
Model-Checking CSP-Z

Alexandre Mota and Augusto Sampaio
Federal University of Pernambuco

P. O. BOX 7851 Cidade Universits
50740-540 Recife - PE Brazil

{acm,acas} @di.ufpe.br

Abs t rac t . Model-checking is now widely recognised as an efficient me-
thod for analysing computer system properties, such as deadlock-freedom.
Its practical applicability is due to existing automatic tools which deal
with tedious proofs. Another increasingly research area is formal lan-
guage integration where the capabilities of each language are used to
capture precisely some aspects of a system. In this paper we describe a
formal strategy for deadlock analysis of specifications in CSP-Z (a lan-
guage which integrates CSP and Z). We also show how FDR (a model-
checker originally developed for CSP) can be adapted for CSP-Z. Finally,
we present a subset of a CSP-Z formal specification of a real Brazilian
artificial microsatellite, and use FDR to check that the specification is
deadlock-free.

1 I n t r o d u c t i o n

There is an increasing interest, among the Computer Science community, in
model-checkers. These are programs that work by checking every possible state
of a system to verify some specified property such as deadlock-freedom. Although
model-checking is limited to certain problems, those that have not the exponen-
tial state explosion problem, it has a great advantage over, for example, general
theorem proving because it is fully automatic whereas the latter is not.

Linking theories is also a recent trend in the area of formal methods. The
main advantage of these is to capture more than one aspect of a system using a
uniform notation. For example, concurrent specification languages, such as CSP
[12] or CCS [17], can characterise precisely the behaviour aspects of a system
meanwhile they are not suitable for stating concisely (and abstractly) the system
data structures. This is because the data structures in these languages are similar
to those of a programming language. On the other hand, languages such as Z
[20], VDM [14] and OBJ [11] have great expressive power to describe abstract
da ta structures but lack the notion of operation evaluation order. Currently,
there are a lot of language integration proposals. 'Some examples are LOTOS
[2], Temporal Logic and CSP [16], LOTOS and Z [6] and CSP-Z [7, 8].

In this paper we use CSP-Z, a language which integrates CSP and Z both
sintactically and semantically. CSP-Z was defined such that apart from enabling
one to deal with the behaviour and the data structure aspects .of a system inde-
pendently, the resulting specification can also be refined independently, i.e., the

206

approach to refinement is compositional in the sense that refining the CSP or the
Z part (with some constraints) leads to the refinement of the entire CSP-Z spec-
ification. The main contribution of this paper is a strategy for deadlock analysis
of CSP-Z based on [4] and its mechanisation by adapting the FDR model-checker
[9], which was originally developed to deal exclusively with CSP specifications.
Finally, we present a case study of a Brazilian artificial microsatellite (SACI-1)
being developed by the Brazilian Space Research Institute (INPE), where we
apply our strategy for deadlock analysis with the aid of FDR. This case study is
a small subset of a detailed formalisation and analysis of the SACI-1, described
in [1].

The rest of this paper is organised as follows. Section 2 introduces the CSP-
Z language through an example, and briefly describes its syntax and semantics.
In Section 3 we present a technique developed by Brookes and Roscoe [4] to
analyse the deadlock-freedom property of a CSP specification, and explain how
FDR implements this technique. Based on this technique we develop a deadlock
analysis strategy for CSP-Z specifications and show how to adapt FDR to work
for CSP-Z; this is presented in Section 4. Section 5 illustrates this approach
through the specification and analysis of the On-Board Computer system (OBC)
of the SACI-1 Brazilian microsatellite. Finally, we consider what are the benefits
of using an integrated language and the practical advantages and limitations of
using FDR in this setting. We assume some familiarity with the languages CSP
and Z.

2 C S P - Z

The language CSP-Z [7, 8] is a conservative extension of both CSP and Z in the
sense that the syntactical and semantical aspects of CSP is fully preserved while
Z operations have a slightly different interpretation. In order to give an overview
of CSP-Z we present part of the specification of our case study, fully described
in Section 5. In [8] the integration of CSP with an object oriented extension of
Z is presented. Here we consider the plain Z notation.

2.1 A s imple Example

The Watch-Dog Timer or simply WDT is a process of the SACI-1 microsatellite
responsible for waiting a reset signal that comes (periodically) from another
SACI-1 process, the Fault-Tolerant Router (FTR). If this reset signal does not
come, the WDT sends a recovery signal to the FTR in order to initiate a recovery
process to normalise the situation. This procedure occurs three times and, if after
that, the FTR does not respond, than the WDT considers the FTR faulty.

