
ALBERT: A Formal Language and Its Supporting
Tools for Requirements Engineering

Eric Dubois

Facult~s Universitaires Notre-Dame de la Paix, Institut d' Informatique, Rue
Grandgagnage 21, B-5000 Namur, Belgium. Email: edu@info.fundp.ac.be.

1 I n t r o d u c t i o n

The use of formal specification languages has been proven useful in the develop-
ment of large and complex software such as safety-critical software. Specification
languages like Z, Larch and Statemate propose useful artefacts for modelling
and reasoning on the behaviour of the desired software. For Requirements En-
gineering (hereafter RE), similar artefacts are needed but with the objective of
capturing customers' descriptions related to a desired system.

Albert is (yet another) formal specification language proposed to support RE
activities. The design of the language started around 1992 within the framework
of the Esprit II project Icarus. The validation of the language constructs has
been achieved through the handling of non trivial case studies (ranging from
CIM to advanced telecommunication systems) performed by the members of
the team who developed the language [1]. The language has been the subject
of several technology transfer initiatives. In particular, it has been used by two
industrial partners in the context of the development and the evolution of two
large, distributed, software-intensive, heterogeneous systems (a video-on-demand ~
application and a satellite-based telecommunication system) [2].

Besides the development of the language, we have also started the develop-
ment of tools in 1995. This development is done within the framework of a 5
years project (25 man/year) where we have adopted an incremental strategy
resulting in the delivery of a first version of the tool in December 1997 and and
the delivery of second version of the tool in December 1999.

2 T h e A l b e r t language

Albert organizes an RE specification around the agents identified in the usage
environment, where an agent is an active entity that can perform or suffer ac-
tions that change or maintain the state of knowledge about the external world
and/or the states of other agents. Actions are performed by agents to discharge
contractual obligations expressed in terms of local constraints, applicable to the
agents itself, and cooperation constraints, that apply to the interactions between
agents. Hereafter, we illustrate the application of the language on the specifica-
tion of a fragment of a Video on Demand (Vod) system, i.e. a system consisting
of a set top box located in the home of a customer, connected to the television
set of the customer and which offers roughly the functionality of a video player.

323

A specification in Albert is made up of (i) a graphical specification component
in which the vocabulary of the specification is declared and of (ii) a textual spec-
ification component in which the admissible behaviors of agents are constrained
through logical formulas.

Figure 1 contains part of the graphical declaration of the VoD system ac-
cording to the Albert conventions. Each agent is represented by an oval and
multiplicity is indicated by shadowing an oval. Figure 1 also declares the inter-
nal structure of the VoD agent. It declares the state structure and the actions
that may happen during the lifetime of an agent and which may change the
state of the agent. State components are represented by rectangles and actions
are represented by ovals. State components are typed and actions can have typed
arguments. Types may vary from simple data types to complex data types (re-
cursively built using the usual data type constructors like e.g. set, sequence,
table, etc.). From graphical conventions used in fig. 1, we know that Movies and
Display are tables respectively indexed on MOVIE and ENDUSER (the type
associated the identity of the End-User agent) while List-cat corresponds to a
set of CATEGORY and is derived (see below) from the Movies component.

Content-Provider

/ ~Jl~o~ ~ I \

Fig. 1. The graphical declaration of the VoO system.

Besides graphical declarations, textual constraints are used for pruning the
(usually) infinite set of possible lives associated with the agents of a system.
As explained above, and also because we need this for naturalness, Albert sup-
ports two styles of specification. Those are reflected in 12 different templates of
constraints which are classified into Local C o n s t r a i n t s describing the internal
behavior of an agent and C o o p e r a t i o n C o n s t r a i n t s (describing the interaction
of agents within a society).

S t a t e B e h a v i o u r templates express restrictions on the possible values that
can be taken by the objects and data forming the state of an agent. These re-
strictions can be static (i.e. invariants which hold at any time) or dynamic (i.e.
depending on time). An example is:

The display of the categories list (ic) to a given End-User (eu) does

not last for more t h a n i'.

[-~ Lasts1, Display[eu] = lc]

324

A c t i o n c o m p o s i t i o n constraints define how actions may be refined in terms of
finely grained actions. Example is the following statement:

I
The Select-Movie-service action brought by an End-User has to be

followed by a Select-Category action made by this End-User or the

D isplay-Services-List.

