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Abstract:  

Symmetric Multiprocessor (SMP) systems normally provide both space-sharing and time-sharing
to insure high system utilization and good responsiveness. However the prevailing lack of
concurrent scheduling for parallel programs precludes SMP use in addressing many large-scale
problems. Tightly synchronized communications are impractical and normal time-sharing reduces
the benefit of cache memory. Evidence gathered at Lawrence Livermore National Laboratory
(LLNL) indicates that gang scheduling can increase the capability of SMP systems and parallel
program performance without adverse impact upon system utilization or responsiveness. 

Introduction

Parallel computer systems have been in use at LLNL since the introduction of a 126 processor BBN
TC2000 computer in 1989. Subsequent deployments of Meiko CS-2, Cray C90, Cray T3D, IBM SP, and
Digital Alpha systems have encouraged parallel application program development. The majority of
LLNL’s workload consists of numerical analysis programs designed for 16 to 256 way parallelism with
memory requirements in excess of one gigabyte, disk space requirements in the 10 to 10000 gigabyte
range, and execution times in the 1 to 40 hour range. 

While Massively Parallel Processing (MPP) systems are well suited for execution of existing programs,
the scheduling mechanisms available on some systems make program development somewhat difficult.
Once a parallel program on the Meiko CS-2 or IBM SP begins execution, processors are dedicated to the
program until its termination. Multiple parallel programs may execute concurrently on distinct
processors, but will not execute simultaneously on any processor. In order to provide good
responsiveness for program development at LLNL, small numbers of processors are placed in a partition
available only to programs with short execution times and small processor counts. Larger programs may
experience delays of many hours in order to execute outside of program development partitions. 

SMP systems normally have multiple processors sharing a common workload and memory. Distinct
programs may execute on each processor and a program’s threads of execution may migrate between
processors to provide good responsiveness and high system utilization. Many of our customers find the
programming environment on Digital Alpha computers to be particularly appealing with a large memory
space shared by eight to 12 processors. The Digital Alpha processor performance is also excellent and
attracts interest for execution of moderate size problems. Some applications require faster throughput
than can be provided by a single processor and utilize multitasking to achieve this. Multitasking a
program can provide some performance enhancement, but performance can vary widely with system



load. 

There are some UNIX scheduler implementation differences, but most systems maintain one or more
queues of runnable threads [1, 2]. Whenever a processor becomes available, the highest priority thread is
selected to execute. The thread’s priority may be based upon a history of recent processor utilization,
reason for last relinquishing a processor (eg. waiting for I/O completion), process nice value, and
priority class (real-time or time-sharing). The thread continues execution for some time quanta which is
dependent upon the process priority and priority class. This algorithm tends to maximize system
utilization and responsiveness. In most cases, no effort is made to concurrently schedule the threads
which comprise a single parallel program. On a computer without concurrent scheduling and more
runnable threads than processors, the components of a parallel program may experience synchronization
delays due to poor overlap in scheduling. Many tightly synchronized programs continuously poll
semaphores at synchronization points (spin-wait) rather than relinquishing the processor. Unless the
program’s threads of execution can be provided with processors in a synchronized fashion, this
spin-wait time can consume substantial resources without advancing the application’s progress. 

Figure 1 shows the behavior which might be experienced by a six thread parallel program executing on
an eight processor multiprogrammed computer without gang scheduling. Processor use for only a
portion of the parallel program’s execution time is shown. Other running programs consume the
remainder of processor resources and this is not shown. Most SMP systems fail to provide synchronized
compute resources for parallel programs and even slight levels of competition for processors can
severely impact the program’s performance. The problem is most severe for programs with large thread
counts on heavily utilized systems. 