A CSP-Z specification is encapsulated into a spec and end_$pec scope, where
the name of the specification follows these keywords. The interface is the first part
of a CSP-Z specification and is used to declare the external channels (keyword
channel) and the local (or hidden) ones (keyword local_channel). Each list of
channels has an associated Z schema type, where the empty schema type (D)

207

denotes a list of events, i.e., channels which do no t communicate values. The
concurrent behaviour of the system is introduced by the keyword main, where
other equations can be added to obtain a more structured CSP specification.
spec WDT

channel clockWDT:[clk : CLOCK]
channel reset, recover, faiIFTR: D
local_channel timeOut, noTimeOut:

The equation introduced below with the keyword main describes a totally
independent behaviour between the processes Signal and Verify using the CSP
interleaving operator (l I I). Signal is simply characterised by waiting for consecu-
tive reset signals, i.e., waiting for a reset and then (---*) behaving like Signal again
(i.e., waiting for another signal). Verify waits for a clock, then checks whether
a reset signal arrived at the right period or not via the choice operator (r3). I f
a timeOut occurs then the W D T tries to send a recovery signal to the FDR. If
the F T R is not ready to synchronise in this event then the W D T assumes that
the F T R is faulty and then finishes its execution (behaving like skip).

main:Signal III Verify
Signal=(reset ~ Signal)
Verify=(clock WDT--+(noTimeOut--+ Verify

O timeOut--+(recover--+Verify
[] fallFTR-+skip))

After introducing the behaviour of the WDT, the data structures used are de-
clared. In order to fix a t imeout and to know if the clock achieved this maximum
we introduce two constants, WDTtOut and WDTP. The system state (State)
has simply a declarative part where is recorded the number of cycles that the
W D T tries to recover the F T R and the value of the last clock received. The
initialisation schema (Init) asserts that the number of cycles is initially zero.

W D T t O u t : CLOCK State ~ [cycles : LENGTH; t ime : CLOCK]
W D T P : CLOCK ~ CLOCK Init ~- [State' [cycles' = 0]

The following schemas are standard Z schemas (with a declaration part and
a predicate which constrains the values of the declared variables) except that
their names are originated from the channel names, prefixing the keyword corn_.
Informally, the meaning of a CSP-Z specification is that, when a CSP event
c occurs the respective Z operation com_c is executed, possibly changing the
data structures. Further, when there is no schema name associated with a given
channel, this means that no change of state occurs. An observation is that every
external communication has a type, then when no type is explicit CSP-Z assumes
the type signal, where the desired behaviour is merely that of a synchronisation
and not a value passing. For events with an associated non-empty schema type,
the Z schema must have input or output variables with corresponding names in
order to exchange communicated values between the CSP and the Z parts. Hence,
the input variable elk? receives values communicated through the clockWDT
channel. For schemas where prime (') variables are omitted, we assume that no
modifications occur, i.e., in the schema corn_reset below it is implicit that the

208

t ime component is not modified (time' = time).

com_reset ~ [AState [cycles' = O]
com_c]ockWDT ~ [zlState; dk? : fikOfiK [time' = dk?]

When a Z schema has a precondition differing from true then it imposes a
restriction on the occurrence of a CSP event. It is like a CSP guard, i.e., if the
precondition is true then the event is allowed to occur normally, otherwise it is
refused and the process behaves like the canonical deadlock process (stop).

Note that the precondition of the schema com_noTimeOut is the predicate
-~ WDTP(time, WDTtOut) meaning that the t imeout has not yet occurred, where-
as the precondition of com_timeOut specifies the occurrence of timeout.

com_noTimeOut ~ [~State [-~ WDTP(time, WDTtOut)]
com_timeOut ~ [AState [WDTP(time, WDTtOut) A cycles' = cycles -I- 1]

As already explained, the recovery process is a t tempted for 3 times, after
which the W D T assumes that the F T R is faulty.

com_recover ~ [~State [cycles < 3]
com_failFTR ~ [~State I cycles = 3]

end_spec W D T

2.2 B r i e f E x p l a n a t i o n o f t h e S e m a n t i c s o f C S P - Z

The CSP semantical model assumed as standard is the Failures-Divergence mod-
el [3]. This means that a specification can be characterised by a set of pairs (~',
:D) where .T is the failures set and D is the set of divergences. The failures of a
process P is a set of pairs (s, X), of traces (observed events) and refusals, such
that after P performs the trace s it cannot engage in any event of the refusal
set X. The divergences of a process P are sets of traces such that after P per-
forms any trace of this set it engages in an infinite loop of hidden events. The
language CSP-Z is a semantical integration of CSP and Z in that it is given a
Failures-Divergence meaning to Z [7, 8]. This interpretation is required in order
to allow Z components to be combined using the CSP operators like interleaving
(lID and parallelism ([1).

As explained above, a CSP-Z specification is a parallel combination of the
CSP and the g parts via the channel names, such that on the occurrence of a
channel c the corresponding Z schema com_.c is activated. As the semantics of
CSP-Z is also based on the Failures-Divergence model, we should explain what
happens when a given event c occurs successfully, when it is refused and when
it leads to divergence. These situations are considered below.

