95), Warsaw, pages 193-208. IFIP, North Holland, June 1995.

9. S P Bradley. An Implementable Formal Language for Hard Real-Time Systems.
Phi) thesis, Department of Computing, University of Northumbria, UK, October
1995.

1O. A Coombes and J McDermid. Specifying temporal requirements for distributed
real-time systems in Z. Software Engineering Journal, 8(5):273-283, September
1993.

70

11. Ren~ Elmstr~m, Peter Gorm Larsen, and Poul B~gh Lassen. The IFAD VDM-SL
Toolbox: A Practical Approach to Formal Specifications. ACM Sigplan Notices,
29(9):77-80, September 1994.

12. C Fidge, M Utting, P Kearney, and I Hayes. Integrating real-time scheduling
theory and program refinement. In M-C Gaudel and J Woodcock, editors, FACE
'96: Industrial Benefit and Advances in Formal Methods, number 1051 in Lecture
Notes in Computer Science, pages 327-346. FME, Springer, 1996.

13. C J Fidge. Specification and verification of real-time behaviour using Z and RTL. In
J Vytopil, editor, Formal techniques in real-time and fault-tolerant systems Second
international symposium, Nijmegen, Lecture Notes in Computer Science 571, pages
393-409. Springer-Verlag, 1992.

14. C J Fidge. Real-time refinement. In J C P Woodcock and P G Larsen, editors,
Formal Methods Europe '93: Industrial-Strength Formal Methods, Lecture Notes in
Computer Science 670, pages 314-331. Springer-Verlag, 1993.

15. J A Goguen and TWinkler. Introducing OBJ3. Technical Report SRI-CSL-88-9,
SRI, August 1988.

16. J F Groote. Transition system specifications with negative premises. In J C M
Baeten and J W Klop, editors, CONCUR '90, Amsterdam, Lecture Notes in Com-
puter Science 458, pages 332-341. Springer-Verlag, 1990.

17. C A R Hoare. Communicating Sequential Processes. Prentice Hall, New York,
1985.

18. C B Jones. Systematic software development using VDM. Prentice Hall, New York,
1986.

19. R Milner. Communication and Concurrency. Prentice Hall, New York, 1989.
20. International Standards Organisation. Informations processing systems - Open

Systems Interconnection - LOTOS - A formal description technique based on the
temporal ordering of observational behaviour, volume ISO 8807. ISO, 1989-02-15
edition, 1989.

21. B Potter, J Sinclair, and D Till. An Introduction to formal specification and Z.
Prentice Hall, New York, 1991.

22. S Schneider, J Davies, D M Jackson, G M Reed, J N Reed, and A W Roscoe. Timed
CSP: Theory and practice. In J W de Bakker, C Huizing, W P de Roever, and
G Rozenberg, editors, Real-Time: Theory in Practice (REX workshop), Mook, Lec-
ture Notes in Computer Science 600, pages 640-675. Springer-Verlag, June 1991.

23. G Smith. A semantic integration of Object-Z and CSP for the specification of
concurrent systems. In J Fitzgerald, C B Jones, and P Lucas, editors, FME 97:
Industrial Applications and Strengthened Foundations of Formal Methods, volume
1313 of Lecture Notes in Computer Science, pages 62-81. FME, Springer, 1997.

24. The RAISE Language Group. The RAISE Specification Language. BCS Practi-
cioner Series. Prentice Hall, 1992.

25. H Toetenel. VDM + CCS + Time -- MOSCA. In 18th IFAC/IFIP Workshop on
Real-Time Programming - - WRTP '92, Brutes. Pergamon Press, June 1992.

26. C Tofts. Timed concurrent processes. In Semantics for Concurrency, pages 281-
294, 1990.

27. M van Sinderen, L Ferreira Pires, and C A Vissers. Protocol design and imple-
mentation using formal methods. Computer Journal, 35(5):478-491, 1992.

