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A b s t r a c t .  Human computer interaction can be specified successfully 
using the concept of information resources and the formal notation of 
graph grammars. In order to achieve a precise and continuous specifi- 
cation process between the requirements and design stages, however, a 
suitable strategy for refining abstract specifications into more concrete 
ones correctly and consistently is highly necessary. 
In this paper it will be proposed to apply graph rewrite rules at a meta 
level to abstract graph grammar specifications of human computer in- 
teraction in order to achieve correct and consistent refinements of the 
specifications wrt important requirements. A safety-critical system con- 
cerning the interaction between the pilot and the flight management 
system on the flight deck of an aircraft will be used as an example. A 
graph grammar specification of this interaction at an abstract level will 
be refined wrt mode visualization by a graph rewrite rule at a meta level. 

1 I n t r o d u c t i o n  

A successful design of a.n interactive system requires a suitable specification of 
human computer interaction. Specifications using the concept of information 
resources (cf. [23] and [3]) and the formal notation of graph grammars (cf. [17]) 
provide a precise understanding of interaction as well as a correct and consistent 
formal description at least at an abstract level (cf. [21]). 

However, in order to achieve a continuous specification process between the 
requirements and design stages a suitable strategy for refining abstract specifica- 
tions into more concrete ones in a correct and consistent way is highly desirable. 

A variety of techniques for specifying states and behaviour of interactive sys- 
tems can be found in the literature. As shown in [11] state transition diagrams 
form the basis of a variety of description techniques for user interfaces. How- 
ever, as pure sequential techniques they are only suitable for mask and menue 
dialogs. Describing user interfaces using statecharts permits modelling parallel 
dialogs but  does not show the context between such parallel subdialogs. Dialog 
nets ([10]), a special form of Petri  nets, overcome this problem with the features 
of modal subdialogs, a clear net structure and hierarchy. However, dialog net 
specifications of graphical user interfaces result quickly in very complex descrip- 
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tions of even simple user interfaces. A detailed presentation and comparision of 
techniques for specifying interaction processes can be found in [18]. 

Graph grammar descriptions have also been used as specification technique. 
In [1] a customized user interface design environment is generated. First, a con- 
ceptual framework for task-oriented user interface specification is specified as a 
visual language. The specification is then applied to a visual language generator 
yielding a visual syntax-directed editor for the specification language. In this 
approach the visual language is specified with graph transformation systems. 
Specification and representation of user interfaces based on end user tasks using 
attributed graphs and related graph rewriting systems can also been seen in [4]. 

In order to achieve specifications of interaction between human and machine 
which are expressive enough on the one side and which remain understand- 
able on the other side the formalism of graph grammars is used in [7]. Dialog 
states describing user interface objects with their current appearance and their 
respective relationship to the underlying application are formally specified by 
directed attributed graphs. Transformations of one dialog state into another one 
by an event are formally specified by graph rewrite rules. Hence, graph gram- 
mars provide formal as well as clear interaction specifications allowing correct 
specification changes and reflecting the intuitive comprehension that designer 
and customer have about interaction, respectively, in every specification stage. 
In [15] this approach has been used in order to formalize the control window 
of a complex real numeric system by graph grammars (see also [19]), and the 
correct and comprehensive specification led to a far better interaction process. 
[20] and [22] show an approach for integrating software-ergonomic aspects in 
formal specifications of graphical user interfaces using graph grammars in order 
to improve human-machine interaction. 

In [21] it has been presented how interaction may be modelled using the 
concept of information resources and formally specified by the notation of graph 
grammars. In order to develop a strategy for refining such specifications at an 
still abstract level the idea of constructing meta rules will be introduced in this 
paper. A graph rewrite rule of this kind specifies a specific task concerning the 
refinement of the abstract specification wrt a specific requirement. It specifies 
a refinement resulting from a regular communication between designer and cus- 
tomer during the specification process. A safety-critical system concerning the 
interaction between the pilot and the flight management system (FMS) on the 
flight deck of an aircraft will be used as an example for an abstract specification. 
A meta rule specifying the visualization of modes with the goal of refining the 
abstract interaction specification correctly and consistently will be constructed. 

