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A b s t r a c t .  A publicly verifiable secret sharing (PVSS) scheme, named 
by Stadler in [Sta96], is a special VSS scheme in which anyone, not 
only the shareholders, can verify that the secret shares are correctly dis- 
tributed. The property of public verifiability is what the first proposed 
VSS scheme [CGMA85] incorporated but later protocols [GMW87, Fe187, 
Ped91] failed to include. PVSS can provide some interesting properties 
in the systems using VSS. For instance, it gives a practical solution to 
(k, /)-threshold VSS assuming no broadcast channel. Stadler proposed 
two PVSS protocols: one is as secure as the Decision-Diffie-Hellman prob- 
lem and the other is not formally discussed about security. This paper 
presents a practical and provably secure PVSS scheme which is O([v[) 
times more efficient than Stadler's PVSS schemes where Iv[ denotes the 
size of the secret. It can be incorporated into various cryptosystems based 
on the factoring and the discrete logarithm to transform them into pub- 
licly verifiable key escrow (PVKE) systems. In addition, those key escrow 
cryptosystems can be easily modified into the verifiable partial key es- 
crow (VPKE) ones with the property of delayed recovery [BG97]. To the 
best of our knowledge, this is the first realization of a VPKE cryptosys- 
tem based on the factoring with the delayed recovery. 

1 I n t r o d u c t i o n  

1.1 (Ver i f i ab l e )  Secret Sharing 

Secret sharing (including verifiable secret sharing) is one of the most impor tant  
tools in modern cryptography. The concept and first realization of secret sharing 
were presented independently in [Sha79] and in [Bin79]. In a secret sharing (SS) 
scheme, there exist a dealer and i shareholders. The dealer splits a secret, s, 
into l different pieces, called shares, and sends each share to each shareholder 
through the private secure channels. If the dealer is honest, the collaboration of 
any number of shareholders more than or equal to k can recover s while if the 
dealer is dishonest, the collaboration of any k shareholders fails to retrieve the 
unique secret, s. Here k is called a threshold if any (k - 1) shareholders cannot 
recover the secret. 

Verifiable secret sharing (VSS) was proposed first in [CGMA85] to overcome 
the problem of dishonest dealers. In a VSS scheme, the shareholders can verify 
the validity of their shares, tha t  is, they can be convinced that  any group of 
more than or equal to k shareholders can recover a unique secret. VSS is known 
to play essential roles in various cryptographic protocols such as the mult i -par ty  
protocols [BGW88, CCD88], key-escrow ~cryptosystems [Mic92], and threshold 
cryptography. A VSS protocol is called non-interactive if shareholders can verify 
their shares without talking to each other or the dealer. Feldman and Pedersen 
contributed to non-interactiveness and improved efficiency [Fe187, Ped91]. 
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1.2 P ub l i c l y  Veri f iable  Secre t  Sha r ing  a n d  P rev ious  P r o p o s a l  

The first proposed VSS scheme [CGMA85] has the special property that  anyone, 
not only the shareholders, can verify that  the shares were correctly distributed 
to the shareholders. However, this property was lost in later efficient protocols 
[Fe187, Ped91]. In these schemes, each shareholder can verify the validity of only 
his own share. 

Recently, Stadler has paid attention to the lost property. In [Sta96], the 
property was called public verifiability and the VSS schemes with the above 
property were named publicly verifiable secret sharing (PVSS) schemes. 

Informally speaking, PVSS schemes require public-key encryption functions, 
E1 , . . . ,Ez ,  assigned to every shareholder Pi. The dealer encrypts the shares, 
(El(s1) , . . . ,  El(sl)), and sends them to a verifier (not only the shareholders). 
The dealer demonstrates to the verifier the validity of the encrypted shares 
without revealing ( s l , . . . ,  sl), and if possible, without revealing any additional 
information. From this model, clearly, the security for the dealer can not be 
higher than that  of the encryption schemes, E. Therefore security should be 
treated prudently in PVSS schemes. 