 

Figure 1: Parallel program performance without gang scheduling

Gang scheduling groups a program’s parallel threads of execution into a gang, then concurrently
schedules an independent processor to each thread in the gang [5]. A thread here is broadly defined as
being a path of program execution which can proceed concurrently with others. Included in this
definition are processes generated by fork system calls, MPI (Message Passing Interface) and PVM



(Parallel Virtual Machine) programs, as well as Pthreads. MPI and PVM threads may span multiple
computers. Multiple programs may execute independently on distinct processors at the same time,
referred to as space-sharing. Time-sharing is supported by providing the gang scheduled program access
to processors as well as removing that access concurrently. Time-sharing is used to prevent starvation of
any program or achieve other resource distribution criterion. The gang scheduled program is provided
with the perspective of dedicated resources during its periods of execution, with the exception of
memory and I/O bandwidth. Figure 2 shows the dramatic reduction in spin-wait overhead which the
sample program might experience with gang scheduling on the Digital Alpha. While perfect
synchronization can not be provided with the Digital UNIX system’s infrastructure, it can provide quite
good synchronization as explored later in the paper. The program’s throughput can be significantly
improved by reducing spin-wait time without significant impact upon either overall system throughput
or responsiveness. Gang scheduling is one of those rare circumstances when it is possible to get
something for (almost) nothing. 

 

Figure 2: Parallel program performance with gang scheduling

Several studies of scheduling algorithms indicate that gang scheduling is a relatively good policy [5, 9,
14]. Gang schedulers have been implemented on a variety of computer platforms including Cray T3D
[6], Cray T3E [12], CM-5, and Silicon Graphics multiprocessor workstations [3]. This paper describes a
gang scheduler implementation for Digital computer systems and its performance characteristics both on
a single computer and across a cluster. 

Digital UNIX

LLNL has two clusters of Digital Alpha 8400 computers. The cluster for unclassified work includes
eight computers with a total of 80 440 MHz processors, 56 gigabytes of memory, and 800 gigabytes of
local disk. These computers are interconnected with a Digital memory channel with performance that
permits high-performance problems to effectively span a cluster. The memory channel has a latency of 3
microseconds and bandwidth in excess of 100 megabytes per second. This compares with 0.5



microsecond latency and bandwidth in excess of 500 megabytes per second for the computer’s bus. A
comparably sized cluster exists exclusively for classified work. 

The Digital UNIX 4.0D operating system includes a very fine grained fair-share scheduler called a class
scheduler. Each process and its threads may be associated with a specific class and each class has a
target resource allocation. If class scheduling is configured, each process is by default associated with
the class default. For example, consider an eight processor system with two classes defined: default and
gang.job.1. One might associate a four thread program with gang.job.1 and target the class at 50 percent
of resources to provide it with four processors. The remaining 50 percent of resources, or four
processors, would be available to processes in the default class and managed through normal UNIX
scheduling. 

Modifications to the class scheduler database are performed via an Application Program Interface (API)
to a class scheduler daemon. The class scheduler daemon’s database is propagated to the operating
system kernel immediately when a process is added or removed from a class. Changes in a class’ target
resource allocations are propagated to the kernel at configurable intervals of one second or longer. The
kernel then maintains precise resource utilization statistics for each class. These statistics are used in
conjunction with normal UNIX process scheduling priority to assign a runnable thread to a processor
available for scheduling. Threads belonging to classes exceeding their target resource allocation will
either be scheduled only to prevent a processor from becoming idle or will be completely prevented
from executing, depending upon a configurable parameter. Executing threads are not preempted prior to
completion of their normal time quanta nor are classes assured of achieving their target resource
allocation on a short-term basis, so a gang scheduler’s ability to concurrently schedule threads is
imperfect. 

While the class scheduler infrastructure may be less than ideal for implementing a gang scheduler, it
does offer some interesting capabilities. If a parallel program is unable to fully utilize its target resource
allocation, those resources (processors) are automatically reallocated to other programs in order to
sustain high overall system utilization. This minimizes the negative impact of unbalanced parallel
applications and those with significant I/O components. Processes run by user root are exempt from
class scheduling constraints, which insures that system functionality will be maintained at a cost of
reduced control for the gang scheduler. Since changes in a class’ target resource allocation require on
the order of one second to propagate into the kernel, gang scheduling with this mechanism necessitates
time-slice durations at least this large to be effective. 

Class scheduling makes no attempt to bind specific processors to specific threads. Digital UNIX does
calculate the highest priority thread for each available processor and the last processor used by each
thread is a factor in this calculation. This algorithm limits movement of threads between processors and
reduces the overhead of refreshing a processor’s cache. The overall rate of context switches for a
parallel program on a heavily utilized computer is reduced by about 50 percent with this gang scheduler
compared with normal Digital UNIX scheduling. Thread migration between processors is reduced by a
similar amount. The binding of threads to processors may very well reduce cache refresh overhead, but
at a cost of reduced processor scheduling flexibility. Investigation of this issue has been deferred. 