Category-Selection
> eu.Select-Movie-Service < (> eu.Select-Category(c) @ Display-Services-List)

The interested reader can find the complete specification of the VoD system
in [2]. The semantics of an Albert specification is given by mapping it to a
real-time temporal action-based logic called Albert-Kernel.

3 D e v e l o p m e n t of tools for A L B E R T

At the moment, we have developed a first set of tools that are available and
accompanied by a set of documents including a reference and a user manu-
als. Basically, the supporting environment has been developed according to an
internet-based client/server architecture where The client part is called the "ed-
itor". It is running on a Windows 95 /NT platform and offers a set of basic
facilities which allow local work performed by the analyst. From a practical
point of view, this is this part of the environement that we distribute. Facilities
include:

- Editing the specification: both a graphical component as well as a textual
component are available for editing an Albert specification. In particular,
the two kinds of representation are managed in a consistent way (e.g., mod-
ifications brought at the graphical level are impacted at the textual level).

- Parsing the specification: at any moment, the analyst can decide to parse the
specification in order to check its conformance with the syntax. The scope of
the parsing has to be decided by the analyst. It can be concerned with the
parsing of one specific Albert statement or with the whole (or a fragment)
of the specification.

- Exporting the specification: the specification (both the graphical and the
textual parts) can be cut and paste from the editor to any kinds of OLE
compliant documents. For example, the graphical part can be put in a Word
document. This is also possible to generate the specification in an Ascii
format or a LaTeX format.

- Managing traceability links. Facilities are offered by the tools for managing
the links existing between fragments of the formal specification and various
semi-formal or informal sources of information coming from customers. This
is possible, for example, to relate formal Albert statements to informal in-
terviews, fragments of ERA diagrams or even videos capturing reM-world
scenes.

- Downloading the specification: at any moment, the analyst can decide to
download his/her specification on the server through internet. This is when
the analyst wants more complex checks (see below) be performed.

325

At the level of the server, the specification is stored in a deductive object-oriented
repository called ConceptBase. On the specification are performed a set of more
complex checks including a partial type checking as well as number of heuristics
applied for discovering basic incompletenesses and inconsistencies. All results of
these checks are presented to the client in a t ransparent way. The server par t is
running on top of a Unix platform. From a practical point of view (maintenance
and future development), this server is located at the University of Namur.

We plan to achieve a second version of the tool in December 1999. In this
version, we hope to integrate more advanced facilities at the validation and
verification levels.

At the validation level, we work on:

- a so-called 'paraphrazer ' supporting the analyst in a semi-automatic genera-
tion process of informal s tatements from the formal s ta tements written with
Albert templates;

- a distributed animation tool allowing the exploration of the different possible
lives associated with a specification.

At the verification level, progresses are towards:

- a tool supporting a ' f ramework ' for high-level reasoning. This is to support
the analyst in a rigorous (conceptual) reasoning which is at the basis of the
skeleton of a proof which can be passed to,

- the PVS theorem prover which will support a complete formal reasoning.
To this end, a syntactic embedding of the Albert semantics is done as well
a semantic one. The idea is to support both theorem proving and model-
checking techniques.

The actual architecture of tools will evolve in order to reach a clean dis-
tr ibuted objects architecture. According to the characteristics of the client plat-
form, specific parts of the tool will be downloaded on-demand. With this respect
we are investigating Corba, Java and JavaBeans.

Acknowledgements : Thanks are due to all the members of the ALBERT team: P.
Du Bois, F. Chabot, L. Claes, P. Heymans, B. Jungen, M. Petit, J.M. Zeippen. This
work is supported by the Walloon Region (DGTRE) Project CAT, contract nr. 2791.

References

1. P. du Bois, E. Dubois, and J-M. Zeippen. On the use of a formal requirements
engineering language: The generalized railroad crossing problem. In Third IEEE
International Symposium on Requirements Engineering. IEEE ICS Press, January
1997.

2. R. Wieringa and E. Dubois. Integrating semi-formal and formal software specifica-
tion techniques. In Information System Journal. (to appear), June, 1998.