Suppose that c is a CSP untyped channel with corresponding schema com_c.
If the event c occurs, the guard of the event and the precondition of the schema
com_c are satisfied, this characterises a successful execution step. In this case,
the state space is subjected to the predicate part of com_c and the CSP part also
evolves (where the event c is added to the trace of the process). Now, suppose
that the channel c is a typed channel. If c?x is performed and the value v assigned

209

to x cannot be treated by the input part of corn_c, due to a type incompatibility,
then c is refused. Similarly, if com_c exhibits a value v f rom one of its output
variables which cannot be communicated through c!v then c is also refused.
Finally, suppose tha t c is not refused by the Z part , according to the above
explanation, then if the value communicated falsifies the precondition of c o m _ c

then the whole process diverges. A more formal presentation of the semantics is
given in Appendix A.1.

Formalising the above explanation, we can state precisely a refusal or a di-
vergence introduced by the Z part . Let c be a channel and tr be a trace then

- com_c is defined as a s tandard Z schema operation describing the s ta te effect
on the occurrence of c

- enable_c ~ 3State~; In?; Out! * com_c is a constraint between the values
communicate f rom the CSP part to the Z par t and vice-versa

- pre c o m _ c ~ :t S t a t e l ; O u t ! * c o m _ c

- corn_ 0 ~ Init, for an empty trace
- com_(c ~ tr) ~ com_c ~ com_tr, where ~ is the concatenation operator and

is the Z schema composition operator

Thus, a refusal can occur if-~enabJe_c and a divergence if enable_cA-~ pre com_c.

3 D e a d l o c k A n a l y s i s f o r C S P : T h e o r y a n d T o o l s

Concurrent p rogramming is more complex than sequential one mainly because
the number of states grows exponentially with the number of processes tha t
compose the system. Describing precisely a concurrent system and analysing
its properties is essential to guarantee its expected behaviour. One of the most
impor tan t properties of a concurrent system is deadlock-freedom, i.e., the system
will work normally without an unforeseen and permanent interruption.

In this section we present the two main results of a deadlock analysis tech-
nique developed by Brookes and Roscoe[4]. We also show how the F D R model-
checker analyses a specification for deadlock-freedom and how the work reported
in [4] can guide one in an automat ic deadlock analysis of a complex concurrent
system using FDR. The theorems presented here are based on some concepts
which are informally explained below and defined formally in Appendix A.2.
Each of such concepts appears in this section in slanted font, to ease the refer-
ences to the appendix.

The present approach to deadlock analysis considers only CSP processes tha t
do not diverge. This requirement allows a simpler mathemat ica l t rea tment while
it is not too severe in practice, since almost all practical applications are expected
to be divergence-free.

Theorem 1 deals with the case where an arbi trary network of CSP processes
is analysed whereas Theorem 2 is used when one can part i t ion the network into
smaller ones. By network we mean a set of parallel processes; it is busy if all
its processes are deadlock-free. Both theorems use the concept of vocabulary
which is the set of events containing the synchronisation channels of each pair

210

of processes of the network. A request between processes A and B is just a
possibility of A synchronising with B. An ungranted request is a request (say,
from A to B) that cannot be satisfied, i.e., B cannot offer any event needed by
A. A conflict occurs when both processes involved in a request have ungranted
requests to each other; and a strong conflict means that these two processes
cannot communicate with a third one. A cycle of requests is a sequence of indices
(identifying processes) in which each ordered pair of distinct indices form a
request.

T h e o r e m 1 Let V be a busy network with vocabulary A. I f V is free of strong
A-conflict, any deadlock state of the network contains a proper cycle of ungranted
requests with respect to A~ I f V is conflict-free then any deadlock state contains
a proper cycle ofungranted requests (i0 , . . . , Jr_l) with respect to A (r > 2), such
that the only requests being made in this state between processes involved in the
cycle are the requets recorded in the cycle.

We can visualise a network using a graph where the processes are the nodes
of the graph and the edges are events that synchronise two processes, i.e., events
common to two processes. Thus, by disconnecting edges we mean those whose
removal increase the number of partitions of the graph, and by essential compo-
nents those that stay after removing all disconnecting edges. A pair of processes
is conflict-free if one cannot find a trace which introduces a reciprocal ungranted
request or a strong one between these processes.

T h e o r e m 2 Suppose V is a network with essential components V 1 , . . . , V k where
the pair of processes joined by each disconnecting edge are conflict-free with re-
spect to the vocabulary A. Then if each of the V i is deadlock-free, so is V.

The above theorem establishes a connection between deadlock freedom and
palrwise conflict freedom of the essential components of a network. The conflict-
freedom constraint is necessary because if one essential component blocks then it
can infect others if the edge linking two essential components has conflict. This
is a very important result because for large networks one can arrange them such
that they can be partitioned into simpler ones. Then Theorem 2 tells us that it
suffices to check for deadlock-freedom of the essential components.

3.1 F D R

FD I~ [9] stands for Failures-Divergence Refinement and is a model-checker
for CSP specifications. Since the specifier uses his knowledge about the theory
of communicating processes to overcome the problem of the exponential state
explosion, this tool is very efficient to analyse properties such as determinism,
deadlock and livelock and to verify some refinement relations among processes.