The formal notation of graph grammars which is based on the algebraic dou- 
ble pushout approach (DPO) will be introduced first. The construction of graph 
rewriting in this approach will help in understanding the refinement of graph 
grammar specifications by graph rewrite rules. A short presentation will then 
be given about how interaction between the pilot and the FMS can be modelled 
using the concept of information resources and specified formally by a graph 
grammar at  a still abstract level. After the presentation of some proves already 
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at that abstract specification stage wrt some important requirements the speci- 
fication has to be refined in order to move towards the design stage coming from 
the requirements stage. For this purpose a graph rewrite rule will be constructed 
with the goal of refining the abstract specification wrt the visualization of the 
modes involved. Considering this construction within the DPO will provide a 
suitable insight into the conditions under which an abstract specification could 
be refined correctly and consistently by a meta rule. 

2 T h e  G r a p h  G r a m m a r  F o r m a l i s m  

The graph grammar formalism introduced below is based on the algebraic double 
pushout (DPO) approach. The definitions will sometimes be only semi-formal 
and incomplete due to lack of space. We therefore refer to [5], [17] and [13] for 
a detailed and complete description. 

Let At t r y  and AttrE be two type variables denoting types for labelling nodes 
and edges of graphs respectively. The sets used to actualize At t r y  and AttrE 
are not necessarily simple flat alphabets, but could also be sets of functions, 
relations, etc. as attributes. We define: 

Defini t ion 1. An (At t rv ,  AttrE)-graph M is a system 
M = ( V M , E M , S M , t M , I M , m M ) ,  where 
VM set of nodes, 
EM set of edges, 
SM : EM -+ VM source function of edges, 
t M  : EM --+ VM target function of edges, 
IM : VM -~ A t t r y  node labelling, 
rnM : EM --~ At trE edge labelling. 
M represents a directed node and edge labelled graph. 

For describing modifications of graphs by graph rewrite rules we need the 
definition of a match between two graphs: 

Defini t ion 2. A graph match g ofa (Attrv, AttrE )-graph M in a ( A t t r v  , At trE )- 
graph N is given by a 4-tupel g = (gv,gE,PV,PE),  where 
gy : VM -~ VN and gE : EM -~ EN mappings, 
PV : (A t t ry  • A t t r y )  --+ (true,  fa l se}  node attribute match predicate, 
PE : (AttrE x At trE)  --~ ( true,  fa l se}  edge attribute match predicate, 
such that Ve E EM, v E VM : 
gv(s (e)) = 
gv( tM(e) )  = tN(gE(e)),  
PV (IM (V), llv (gY (V))) APE (raM (e), mN (gE (e))). 

For the induced match g(M)  it has to be assured on the one hand that gy and 
gE map consistently the source and target of each edge in graph M onto nodes in 
the target graph N such that the graph structure of M - i.e. without considering 
labels - is mapped onto a proper subgraph of N. On the other hand the label of 
a graph element (node or edge) in M and the label of the corresponding picture 
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of that graph element in graph N (under the mapping gv or gE respectively) 
have to be compatible with respect to the predicates Pw or PE respectively. 

Modifications of graphs are described by graph rewrite rules: 
A modification o/a graph M into a new graph N by applying a graph rewrite 

rule r = (L, R, K) is realized by the following two ' principal steps: 
1) a graph match is chosen between the graph L and the graph M to be modified, 
2) the induced match of graph L is removed in graph M and graph R is added. 
The connection of graph R to the remaining part of graph M is given by the 
glueing graph K (see below). 