Table 1 illustrates the speedup actually achieved by a gang scheduled compute-bound benchmark on a
multiprogrammed computer. Efficiency here is defined as the speedup divided by the benchmark’s
thread count. This twelve processor system provided excellent speedup despite interference from about
twenty other runnable threads throughout the testing period (the computer was in normal production use



at this time with a heavy interactive load). Near perfect efficiency was achieved at low levels of
parallelism. High levels of parallelism experienced less efficiency and greater variation in results,
apparently due to difficulties faced by the class scheduler in managing far more runnable threads than
processors. 

Thread Count: 1 2 3 4 5 6 7 8 9 10 11

Speedup: 1.000 1.983 2.998 3.989 4.992 5.968 6.928 7.876 8.791 9.665 10.511

Efficiency
(Percent): 100.0 99.1 99.9 99.7 99.8 99.5 99.0 98.4 97.7 96.6 95.6

Table 1: Speedup achieved with gang scheduling on a busy computer 

Gang Scheduler Design

The gang scheduler developed by LLNL for Digital clusters is an evolution of earlier ones developed for
the BBN TC2000 [7, 8] and Cray T3D [6, 10, 11] systems. Both implementations were very successful
at adding a time-sharing capability to these MPP systems, which otherwise provided both space-sharing
and concurrent scheduling of resources. The Cray T3D was able to sustain weekly CPU utilization over
96 percent while the aggregate interactive workload slowdown was only 18 percent (amount by which
elapsed time exceeded run time). One important feature of this design is the classification of each
program in terms of scheduling requirements. The following prioritized job classes are supported in the
Digital implementation: 

Express jobs are deemed by management to be mission critical and are given rapid response and
optimal throughput. Programs may be placed into the express class only by system administrators. 
Interactive jobs require rapid response time and very good throughput during working hours. The
response time and throughput may be reduced at other times for the sake of improved system
utilization or throughput of batch jobs. 
Batch jobs do not require rapid response, but should receive very good throughput outside of
working hours. 
Standby jobs have low priority and are suitable for absorbing otherwise idle compute resources.
Programs are normally placed into the standby class after the user or his group have consumed
more resources than desired by management. 

Users may submit programs to the interactive, batch, and standby classes. The class of a program may
be altered to a lower priority class by the user at any time. The system administrator may set any
program to any job class. 

The implementations for BBN and Cray systems were able to take advantage of vendor supplied parallel
job initiation software to perform gang scheduling without application modification. The Digital
environment lacks a single parallel job initiation mechanism, making the application interface more
complex. At least four distinct parallel job initiation mechanisms exist: MPI, PVM, Pthreads, and fork
calls. These mechanisms are utilized through compilers, libraries, and/or explicit user request. It is also
common to combine multiple mechanisms in a single program, such as a PVM program spanning
multiple computers but using Pthreads within each computer for improved performance. 



For the Digital gang scheduler implementation, minor application or library changes were deemed
necessary to register each program and process to be gang scheduled. These functions are provided
through an API which issues Remote Procedure Calls (RPC) to one or more the gang scheduler
daemons. The program registration function includes the job class and for each computer to be used:
desired processor count, minimum processor count, desired real memory space, and desired disk space.
This RPC contacts the gang scheduler daemon on each computer to be used and returns a single global
job ID. For process registration, each process ID to be associated with a global job ID is specified.
These calls were embedded into LLNL’s version of the MPICH library and automate gang scheduling
for users of that library with the setting of an environment variable. Other programs must have the
necessary modifications made directly to the code, typically 20 to 50 lines of code. While this entails
some programming effort, it can function with any combination of programming models and
communications mechanisms within a computer or across multiple computers. A simple example of
program and process registration is shown in the appendix. Additional API calls can be used to
dissociate a process from a program, changes a program’s class, modify resource requirements, gather
resource utilization information, and query a computer’s load. API functions are provided for both C and
FORTRAN programs, which each account for roughly half of our workload. 

The API writes the program’s request into a file of a global file system and communicates with the gang
scheduler daemons using sockets and a well known port. The RPC contains user identification and the
file’s location. Daemons receive the RPC, confirm the file’s ownership for authentication, perform the
requested action, and reply over the socket. This mechanism provides good security, flexibility, and
performance. 