Differences be tween C S P a n d F D R - C S P . FDR adopts a rather different
interpretation (defined in [18]) of two elements of the earlier definition of CSP
[12]. The first one is the treatment of alphabets that is considered by FDR as a
global parameter of the specification. Hence, let P 1 , ' " , Pn be the processes of

211

the specification then the global alphabet X' is now denoted as aP 1 U aP2 U---U
c~Pn. Because of this new view of the alphabet, the parallel operator must have
an explicit characterisation of the synchronisation events. In [12], the parallel
operator is denoted simply as J[because the synchronisation events are precisely
determined by the alphabet of the two processes involved, while FDR uses two
new (alphabetised) parallel operators: let P and Q be two processes then P[A J[
C]Q (with A C a P and C C aQ) is the process that acts as P for events in A, as
Q for events in C and as P and Q (synchronisation) for events in A rl C; P[[B []Q
(with B = A rl C c a P 1"1 ~Q) acts as P for events in a P - B, as Q for events in
aQ - B and as P and Q for events in B. Regarding notation, FDR-CSP uses a
machine-readable version of CSP.

D e a d l o c k ana lys i s u s ing F D R . FDR can analyse a CSP specification using
one of the three semantical models defined for CSP, namely the Traces model
(T), the Failures model (F) and the Failures-Divergence model (FD). With the
first model one can prove safety properties of a system, the second can be used
to prove safety, liveness and a combination of these properties and, in addition
to the previous properties, the last one can be used to check divergence-freedom.
Thus, to check deadlock for a divergent-free specification it is sufficient and more
efficient to use the Failures model.

We consider how FDR prove deadlock-freedom and how to use the previous
results to ease the analysis for complex networks. Initially let DF (Deadlock-Free)
be a process such that

D F = ClaeL'a --* D F

Informally, DF can perform any trace, selecting any event a of the alphabet Z,
but may not refuse all events. In FDR, proving that a process P is deadlock-
free is simply verifying if P refines DF, i.e., DF E_ F P, where F denotes the
Failures model. Hence, FDR checks for deadlock based on the Definition 2 (see
Appendix A.2), that is, if FDR finds a trace s of P such that after P performs s
its refusal set X equals its alphabet aP, then P deadlocks. Further, FDR checks
deadlock-freedom through a refinement relation. The relation DF - F P is satis-
fied iff ~'[PI c_ ~'[DF], that is, sp c SDF and Xp c XDF. The first relation is
always satisfied because DF can perform any trace (interleaving events) formed
by the events of the alphabet of P, but the second will not hold when if P refuses
all its events because DF cannot.

The verification of DF EF P is done by FDR through a normalisation of
the transition system of DF where a transition system equivalent to the orig-
inal one is built such that there is a one-to-one relation between states and
traces. Although the normalisation transition system of any process is small-
er than its original one and FDR can also apply compression techniques, one
can always get a process that exhibits the exponential state explosion problem.
Therefore, it is convenient to apply the decomposition techniques captured by
Theorem 2 whenever possible. The deadlock analysis strategy is compositional
in the sense that we verify smaller processes and use the theorems to conclude
the deadlock-freedom of their parallel compositions. With FDR we can easily

212

check if a network is busy, verifying its individual components for deadlock. Al-
so we can prove whether two processes are conflict-free, using Theorem 2, simply
checking if its parallel composition is deadlock-free.

4 D e a d l o c k A n a l y s i s f o r C S P - Z : T h e o r y a n d T o o l s

According to the requirements of the formal strategy for deadlock analysis
presented in the previous section, a network can only be investigated if it is
divergence-free, triple-disjoint, uses an associative parallel operator such as II
(defined in [12]) and has a static topology.

If one can prove that a network has all these properties than all the results
of the preceding section can be used. In this section we show what are the
conformity obligations for such results to generalise for CSP-Z specifications.
We also suggest an approach to adapt the FDR system to work for CSP-Z.

The conformity obligations that must be verified are:

1. When is the parallel operator [11] used by CSP-Z equivalent to I17
2. How to guarantee that the Z part does not introduce divergence?
3. How to manage the dynamic aspects introduced by the Z part?

T h e o r e m 3 (Associativity of [lip
Let V be a triple-disjoint network. Then [11] is associative. Thus, for all pro-

cesses P, Q and R of V we have P [I X I] (O [I Y I] R) = (P [I X' 11 Q) [I V' I] R
such that X U Y = X' U Y' .

Informally, if one finds an event of X which is not in Y (the set (c~Q u c~R)\ Y)
and this event cannot be performed by Q and R (the set c~Q fq aR) then [11] is
associative. Hence, the set X ~ equals X N aQ and Y~ equals Y U (X fq c~R).

T h e o r e m 4 (Divergence-freedom of Z)
Let Tc be the type of a channel c and Tv be the type of a variable v of the

state space such that values carried out by c are assigned to v . I f Tc C_ Tv
then the Z part of a CSP-Z specification does not introduce divergence, i.e.,
(enable_c A-~precom_c) = false. Actually, under the above assumptions it is
possible to prove a stronger result: enable_c - pre com_c.