As can be seen, a graph rewrite rule r = (L, R, K) is a triple of graphs, 
where graph L is the left hand side of the rule, graph R is the right hand side 
of the rule and graph K is the so called glueing graph. K takes care that no 
dangling edges appear in the new graph after applying rule r to the old graph. 
Hence, K identifies some anchor elements which have to remain unchanged by 
the modification and is a subgraph of L and R as well. 

At this point we have all necessary preliminaries to define: 

Defini t ion 3. A graph grammar is a system G = (Attrv, AttrE, P, Pr, Z), where 
Attrv,  AttrE are node and edge attributes respectively, 
P is a set of graph rewrite rules, 
Pr is a set of attribute match predicates required for a graph match, 
Z is the start graph (Z is a (Attrv, AttrE)-graph). 

For the sake of simplicity a graph grammar G will be described in the fol- 
lowing by G = (Z, P), where Z denotes the start graph and P the set of graph 
rewrite rules. 

In order to prepare the use of the graph grammar formalism for specifications 
of interaction as well as for refining such specifications a view onto direct deriva- 
tion diagrams in the DPO helps much in understanding the rewrite mechanism 
introduced above (see also [2]). Direct derivations, i.e. modifications of graphs 
by a rewrite rule, are modelled by glueing constructions of graphs, that are for- 
mally characterized as pushouts in suitable categories having graphs as objects 
and graph homomorphisms as arrows. A graph rewrite rule p is given by a pair 

L ( l K r R of graph homomorphisms from a common inter/ace or glueing 
graph K, and a direct derivation consists of two glueing diagrams as (1) and (2) 
in the diagram in figure 1. The context graph C is obtained from the given graph 
G by deleting all elements of G which have a pre-image in L, but none in K. 
This deletion is modelled as an inverse glueing operation by diagram (1), while 
the actual insertion into H of all elements of R which do not have a pre-image 
in K is modelled by the glueing diagram (2). The match m must satisfy the 
so-called glueing condition which takes care, that the context graph C will have 
no dangling edges and that every element of G that should be deleted by the 
application of p has only one pre-image in L. 

Diagrams as the one in figure 1will help much in investigating the refinement 
of graph grammars by graph rewrite rules at a meta level as will be seen in 
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L ~ 1  K r ---..~-R 

I I I 
rn (1) c (2) m* 

G . ~ - - I *  C r* ~ H  

Fig. 1. Direct derivation in the DPO 

chapter 4. After this introduction to the graph grammar formalism a specification 
of the interaction between the pilot and the FMS on the flight deck of an aircraft 
will be presented using the concept of information resources and the formal 
notation of graph grammars (for a detailed explanation cf. [21]). 

3 S p e c i f i c a t i o n  o f  t h e  I n t e r a c t i o n  b e t w e e n  P i l o t  a n d  F M S  

Interaction can be modelled based on the concept of information resources (more 
deeply handled in [23] and [3]). This idea is influenced by the approach of dis- 
tributed cognition [9] which sees resources as distributed across components of 
the whole system. The user tries to achieve goals by interacting with a system 
and he has plans in his head during certain time periods to achieve these goals. 
Action-a1~ordances refer to the set of possible next actions that can be taken, 
given the current state of the system. An action-effect mapping is a statement of 
the effect that an action will have if it is carried out. Such information resources 
are highly suitable criteria for getting an understanding of interaction. 

Graph grammars represent a highly suitable formalism for specifying statics 
and dynamics of interactive systems. Graphs describe states, graph rewrite rules 
describe changes of states in a powerful but understandable manner (cf. [7]). 

Based on these preparations the specification of a safety-critical system, of the 
interaction between the pilot and the flight management system (FMS) on the 
flight deck of an aircraft, can be constructed. It comprises the stages beginning 
with the take-off and ending up with the landing (for a detailed description we 
refer to [21]). The first state of the interaction may be specified by the start 
graph Gstart in figure 2 where the small pictures denoted by P i l o t  and FMS are 
only depicted for orientation purposes. 