Program and computer status information is written to a globally readable file at the start of each gang
scheduler time-slice. An x-window program, xgang, reads this file and reports computer and program
status as shown in figure 3. Limited program modification capabilities are also provided by xgang. A
user may modify a program’s class, suspend, resume, or kill it across all computers with the push of a
button. xgang has also proven quite useful for monitoring overall system performance. 



Figure 3: Gangster display of Digital program and machine status

The class scheduler provides a reasonable infrastructure for gang scheduling, but some performance
enhancing tactics are used. A class is created by the gang scheduler for each registered parallel program
on every computer the program will use. When processes are registered as a component of the program,
their process IDs are added to the class. A class is allocated zero resources to stop the program, but this
may not be completely effective if idle processors exist on the computer. In order to more effectively
stop a program, the SIGUSR1 and SIGUSR2 signals are optionally used to pause and continue
programs. The API permits an application to explicitly disable gang scheduler use of these signals if
they are required by the program for other purposes, but doing so will reduce concurrency and may
reduce its performance. These signals also permit a more tightly synchronized stopping of a program at
the end of a time-slice than can be achieved by the class scheduler alone. Rather than waiting up to one
second to propogate new scheduling information to the kernel, these signals can stop a program



immediately. Rather than allocating resources to a class in proportion to the number of processors
desired, a higher target is specified and better overlap is achieved. This tactic effectively schedules
auxiliary threads, which consume few compute cycles but are common on many applications. For
example, a four thread program on an eight processor computer might be targeted to receive 60 percent
of the resources rather than 50 percent. The actual percentage used varies system load and has been
tuned to maximize parallel program overlap without causing significant reduction in responsiveness.
The maximum resource allocation to all gang scheduled programs is limited to a configurable level. This
may be used to insure that one or more processors are available to maintain overall system
responsiveness. 

Any gang scheduled program failing to utilize any CPU cycles for a configurable period of time,
currently 10 minutes, will cease being gang scheduled and will revert to normal UNIX scheduling.
Should the program resume consumption of CPU cycles, it will resume gang scheduling. This
mechanism effectively addresses programs waiting for input, network traffic, or otherwise stopped. Any
program faining to use any CPU cycles for an extended period, currently configured at 2 hours, is
completely removed from the gang scheduler database. 

One gang scheduler daemon executes on each computer. Programs spanning multiple computers contact
the appropriate gang scheduler daemons to be preallocated specific time-slices on each computer. An
Ousterhout [13] matrix is used to record these preallocated resources as shown in table 2. Each
processor is represented by one column of the matrix and each row represents one time-slice. At
prearranged times, the gang scheduler daemons allocate resources as specified in the Ousterhout matrix.
The last row in the matrix, time 4, is followed by repeating the cycle from the top, time 1. In this gang
scheduler implementation, the Ousterhout matrix describes a one hour schedule with the first time-slice
occurring on the hour and subsequent time-slices at intervals configured when gang scheduler is built.
All computers clocks must be synchronized to within a fraction of one second for concurrent scheduling
to occur. LLNL uses a Network Time Protocol (NTP) for clock synchronization, although the
Distributed Time Service (DTS) and other systems would equally satisfactory. The gang scheduler
daemon uses an alarm to awake at the appropriate time and runs as user root to avoid being subject to
class scheduling constraints. 

Computer East
CPU 1

Computer East
CPU 2

Computer West
CPU 1

Computer West
CPU 2

Time 1 Job A Job A Job B Job B

Time 2 Job C Job C Job C Job C

Time 3 Job A Job A Job B Job B

Time 4 Job D Job D Job D Job D

Table 2: Sample Ousterhout matrix

The gang scheduler is designed to provide each program with access to a similar quantity of processor
cycles whether registered for gang scheduling or not. The number of time-slices, or entries in the
Ousterhout matrix, allocated to a program spanning multiple computers is based upon the load on each
computer at program initiation time. The program is allocated a percentage of Ousterhout matrix entries



equal to its proportion of threads on the most heavily loaded computer. For example, a program
registering with the gang scheduler for four-way parallel on an eight processor computer with 12 other
runnable threads should be allocated 25 percent of Ousterhout matrix entries on that computer, or four
processors every other time-slice. A gang scheduler sub-system periodically may increase or decrease
the number of time-slices pre-allocated to a program spanning multiple computers as system loads vary. 