See [1] for a more detailed consideration about Theorems 3 and 4.
Because of the above theorem we can encapsulate the enable_c schema into

the precondition of the com_c one, changing the refusals of the channel c from
-,enabie_c to -~ pre com_c. This simplifies the mathematical treatment of CSP-Z
specifications because one does not need to refer to enable_c, only to pre com_c.
This is extensively used in what follows.

Finally, we arrive at the point to consider how to manage the dynamic aspects
introduced by the Z part. This characteristic makes the topology of any network
built using CSP-Z dynamic; hence, we cannot carry out only a static analysis
such as described in Section 3. According to the CSP-Z semantics, if r is a

213

channel and pre com_c ---- false then c is refused even if its environment enables
it. Therefore, it is not sufficient to consider only the CSP equations, but one
must also consider the state space on every occurrence of a CSP event.

The impact of the refusal sets of the Z part on the theoretical analysis is tha t
CSP maximal refusal sets are not CSP-Z maximal refusal sets. In order to use
tha t s t ra tegy for CSP-Z, apart from the CSP maximal refusal sets, one must
also consider the pre com_c schema for every event c of every trace tr.

In [4], dynamic networks are not considered. The dynamic aspects, introduced
by the Z part , can only be managed keeping track of the network's structure
during execution; so, it seems very convenient to use FDR for CSP-Z. Therefore,
for analysing a CSP-Z specification it is necessary to consider what happens to
the network after its da ta structures initialisation. Let S be a CSP-Z specification
such tha t the CSP par t has a cyclic behaviour as (a, b, c, a, b, c, a, b, c , . . . / then
if one can prove that Ve : {a, b, c} �9 pre com_e - true then the CSP-Z behaviour
is equal to the CSP one, otherwise this cyclic trace is broken. The analysis is
no more static because for the trace (a, b, c/, the data structures are affected
by the following Z composition com_a ~ com_b ~ corn_c, according to the CSP-Z
semantics. Therefore, the next occurrence of a might happen in the context of a
s tate which falsifies pre com_a.

4 . 1 F D R f o r C S P - Z

Deadlock analysis is not trivial even if one considers only CSP processes. Hence,
it is essential to find out a strategy to mechanise deadlock analysis for CSP-Z.
In this section we present how to adapt FDR for analysing CSP-Z specifications.

In order to use FDR to analyse CSP-Z we have to define the following ele-
ments in FDR: State (the system state space), Init (the initialisation schema),
com_c (schema associated to the channel c), precom_c (precondition of the
schema corn_c) and the communication of values between the CSP and the Z
parts of the specification. The translation strategy is defined as follows. In gen-
eral, Z operations are relations between initial and final states, as well as input
and output values. However, for simplicity we assume in the following that these
relations are functional.
�9 State: F D R has no means to represent a global s tate space due to its founda-
tions on CSP. However, FDR processes can have parameters which are commonly
used for indexing. Therefore, the system state space can be represented as a pa-
rameter of all processes of the specification. When a schema com_c updates the
state space the final s tate produced must be taken as the initial s tate for the
next execution step.
�9 Init: As F D R cannot represent a state space globally then the Init schema is
t ranslated into F D R as a process such that it initialises the da ta structures used
by the main equation. Thus, Init = main(InitialState), where InitialState is a tuple
which defines an initial value for each state component.
�9 corn_c: A Z schema can be translated into F D R as a function. The arguments
to this function are the (current) s tate and the values of the input variables; the
function result is formed by the final state defined by the schema and the values

214

of the output variables. This function does not embody the precondition part of
the schema, only the effect.
�9 pre corn_c: A precondition is also encoded as an FDR function of type State x
Input -~ ~; it evaluates to true in the states and input values which satisfy the
precondition of the corn_c schema, and to false otherwise.
�9 C o m m u n i c a t i o n s : Values communicated in the CSP part of the FDR script
must be passed to the Z part, and vice-versa. All conversion patterns below have
the form of a CSP guarded command. For an input, the condition of the guard
is a prefix choice of a suitable value for the input parameter. The expression
a?x : {a.x �9 x : T, pre_corn~(S, x)} is a set comprehension which generates the set
of elements a.x where x ranges over T and satifies the predicate pre_corn_a(S, x).
For an output we simply pass the result of the Z part to the CSP part.

The following conversion patterns implement the above strategy and ease the
encoding of a CSP-Z s ~ecification into FDR:

CSP-Z FDR CSP-Z
P=a---*P P (S)=pre_com_a(S)

(l e t S ' =com_a(S)
w i t h i n a -> P (S '))

P=a?x---.+P P (S) = a ? x : { a . x �9 x : T , p r e _ c o m _ a (S , x) }
(l e t S' =com_a(S, x)
within P(S'))

P=a!e--+P P(S) =pre_com_a(S)
(let (S' ,e)=com_a(S)
within a!e -> P(S'))

The translation of channel declarations, constants and free types is a straight-
forward syntactical conversion, as presented in [1].