The root node on the pilot side specifies the top level goal TLG with the mean- 
ing of a particular flight. This goal is decomposed into the three subgoals S ta r t ,  
Fly and Land, landing again is decomposed into the subgoals CNM (Changing 
Navigation Mode), EDI (Entering Descent Input) and TD (Touch Down). All 
goals not further decomposed are associated to subparts of the system's user 
interface on the FMS side. Action-effect edges indicate that actions of type <a> 
can be performed within parts of the system's user interface in order to complete 
the respective goals. All possible actions constitute the actual action-affordances. 
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done=lalse 

done=fals~'one=lalse <a> - J ~  

mo~e,.,=,~o ~ e > _  [ ] 2 . . ~  
V 

Fig. 2. Start Graph Gs~a~t 

In the autopilot system the modes of the navigation and descent are automat- 
ically coupled (cf. [12]). For that reason the corresponding parts of the system's 
user interface can be grouped together by specifying them, e. g., as subwidgets 
of a superwidget. Ca and Ed are examples for such subwidgets with a common 
superwidget U. Moreover, because of the importance of the actual modes of Cn 
and Ed in every situation during the flight a node M of a new type denoted by 
a different shape is introduced. It has an attribute indicating the current mode 
value of its associated system part, e.g. mode value TRK (Track) for Cn, and a 
specific edge connects this mode node with its respective user interface part. 

Graph rewrite rules specify the interactions. The first rule specifies the start 
of the flight. 

done=false done=true 

Ps,..: _ [ ]  :.= -I 1 

This rule matches in a state graph under the condition that the goal S t a r t  
has not yet been completed as indicated by the value ]alse of the attribute done 
on the left hand side of the rule. In the case of a match the left hand side of the 
rule will be substituted by its right hand side. This specifies that the action <a> 
performed within the user interface part St leads to the completion of the goal 
S t a r t  as indicated by the value true of the attribute done on the right hand 
side of the rule. (Glueing graphs necessary due to technical reasons will not be 
considered further in this context.) The next rule specifies the flying stage. 

done=true done=true 

: :=  
~ , y :  done=false done=true 

This rule matches under the condition that the goal S t a r t  has already been 
completed but the goal Fly has not yet been completed, and it works analogously 
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to the previous rule. The next rule specifying the changing of the navigation 
mode applies under the condition that the goal Fly has already been completed. 

�9 ._ 0oo o  

< ~ . : ~ " V /  ' <~onf. 
I'~--"l> HDG N 

val="Confirm..FPA to V/S..!" 

This rule changes the value of the navigation mode from TRK to HDG ( Track 
to Heading) as can be observed by considering the mode node connected to the 
related subpart Cn of the system's user interface. Such a change is sometimes 
necessary in order to comply with radar guidance ([12]). But additionally, the 
rule does something else. A new goal Confirm! appears with related user inter- 
face part C within which an action <conf> can be performed to complete this 
goal. One can imagine C as a modal subdialog or a dialogbox. The goal Coat irm! 
is added here in order to force the pilot to confirm the change of the descent 
mode from FPA to V/S (Flight Path Angle to Vertical Speed) which is automat- 
ically coupled with the change of the navigation mode from TRK to HDG. This 
is indicated to the pilot by the value of the attribute val  attached to the node 
C. In this specification the pilot ist forced to confirm the automatically coupled 
change of the descent mode in order to prevent mode errors which in the past 
have led already to accidents claiming casualties (cf. [12] and [14]). 

Now the specification has to assure that the pilot indeed can not do anything 
else except this confirmation. Therefore, the boolean attribute modeflag is at- 
tached to the goal node Land. Its value is always true except in the situation 
that the pilot changes the navigation mode where its value becomes false. This 
can be observed by comparing left and right hand side of the rule PCNM" If the 
modeflag is false in the current state graph then only one specific rule matches, 
namely Pco~fir,~ below specifying the expected confirmation by the pilot as well 
as the automatically coupled change of the descent mode. The right hand side 
of the rule shows that after its application the value of T.and.raodeflag is true 
again and that the subgraph containing the goal Confirm! has disappeared. 