For programs which execute exclusively on one computer, scheduling decisions are made at the
beginning of each time-slice. These programs lack entries in the Ousterhout matrix, but make use of
available entries based upon current conditions. This permits the gang scheduler to rapidly respond to
changes in the workload. 

Time-slices are configured to be rather long, 30 seconds. While such a long time-slice reduce program
responsiveness, it was necessitated by two factors. Class scheduler resource allocation targets require on
the order of one second to be propogated to the kernel, resulting in unsatisfactory parallel program
overlap for time-slice durations less than about 5 seconds. Second, many programs exceed one gigabyte
in size and while context switching the processor may be performed in milliseconds, the time to refresh
the cache may be on the order of hundreds of milliseconds and the time to context switch memory
(paging one program from memory to disk and paging another program in the reverse direction) may be
several seconds. In order to provide faster responsiveness, the execution of a newly initiated program
may commence prior to the beginning of a new time-slice, if appropriate for the given workload. Also
note that programs not registered for gang scheduling are not subject to these time-slices, but are
scheduled using normal UNIX scheduling algorithms and compute resources not allocated to gang
scheduled jobs. 

Application Benefits

The most obvious benefit of gang scheduling to the application is the concurrent scheduling of required
resources. Tightly synchronized threads of execution typically perform spin-wait at synchronization
points rather than relinquishing their processors. Concurrent processor scheduling largely eliminates
spin-wait time. 

A second benefit of this gang scheduler implementation is that resources are allocated for much longer
time periods than normally provided by Digital UNIX, permitting more efficient use of memory
systems. Cache memory typically must be refreshed between context switches. By decreasing the
frequency of context switches about 50 percent, the overhead of cache refreshing will be reduced. The
applications typical of the LLNL workload utilize substantial memory resources. When several such
applications are running concurrently, paging adversely impacts the performance of each. 

While computer systems in which the number of executable threads never exceeds the number of
processors can achieve similar performance for individual programs without the use of gang scheduling,
this is difficult to achieve in practice. Computers designed as batch systems will have a regulated
workload, but without some level of processor oversubscription, I/O bound programs will waste
compute resources and even large compute-bound programs typically have I/O bound pre- and
post-processing periods. A processor oversubscription rate of 50 percent (threads of queued work
initiated on a computer equal to 150 percent of the processor count) largely eliminates idle processors
for our workload. This will result in some competition for processors and even slight competition for
processor resources can result in dramatic reduction in parallel program performance (five to 50 percent
was not unusual for a range of benchmarks). 



Application Consequences

While gang scheduling can provide the synchronization required by many applications, it can adversely
impact performance of others. Reduced performance has been observed for both I/O bound programs
and programs with severe memory contention. Most uniprocessor and SMP schedulers assign a high
scheduling priority to processes waiting for I/O completion. This scheme maximizes the throughput of
I/O bound programs without substantial impact upon processor availability. Since gang scheduling
blocks the program’s access to processors for some time-slices, the rate at which I/O requests can be
issued and the overall program throughput is reduced. If the program is primarily compute bound, the
Digital UNIX class scheduler will merely reallocate processors during periods of synchronous I/O and
maintain high system utilization without substantial impact upon the individual program. Contention for
the system’s memory banks can also reduce a program’s performance, particularly if its threads of
execution are repeatedly writing to the same memory bank. This problem has been observed in only one
parallel program performing repeated write instructions to a single memory location. The program was
modified to eliminate the memory contention bottleneck and an overall improvement in throughput
resulted. Since gang scheduling is provided only to programs explicitly registering for the service, gang
scheduling may be easily avoided when appropriate. When in doubt, it is a simple matter of performing
timing tests and comparing results to assess the benefit of gang scheduling. 