5 C a s e S t u d y

In this section we present the CSP-Z specification of two processes which com-
bined in parallel with that introduced in Section 2 results in a final specification
that represents the simplified behaviour of the SACI-1 OBC. We also show how
to translate the specification into our FDR representation and then we carry out
a deadlock anMysis using FDR.

The SACI-1 OBC is a fault-tolerant distributed processing system which com-
bines software and hardware components [5]. Its main parts are: its Watch-Dog
Timer (WDT) and its Fault-Tolerant Router (FTR). Due to its fault-tolerant as-
pects, the SACI-1 was designed with redundant components. It has three WDT's ,
three FTR's , etc. However, for illustrative purposes we consider here a simplifi-
cation of the real configuration, removing indices and presenting its behaviour.

5.1 T h e S AC I - 1 M a i n C o m p o n e n t s

F a u l t - T o l e r a n t R o u t e r . The FTR is responsible for some tasks and for peri-
odicMly sending a reset signal to the WDT. In order to model the F T R as close

215

as possible to its original conception we consider that it can stop temporar i ly
or permanently. In a t emporary stop, the F T R can be reanimated through a
recover signal. However, in a permanent one the W D T cannot be restarted.
spec FTR

channel clockFTR:[clk : CLOCK]
channel reset, recover:l]
local_channel reset WDT, task, taskDone, problem:[l
main=clockFTR--* Work
Work=(Norma~ III Problem)

Normal=(reset WDT---* reset--~main
1:3 task---*((taskDone~main) ^ (problem~stop)))

Problem=(recover---* main)

i State I
t ime: CLOCK I

i com_resetWDT
~State

WDTP(t ime, WDTRstP)

end_spec FTR

I WDTRstP : CLOCK

corn_task ~ -~ com_resetWDT

t clockFTR _ _
AState]
c'k?___ACLOCK
time r : clk?]

O B C Clock . As CSP-Z cannot capture precisely temporal aspects of a system,
we need some way to characterise the SACI-1 as a system dependent of time.
We model a process which exhibits events, carrying clock wlues, tha t control
the behaviour of the W D T and the FTR.
spec SCLOCK

channel clockWDT, dockFTR : [clk : CLOCK]
local_channel tic:
main=(dockWDT-~skip III dockFTR-~skip)~(tic-~main)

noneCIock : CLOCK I- com_clockWDT -I
IncC : CLOCK -~ CLOCK |~S ta te

F state I I / clk' : CLOCK

time : CLOCK /clk! -- time
I

i lnit State r] _c~176 ~ com_clockWDT

/time ' = noneClock I ~AState J

time' = IncC(time) I

216

end_spec SCLOCK
SACI-1 . The simplified behaviour of the SACI-1 microsatellite is given by an
alphabetised parallel composition ([11]) of the previous three CSP-Z components.
In this specification, the elements inside the brackets of the parallel operator are
the synchronisation points.
spec SACI-1

main=(WDT [I {reset, recover} I] FTR)
[I {clockWDT, clockrTR} I] SCLOCK

end_spec SACI-1

5.2 WDTin F D R

In this section we present the translation of the WDT into FDR. Comments (- -)
are added to ease the FDR script 1 .

- - The CLOCK d a t a t ype (Free t y p e)
datatype CLOCK = noneClock [cl[c2 [c3 l c4 [c5 [c6

-- spec WDT

channel clockWDT : CLOCK

channel reset, recover, failFTR, timeOut, noTimeOut

-- The main equation and its descendents

main(S) = Signal(S) JJl Verify(S)
Signal(S) = reset -> Signal(com_reset(S))

Verify(S) = (clockWDT?c ->
(pre_com_noTimeOut(com_clockWDT(S,c)) k

noTimeOut -> Verify(com_clockWDT(S,c))

[] pre_com_timeOut(com_clockWDT(S,c))

timeOut ->
(pre_com_recover(com_timeOut(com_clockWDT(S,c))) k

recover -> Verify(com_timeOut(com_clockWDT(S,c)))

[] pre_com_failFTR(com_timeOut(com_clockWDT(S,c)))

failFTR -> SKIP)))

-- The constants
WDTtOut = {c3, c6}
WDTP(time, timeout) = member(time, timeout)

-- Initialisation schema (now a process)

Init = main((O, noneClock)) \ {timeOut, noTimeOut, failFTR>

-- Preconditions
pre_com_noTimeOut((cycles,time)) = not WDTP(time, WDTtOut)

pre_com_timeOut((cycles,time)) = WDTP(time, WDTtOut)

pre_eom_recover((cycles,time)) = cycles < 3

pre_com_failFTR((cycles,time)) = cycles == 3

1 This script could be improved using the l e t . . . within construct; however, release
2.11 of FDR does not handle this construct correctly. According to FormM Systems
(Europe) Ltd, the new vernon (release 2.20) has solved the prob~m.