To,, 
val='Conflrm..FPA to V/S..l" 

The penultimative rule specifies the entering of the descent input which is a 
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subgoal of the landing stage and is therefore performed under the condition that 
the goal Fly has already been completed. 

done=true done=true 

Finally, the last subgoal of the landing stage, the touch down goal, is specified 
by the following rule PTD applicable under the condition that the entering of 
the descent input has already been completed. 

PTD : d ~  ::= d ~  

This rule, finally, completes the entire top level goal, the particular flight 
which is indicated by the value true of attribute done attached to node TLG. 

Despite existing techniques in the theory of graph grammars for aggregating 
set of rules differing only in the labels of their graphs (cf. [6]) two further rules 
P~NM and P~o,=li~m specifying the change of the navigation and descent modes 
also in the other direction, from HDG to TRK (Heading to Track) and from 
V/S to FPA ( Vertical Speed to Flight Path Angle) respectively, are added in this 
example. Thus, the interaction between the pilot and the FMS can be specified 
at a still very abstract level by the 

G r a p h  G r a m m a r  GraGra = {Gst~t,  P} with 

- Gstart Start Graph, 
Ro o 

- P = {Ps*art, PFlu, PONM, PconI~rm, CNM, P~onfirm, PEDI, PTD}. 

Specifications of this kind are very useful in order to prove already at ab- 
stract stages of the development process whether important properties and re- 
quirements are fulfilled by the specification or not. In order to give an impression 
some properties and requirements already considered in [21] will be presented in 
the following. In the safety-critical system introduced above it is highly impor- 
tant to be able to prove already at early specification stages that certain actions 
take place before or after other ones. A first claim could therefore concern the 
required order in which the three goals S ta r t ,  Fly and Land are intended to be 
completed. 

C la im4.  The goals Sta r t ,  Fly and Land will by all means be completed in the 
required order/ 

Proof. The set of nodes and edges of a graph G will be denoted by Vc and Ea. 
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a) Pst~t = (Lstart, RStart, Kstart) is the only rule the left hand side Lsta~t of 
which matches a subgraph of the start graph Gstart! 

VV E VStart : v.done = false A v.modeflag = true 
VL, of Pz e P\{PStart} : (3v E VL. : v.done = true V v.modeflag = false) 

b) PEru is applicable only under the condition that goal S t a r t  has been com- 
pleted! 

LFly only matches graphs of the kind L ~ where 
3v E VLO with v = S t a r t  h v.done = true 

c) All rules contributing to the completion of goal Land are only applicable if 
goal Fly has been completed! 

This has to be shown for all rules in the set P\{PSta~t,PFty}: 
The proofs for PCNM (P~NM) and PEDI work analogously to proof 4b). 
Pconfirm (P~onfirm) is only applicable directly after PCNM (P~NM) (be- 
cause of the attribute Land.modeflag). PTD is only applicable after PEDI 
(because of the attribute EDI.done). 

One very important requirement is to assure that the pilot is always aware 
of the actual mode values. 

C la im 5. Any indirect (caused by another action) change of the descent mode 
will be performed through conf i rmat ion  by the pilot/ 

Proof. Changing the descent mode is performed by rule Pvonfi~m (P~onfi~m) 
forced in turn by rule PCNM (P~NM)" PConfirm (P~onfirm) specifies an action 
<con~> within a subpart C of the system's user interface to be performed by 
the pilot. 

Finally, it is important to be sure that certain actions are always performable 
by the pilot at certain stages during the flight. The next claim considers that 
more concretely. 

Claim 6. The navigation mode can always be changed during the stage Land. 