Results

Performance characteristics of several benchmarks developed by Brooks and Warren [4] were utilized to
assess the impact of gang scheduling. All benchmarks are tightly synchronized and compute bound, as is
typical of the LLNL workload as a whole. The benchmarks were executed on a 12 processor Digital
Alpha 8400 with 440 MHz clock and eight-way memory interleave. Twelve single-threaded application
programs were running concurrently with these timing tests to simulate interference which might
expected in a normal production environment. Table 3 and figure 4 show the performance of a 70 CPU
second Gaussian elimination benchmark. Twenty executions were made at each thread count, alternating
between gang and UNIX scheduling. Both mean and standard deviation values are report for MFLOP
measurements based upon CPU time used. This benchmark experiences superlinear speedup due to the
scaling of the cache size with processor count and high cache hit rates. Gang scheduling provided
consistent program performance and scaling with increasing thread counts. Without gang scheduling,
performance is good with small thread counts, but significant variation in performance occurred in each
execution. Higher thread counts in some cases result in reduced program performance and the standard
deviation in performance exceeds 10 percent in many cases. Gang scheduling benefits this benchmark
partly through the synchronized processor allocation, but also through reduced the cache refresh
overhead. The time period between synchronization points is inversely proportional to the thread count,
at six threads the time is 1.10 seconds.



Thread Count Gang Scheduled
MFLOPS

Gang Scheduled
Speedup

UNIX Scheduled
MFLOPS

UNIX Scheduled
Speedup

1 28.2 ± 0.4 1.00 29.9 ± 0.4 1.00

2 148.2 ± 2.1 5.25 127.4 ± 10.4 4.26

3 253.3 ± 3.4 8.98 163.6 ± 35.3 5.47

4 319.6 ± 2.3 11.33 287.4 ± 20.8 9.61

5 389.5 ± 7.5 13.81 280.1 ± 36.3 9.37

6 454.2 ± 8.2 16.11 268.7 ± 23.3 8.99

7 538.9 ± 13.7 19.11 226.0 ± 48.1 7.56

8 604.1 ± 9.8 21.42 104.5 ± 6.0 3.49

9 691.1 ± 10.4 24.51 136.6 ± 16.4 4.57

10 772.5 ± 9.0 27.39 145.3 ± 18.0 4.86

11 832.2 ± 10.5 29.51 191.9 ± 30.1 6.42

Table 3: Gaussian elimination benchmark performance 

 

Figure 4: Gaussian elimination benchmark performance



The second benchmark investigated is a 15 CPU second matrix multiply benchmark. The memory
requirements are sufficiently large to eliminate significant benefit of improved cache management.
Benefit is provided primarily through synchronized processor assignment and reduced spin-wait time.
The time period between synchronization points is inversely proportional to the thread count and is 2.67
seconds at six threads. Table 4 provides a summary of the results, but the results of individual timing
tests are quite interesting. As expected, gang scheduling provided consistently good performance results.
For most benchmark executions, normal UNIX scheduling provided similar performance to gang
scheduling, but on occasion provided dramatically worse performance. This benchmark was executed
twenty times at each thread count, alternating using UNIX and gang scheduling. An excerpt from the
five thread benchmark log follows: 

UNIX  615.16 MFLOPS
Gang  620.91 MFLOPS
UNIX  110.55 MFLOPS
Gang  623.83 MFLOPS
UNIX  110.64 MFLOPS
Gang  612.33 MFLOPS
UNIX  612.33 MFLOPS

Clearly the processes being managed by UNIX scheduling can result in substantial variation in spin-wait
overhead. The timing tests at many thread counts demonstrated one or more abnormally low
performance results. 

Thread Count Gang Scheduled
MFLOPS

UNIX Scheduled
MFLOPS

1 114.0 ± 0.4 111.8 ± 0.4

2 226.2 ± 0.9 227.5 ± 0.7

3 350.4 ± 0.2 347.8 ± 0.2

4 475.2 ± 2.7 469.7 ± 2.7

5 604.0 ± 4.8 403.1 ± 75.7

6 740.3 ± 5.7 737.5 ± 6.4

7 873.3 ± 8.7 728.6 ± 87.5

8 1002.4 ± 10.3 965.3 ± 23.7

9 1175.2 ± 12.8 1147.0 ± 23.5

10 1329.9 ± 16.8 1100.1 ± 124.9

11 1441.1 ± 14.8 1357.3 ± 72.5

Table 4: Matrix multiply benchmark performance  



Most of our numerical analysis programs do benefit significantly from the cache and their performance
characteristics seem to be best reflected by the Gaussian elimination benchmark. Typical parallel
application programs executing in LLNL’s normal production computing environment experience
performance enhancements of five to 50 percent through gang scheduling and the customer response has
been very positive. This gang scheduler has been in production use on some of LLNL’s compute servers
since July of 1997. No reduction in system utilization has been observed. During working hours, idle
time is typically zero, system time only a few percent, and user time in in excess of 95 percent. System
responsiveness is not noticeably reduced, although this has not been quantified. 