217

-- Schemas

com_reset((cycles,time)) = (0, time)

com_clockWDT((cycles,time),clk) = (cycles, clk)

com_timeOut((cycles,time)) = (cycles + I, time)

-- end_spec WDT

The other two processes are translated into the FDR notation in a similar
way. We have done that , loaded into FDR and checked that the SACI-1 specifi-
cation is deadlock-free.

6 C o n c l u s i o n

In this paper we proposed a strategy for model-checking CSP-Z specifications
based on previous work for model-checking CSP and on the semantics of the
CSP-Z language, verifying its conformity, and adapting the FDR model-checker
to work with the state part of CSP-Z specifications. We presented a formal
specification in CSP-Z of a subset of the SACI-1 microsatellite OBC as well as
a deadlock analysis of this specification using the FDl~ tool.

The SACI-1 project as developed by the Brazilian Space Research Institute
lacked formal documentation, hence our first contribution was to formally define
a subset of the SACI-1 [1]: its OBC system. From the very beginning, the goal of
the formalisation task was to develop a formal specification free from problems
and hence we did not find any deadlocks in our specification, as required. How-
ever, some problems in the informal documentation were detected: the informal
documentat ion was found to be ambiguous (difficulting the understanding of the
system), and the description of many processes which were supposed to coop-
erate did not specify synchronisation points. These problems were reported to
the members of the SACI-1 project and the specification reported in [1] serves
today as a formal reference for the implementation of this project.

One research direction we intend to pursue is the derivation of an implemen-
tat ion in a language like OCCAM [15] from CSP-Z specifications. To this end,
we count with an important theoretical result [7, 8]: refinement of the CSP and
of the Z part (subject to some constraints) of a CSP-Z specification leads to
refinement of the entire CSP-Z specification.

Another topic for further research is the integration of tools to deal with CSP-
Z specifications. In [1], we have shown how to use Z-EVES [19] to type-check
the Z part of the SACI-1 specification and to refine some of its data structures.
Furthermore, the ZANS animator [13] was also used in [1] to analyse the be-
haviour of the data structures in the Z part of the SACI-1 specification. Ideally,
these tools should also be adapted to work for CSP-Z, as we did with FDR.
The ult imate goal would be linking all these tools into a uniform development
environment for CSP-Z.

A final remark is that although we have based our work on CSP-Z, the results
could, in principle, be easily adapted to other approaches to integrate CSP and
Z, such as, for example [10].

218

7 Acknowledgements

We thank people f rom the Brazilian Space Research Ins t i tu te (INPE) , and in
par t icular Alderico R. Paula Jr. for help in the unders tanding of the SACI-1.
We also thank Clemens Fischer and Paulo Borba for discussions abou t CSP-Z
and FDR, and for suggestions and criticisms which helped us to improve our
approach to model-checking CSP-Z.

A Formal Definit ions

The whole paper was intended to describe the development of our strategy to model-
checking CSP-Z specifications without too much technical details. In this section we
present the Failures-Divergence model for Z and the some definitions which were only
informally presented in Section 3.

A . 1 F a i l u r e s - D i v e r g e n c e S e m a n t i c s o f Z

Let c be a channel, tr be a trace, Chans(I) be the set of channels of an interface I
and Comm be the set of communications (pairs (c, v), where c is a channel and v is a
communication value), thus:

The Failures-Divergence interpretation for the Z part is given by the following
definition:

Def in i t ion 1. Let I be an interface and Oz a list of Z-schemas with exactly one schema
enable_c and effect_c for every channel c from Chans(I). Then the semantics of the
corresponding CSP-Z specification is defined as follows:

|spec I; State; Init; 0 7 end_spec| = (~', 2))
whez'e
~----{s~t :seq Comm I 3 State'eefTecLsA(enable_head(t))'A-~(preefTect_head(t))'}

:T'={($r, :~) : seq C o m m x P C o m m [3 State ' �9 (effeet_tr ^ ~ C REF)}
w{(tr, ~) : / ~ x P Comm} u {(0, 0)}

REF=={(c , v) I --(enable_(c, v))'}

In the above definition, /) is the refusal set introduced by the Z part where the
predicate enable_cA-, pre effecLc is verified and ~- is the failures set of the Z part, where
REF is the set of communications that can be refused, i.e., the predicate -,enable_c is
satisfied.

A . 2 D e f i n i t i o n s f o r D e a d l o c k A n a l y s i s

Def in i t i on2 . The process P is deadlock-free if Vs E(aP)*e(s, a P) ~ yr[pi.

CSP operators axe compositional in the sense that given two processes P and Q,
P [3 Q or P II Q are also processes. Thus, we can see a concurrent system as a
composition of parallel processes.

Def in i t i on 3. A network is a parallel combination of processes. Let V be a network
composed of the processes P 1 , ' " ' Pn then V = (P 1 , ' " ' Pn)-

219

In the following definitions, let V be a network such that V = (P 1 , " ' , Pn).