Proof. A switch between the two navigation modes TRK and HDG is specified 
by the two rules PCNM and P~NM respectively. Both work under the condition 
Fly.done ---- true according to proof 4b). 

A specification describing the interaction between the pilot and the FMS 
at an abstract level has been constructed so far. Some important requirements 
could also proved to be true already at this abstract specification stage. In the 
next chapter it will be investigated how such an abstract specification could be 
refined continuously by considering a graph rewrite rule at a meta level. 

4 R e f i n i n g  t h e  I n t e r a c t i o n  S p e c i f i c a t i o n  b y  a M e t a  R u l e  

An important requirement wrt the specification of the interaction between the 
pilot and the FMS described in chapter 3 is the visualization of the modes 
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involved. The consideration of the start graph Gstart in figure 2 shows that 
modes are specified already but they are not visualized to the pilot who has to 
be aware of their values in every situation to increase safety for the flight. An 
idea in order to refine this graph wrt to mode visualization is to apply a graph 
rewrite rule at a certain meta level. The notion meta level indicates that such 
a rule does not be long  to the interaction specification, but it has the task to 
ref ine this specification. A meta rule extending the state graph wrt to mode 
visualization could look like the graph rewrite rule PMeta in figure 3. 

I B  I 

Fig. 3. Graph Rewrite Rule PMeta 

The left hand side matches whenever a system's user interface part is con- 
nected to a mode node by a respective edge. The free variable W indicates that 
application of the rule is possible wrt any system part under the conditions spec- 
ified by the left hand side of the rule. The same holds for the value of the current 
mode indicated by the free variable MV. Substitution by the right hand side of 
the rule implies an extension wrt the required mode visualization. An additional 
system part denoted by the free variable SW will be created by which the cur- 
rent mode value MV becomes visualized. One can think about this new part as 
a label with a bright background colour or the like. The fact of visualization is 
explicitly specified by a directed edge labelled by the constant attribute v i s  and 
leading from the mode node M to the node SW describing the new system part. 

At this point the following should be noted: application of the graph rewrite 
rule PMeta = (LM, RM, KM) to a graph G leads to a substitution of the induced 
match g(LM) (cf. definition 2) in G by RM for every occurence g(LM) (the 
glueing graph KM is equal to graph LM in this case). According to a regular 
communication between designer and customer, however, meta rule PUeta should 
only be used for refinement in cases in which mode visualization has not yet been 
integrated into the specification. Thus, to prevent the application of PMeta in 
cases where modes just have been visualized negative application conditions (cf. 
[8]) can be integrated elegantly into the rule specification. This, however, is 
omitted here for the sake of simplicity. 

Refining the specification of an interaction by a meta rule means applying 
the meta rule to the respective graph grammar specification, i.e. applying it to 

- the start graph specifying the first state of the interaction, 
- the set of rewrite rules specifying the dynamics of the interaction. 

Based on these considerations the refinement of graph grammar GraGra in 
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chapter 3 by meta rule PMeta in figure 3 will be investigated in the following 
two sections. 

4.1 Refining the  S tar t  Graph  Gstare by the  M e t a R u l a  PMeta 

According to the previous explanations the twofold application of the meta rule 
PMeta in figure 3 to the state graph Gst,r~ in figure 2 would lead to the state 
graph Hsta~t in figure 4 where the visualization of the navigation as well as of 
the descent mode is specified now. The visualization of the two modes is realized 
by the new user interface parts SC and SE respectively. 

done=false 

done=fals~fdone=false <a> ISCI .__X, ,~. 

V 

Fig. 4. Start graph Hs~ar~ (refinement of Gs~ar~) with integrated mode visualization 

The application of rule PMeta to graph Gs~rt can easily be understood by 
considering the corresponding derivation diagram in the DPO in figure 5. 

/ ~ i - -  / - -KP ,4  - -  �9 -"~RM 

I I I 
m c m* 

% ~ - - -  I " - -  Cs t~ - -  r - - ' ~  ~Sta. 