In order to offload some work from MPP systems, a very popular Arbitrary Lagrange-Eulerian (ALE)
hydrodynamics application was ported to the Digital cluster. Performance requirements dictated that this
application be executed over sizable numbers of processors. Performance results for this application are
shown in table 5 and figure 5 for both single computer and multiple computer executions. The Digital
memory channel interconnect shows excellent performance here for cluster computing. Single computer
and multiple computer executions show similar performance. The application displays near-linear
speedup with gang scheduling even for large thread counts spanning 8 computers. 

Thread Count
Run Time

1 Computer
(Seconds)

Run Time
2 Computers

(Seconds)

Run Time
4 Computers

(Seconds)

Run Time
8 Computers

(Seconds)

1 2313 NA NA NA

2 1235 1257 NA NA

4 632 656 XX NA

8 308 323 XX XX

16 NA XX XX XX

32 NA NA XX XX

Table 5: ALE hydrodynamics application performance 

Figure 5: ALE hydrodynamics application performance 

Conclusion

Gang scheduling can provide substantially improved performance for tightly synchronized parallel
programs in multiprogrammed environments, particularly those with large thread counts and substantial
cache use. This can be accomplished without reduction in system utilization or noticeable reduction in
responsiveness. Gang scheduling also provides the means of harnessing the power of an SMP cluster to
address large-scale problems without sacrificing a multiprogramming capability. These results were
achieved without binding threads to specific processors, although the benefit of this warrants further
investigation. 
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Appendix

The sample program shown below illustrates the program modifications required for gang scheduling.
Equivalent FORTRAN subroutines are also available. 

#include <string.h>
#include <strings.h>
#include <unistd.h>
#include "GangUserAPI.h"
#define CPU_COUNT 2

main(int argc, char *argv[])
{
    int i;
    char host[MAXHOSTNAMELEN];

    gsRetVal rc;
    struct GangJobId my_job_id;
    struct GangResources gang_resources[1];
    struct GangResources *gang_resource_list[2];

    /* Clear job_id on first call, otherwise the calls will apply to an existing program */
    /* One can modify resource requirements of a program during its execution */
    bzero(&my_job_id, sizeof(my_job_id));

    /* Define resource requirements for each computer to be used */
    gethostname(host, sizeof(host));
    strcpy(gang_resources[0].machine, host);   /* Computer’s name */
    gang_resources[0].cpu_count = CPU_COUNT;   /* CPU count desired */
    gang_resources[0].cpu_min   = CPU_COUNT;   /* Minimum CPU count acceptable */
    gang_resources[0].mega_mem  = 5;           /* Megabytes of memory desired (optional) */
    gang_resources[0].giga_disk = 1;           /* Gigabytes of disk desired (optional) */
    gang_resource_list[0]       = &gang_resources[0];

    gang_resource_list[1]       = NULL;         /* NULL terminated list of resources */

    /* Register the program */
    rc = GangJobRegister(&my_job_id, CLASS_INTERACTIVE, gang_resource_list);
    if (rc != gsSuccess) {
        printf("Error from GangJobRegister: %s\n", GangErrMsg(rc));
        exit(1);
    } /* if */
    printf("GangJobRegister completed successfully\n");   /* my_job_id is set */

    /* Fork processes as needed */
    for (i=1; i < CPU_COUNT; i++) {
        switch (fork()) {
        case -1:        /* Error */
            printf("Error forking process\n");
            exit(1);
        case 0:         /* Child */
            cpu_count = 0;
            break;
        default:        /* Parent */
            ;
        } /* switch */
    } /* for */

    /* Register each process */
    rc = GangProcAdd(&my_job_id, PROC_ID, getpid());
    if (rc != gsSuccess) {



        printf("Error from GangProcAdd: %s\n", GangErrMsg(rc));
        exit(1);
    } /* if */

    /* Run each process */
    printf("Running process %d \n", getpid());
    Parallel_Code();
    exit(0);
} /* main */
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