De f in l t l on4 . A network is triple-disjointiff a P i 63 ~Pj 63 aP k -- O, i # j # k.

De f in i t i on5 . A graphical view of a network is a communication graph where the
processes are the nodes and an arc exists between two nodes if[a P i 63 aPj # ~, i # j .

Def in i t ion 6. The vocabulary A of a network V is the set U{ a P i 63 a pj [1 _< i < j _< n }.

Def in l t lonT . A state a of a network V is a trace s of V and an indexed tuple
(X1,... ,Xn) of refusal sets X i such that for each i, (s [aPi,Xi) e ~lPil.

Def in i t ion 8. Let a ----(s, X) be a state and A be the vocabulary of the network V. A
pair of indices (i,j) (with i # j) is:

" a requestif (c~P i - Xi)63~P j # 0 (Pi -L pj or Pi *a_f pj);
* a s t rong r e q u e s t i f O #(aP i -Xi)C_ ~Pj (Pi =g Pj or Pi ~ Pj);
* ungrantedif in addition o~P i 63aPj C_ X i U Xj (Pi ~" Pj or Pi ~~ Pj)"

Def in i t i on9 . A state a of the pair (P ,Q) is a r-conflicti f P ~-s Q and Q ~ , P

and strong F-confict if P ~ ~ Q or Q *~ . P (with respect to F).

Def in i t ion 10. A pair (P, Q) is]ree o] F-conflict if none of its states is a F-conflict.

D e f i n i t i o n l l . A network V is (strong) conflict-freeiff for all i # j the pair (Pi' Pj) is

free of strong A-conflict.

Def in i t i on 12. The edges (nodes) V 1 , . . . , V k are the disconnecting edges of the net-
work V iff they are nodes of the communication graph of V whose removal would
increase the number of connected components (partitions).

Def in i t i on 13. The essential components of V are the connected components of the
graph that remains after all disconnecting edges were removed.

References

1. A. C. Mota. Formalisation and Analysis of the SACI-1 Microsatellite in CSP-Z.
Master's thesis, Federal University of Pernambuco, 1997.

2. T. Bolognesi and Ed Brinksma. Introduction to the ISO specification language
LOTOS. Computer Networks and ISDN Systems, 14(1):25-59, January 1987.

3. S. D. Brookes and A. W. Roscoe. An improved failures model for communication
processes. In Lecture Notes on Computer Science, volume 197, pages 281-305,
1985.

4. S. D. Brookes and A. W. Roscoe. Deadlock analysis in networks of communicating
processes. Distributed Computing, pages 209-230, 1991.

5. A. R. de Paula Jr. Fault-Tolerance Aspects of the On-Board Computer of the
First INPE Microsatellite for Scientific Applications. VI Brazilian Symposium on
Fault- Tolerant Computers, August 1995.

220

6. E. Boiten, H. Bowman, J. Derrick and M. Steen. Viewpoint Consistency in Z
and LOTOS: A Case Study. In FME'97: Industrial Applications and Strengthened
Foundations of Formal Methods, pages 644-664. Springer Verlag, 1997.

7. C. Fischer. Combining CSP and Z. Technical report, University of Oldenburg,
1996.

8. C. Fischer. CSP-OZ: A Combination of Object-Z and CSP. In 2nd IFIP Interna-
tional Conference on Formal Methods for Open Object-based Distributed Systems
(FMODDS'97). Chapman Hall, 1997.

9. Formal Systems (Europe) Ltd. FDR: User Manual and Tutorial, version 2.01,
August 1996.

10. G. Smith. A Semantic Integration of Object-Z and CSP for the Specification of
Concurrent Systems. In FME'97: Industrial Applications and Strengthened Foun-
dations of Formal Methods, number 1313 in Lecture Notes in Computer Science,
pages 62-81. Springer Verlag, 1997.

11. J. A. Goguen and T. Winlder. Introducing OBJ3. Technical report, SRI Inter-
national, SRI-CSL-88-9, August 1988. Revised version to appear with additional
authors Jos6 Meseguer, Kokichi Futatsugi and Jean-Pierre Jouannaud, in Applica-
tions of Algebraic Specification using OBJ,.

12. C. A. R. Hoaxe. Communicating SequentialProcesses. Prentice-Hall, 1985.
13. X. Jia. A Tutorial of ZANS - A Z Animation System, 1995.
14. C. B. Jones. Systematic Software Development Using VDM. Prentice-Hail Inter-

national, 1986.
15. G. Jones and M. Goldsmith. Programming in OCCAM 2. Prentice-Hall Interna-

tional, 1988.
16. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.

Springer-Verlag, 1991.
17. R. Milner. A Calculus of Communicating Systems. In Lecture Notes in Computer

Science 9~. Springer-Verlag, 1980.
18. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Interna-

tional, 1997.
19. M. Saaltink. The Z/EVES System. In ZUM'97: The Z Formal Specification No-

tation, pages 72-85. Lecture Notes in Computer Science, 1212, Springer, 1997.
20. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall International, 2nd

edition, 1992.