Fig. 5. Application of rule PMeta to graph Gstart yielding graph Hst~rt in the DPO 

A comparision of the diagrams in figures 1 and 5 provides the proof idea for 
the fact that applications of graph rewrite rules like PMeta to state graphs like 
(]Start result in correct and consistent refinements of the resulting graphs. 

The more complicated question is, how meta rules could refine graph gram- 
mar rules specifying interactions. This will be investigated in the next section. 
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4.2 R e f i n i n g  Se t  P o f  G r a p h  R e w r i t e  R u l e s  b y  M e t a  R u l a  PMeta 

Application of rule PMeta (cf. figure 3) to the set P of graph rewrite rules (cf. 
capter 3) at first means application to every graph rewrite rule contained in 
set P.  Obviously, the left hand side LM o f  PMeta would only match in graphs 
involved in the four rules P C N M ,  P C o n f i r m ,  P ~ N M  and P~onfi~m" Additionally, 
it is intuitively clear that  a refinement of either of these rules wrt to mode 
visualization would make sense: a change of the navigation as well as of the 
descent mode by the pilot during a flight would have to be reflected in the 
respective user interface part. Thus, a consistent refinement of a graph rewrite 
rule p = (L, R, K)  E {PoNM, PConfirm, P~NM, P~onfirm} would require the 
application of the meta rule PMeta to L as well as to R. Application of rule 
PMeta to graph rewrite rule PConfirm in chapter 3 would lead to the new rule 
P~onfirrn i n  figure 6. 

val='Confirrn_FPA to V/S..I" ~.~_j'~l~ 

::---- mo~=true WS 

Fig. 6. Graph rewrite rule l=~o,~fir,~ with integrated mode visualization 

The DPO diagram in figure 7 describes this idea: the application of the meta  
rule PMeta ---- (LM, RM, KM) to a graph rewrite rule p = (L, R, K)  yields the 
refined graph rewrite rule h = (HL, HR, HK) with HK ---- K. 

R " ~ 1 "  Q:t - - r *  ~ 1 - ~  

f t t 
m c m* 

I I I 
I . M ~  I I ~ l - - r  ~ R  M 

I I I 
m C m ~ 

L ~ - - - I *  C L r * - - - ~ H  L 

Fig. 7. Refinement of p = (L, R, K) by PMeta to h = (HL, HR, HK) in the DPO 
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In order to achieve a correct and consistent refinement by the application 
of the meta rule PMeta to a graph rewrite rule of the kind p = (L, R, K) E 
{PcNM, Pconfirm, P~NM, P~onfirm} the following two requirements have to be 
ensured for which proof ideas will follow: 

-- PMeta rewrites L of rule p exactly in the same way as R 
(visualization of a mode has to be updated t o g e t h e r  with the mode value 
(consistency)). 

- HK = K is a correct glueing graph for the new rule h 
(the new rule is defined correctly). 

The first requirement can be ensured by considering the graph homomor- 
phisms m, m* and c in figure 7: as in the DPO diagram in figure 1 they take 
care for constructing a correct graph HL in case of a match of LM in L. Thus, 
because of using exactly the same homomorphisms as well in order to refine the 
right hand side R of rule p the requirement is ensured. 

Generally, also the case in which LM matches only in one of the graphs L 
and R has to be considered. Due to the goal of refining interaction specifica- 
tions according to the result of a regular communication between designer and 
customer only meta rules within a sensible context are considered. Thus, if LM 
matches only in L this would mean that rule p specifies the deletion of a specific 
feature, and this has also to be refined. E.g., switching off a mode by the pilot 
should also imply the deletion of the respective user interface part for visualizing 
this mode in the specification t o g e t h e r  with the mode specification part itself. 
Analogously, if LM matches only in R this would mean that rule p specifies the 
addition of a specific feature, and this has to be refined as well. E.g., switching 
on a mode by the pilot should also imply the addition of a respective user inter- 
face part for visualizing this mode in the specification t o g e t h e r  with the mode 
specification part itself. 

The second requirement can be ensured by considering the fact that the 
glueing graph K will not be refined by the meta rule PMeta. The important 
point here is that PMeta does only add graph elements (nodes/edges), but does 
not delete such elements. Thus, after application of PMeta to a rule p = (L, R, K) 
yielding h = (HL, HR, HK), K is still a subgraph of both, HL and HR, SO that 
HK = K is still a correct glueing graph for the new rule h. 

The last requirement can not be ensured for meta rules which delete graph 
elements from graph rewrite rules. In such a case it may happen that K is not 
a subgraph of HL and/or HR anymore. Even, if application of the meta rule to 
K would be allowed, a match of LM in K could possibly not exist. 

According to the approach presented in this paper 1 the graph grammar 
GraGra in chapter 3 can be refined by the meta rule PMeta in figure 3 yielding 
the 

G r a p h  G r a m m a r  GraGra*Re I = {Hstart,P*} where 

- Hstart Start Graph, 

1 A similar approach to graph grammar transformation can be seen in [16] 
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-- P* = {Pstart, YFly, ~ N M ,  ~onyirm, P~VM, P~nfirm, PEDI, PTD}, 

Hstart is the refinement of Gstart, and P~NM, P~onlirm, P~NM and P~*,li*~,, 
are the respective refinements of PCIVM, PConlirm, P~NM and P~onlirm" In 
this way the abstract graph grammar specification GraGra of the interaction 
between the pilot and the FMS on the flight deck of an aircraft could be refined 
correctly and consistently wrt the so important mode visualization by the meta 
rule PMeta yielding the more concrete graph grammar specification GraGra*~e I . 

As the main result of this paper refinements using meta rules that do not 
delete any graph elements can be carried out correctly and consistently. Con- 
structing such meta rules according to the DPO diagrams in figures 5 and 7 
and based on the ideas introduced above in order to refine abstract graph gram- 
mar specifications of human computer interaction successively into more concrete 
ones highly encourages the development of a suitable strategy in order to achieve 
a continuous specification process between the requirements and design stages. 

5 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

Specifying human computer interaction in a suitable manner requires a deep 
understanding of interaction as well as a powerful and understandable formal 
specification formalism. Interaction can be specified successfully using the con- 
cept of information resources and the formal notation of graph grammars. 

In order to achieve a continuous specification process between the require- 
meats and design stages a suitable strategy for refining abstract specifications 
into more concrete ones correctly and consistently is highly desirable. This pa- 
per proposes an approach by applying graph rewrite rules at a meta level to 
abstract graph grammar specifications. A meta rule of this kind refines the start 
graph as well as relevant graph rewrite rules of an interaction specification by 
adding new graph elements specifying new requirements resulting from a regular 
communication between the designer and customer. 

As main research goals for future work important issues concerning the cor- 
rect and complete definition of a strategy or of a calculus in order to achieve 
a continuous specification process for human computer interaction will be con- 
sidered. For a requirement arising as a result of discussions between customer 
and designer it has to be investigated how it could be formulated suitably by 
a correct meta rule. Beyond the ideas of proofs given in the last chapter the 
correctness and consistency of this rule has then to be proved. Another impor- 
tant question will concern the problem of how the deletion of certain features 
of specifications could be specified by suitable meta rules in order to deal with 
inconsistencies arising during the design process or with contradictory proper- 
ties possibly being existent from earlier specification stages, becoming evident, 
however, only later on. Further, the construction of meta rules contributing to 
collaborative specification processes is one of the most important future goals. 

Considering these and future questions highly encourages to develop a suit- 
able specification calculus in order to achieve a continuous specification process 
of human computer interaction between the requirements and the design stages. 
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