In [Sta96], Stadler presented two PVSS protocols: one is based on a discrete 
logarithm and the other is based on the RSA root problem. The first one is prov- 
ably secure assuming the intractability of the Decision-Diffie-Hellman (DDH) 
problem while the other was not formally discussed about security. 

1.3 Our Results 
Although Stadler's PVSS schemes are certainly more efficient than the first pro- 
posed one [CGMA85], they are still inefficient. The efficiency of his schemes is 
o((k + 01vl + llvl =) where Ivl denotes the size of the secret and l denotes the 
number of shareholders. 

We show a more practical PVSS scheme whose complexity is estimated to be 
O((k + 21)lvl). The validity against a dishonest dealer holds on a modified RSA 
Assumption and the security against the adversary who can obtain the shares of 
up to (k - 1) shareholders holds on a reasonable assumption (Assumption 8). It 
can be easily modified to yield publicly verifiable key escrow cryptosystems and 
publicly verifiable partial key escrow ones with the property of delayed recovery 
[BG97 I. 

2 N o t a t i o n  

Through out this paper, ZN denotes the residue class ring modulo N, and Z~v 
denotes the multiplicative group of invertible elements in ZN. Let r  be the 
number of Z~v (the Eulerian number of N). Let ( ~ )  be the Jacobi symbol of x 
over N where x, N E Z and QR(N) denotes the set of quadratic residue modulo 
N. "x ER S" means uniformly choosing a random element, x, from a set, S. I" I 
denotes binary length. [ a, b ) denotes {xlx E Z, a _< x < b}. Other symbols and 
definitions will be set as needed. 

3 Publ ic ly  Verifiable Secret Sharing 

3.1 T h e  M o d e l  o f  P V S S  

In this section, we define the threshold model of PVSS. We don't describe the 
general access structure model because it is not our aim. 
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A PVSS scheme is composed of three entities, a dealer, shareholders, and 
a verifier. Let U be a dealer, P 1 , . . . ,  PI be 1 shareholders, and V be a verifier 
where V is not required to be one of the shareholders. 

Let M E S  be a space of secret s and S H A  be a space of shares. Ak denotes 
a family of the shareholders defined by Ak := {AIA C_ { P I , . . - ,  Pt} A # A  = 
k}. Let Share : M E S  --* S H A  z be a probabilistic poly-time algorithm and 
Recover : S H A k  ~ M E S  be a deterministic poly-time algorithm. Let (s 
be a public-key cryptosystem: s denotes a set of the encryption functions and 
/)  denotes the set of the corresponding decryption functions. E E s and D E / )  
are defined by E: S H A  --.+ C Y P H E  and D E l): C Y P H E  ---+ M E S  where 
C Y P H E  is the image of E ( S H A ) .  Here assume that  E 1 , . . . , E t  E s are as- 
signed to the shareholders, P1,. �9 -, Pt respectively. We denote C Y P H E 1  x . .. x 
C Y  P H E~ by C Y  P H t. Pub V eri f y : C Y  P H s ---* {0, 1} is defined by a polynomial 
bounded interactive algorithm between U and V, denoted by (U, V), such that  
P u b Y e r i f y ( E l ( S l ) , . . .  ,El(s ,))  outputs  1 if the interactive algorithm, (g, Y), 
accepts ( E l ( S l ) , . . . ,  Ez(st)), otherwise outputs 0. 

In a PVSS scheme, the dealer runs algorithm Share and divides secret s into 
l shares: 

Share(s)  = ( s , , . . . ,  s,). 

He sends ( E l ( s l ) , . . . ,  Et(st)) to the verifier. The verifier checks 

P u b Y e r i f y ( E l ( s l ) , . . . ,  Ez(sl)) = 1. 

A PVSS scheme is called non-interactive if V can verif__y the validity wi thou t  
talking to any shareholder or the dealer. Here we denote (a l l , . .  �9 sll) by s I where 
s'i E C Y P H E , .  If P u b V e r i f y ( s ' )  = 1, a unique secret, s', should be recovered 
by the collaboration of any k shareholders with overwhelming probability, that  
lS: 

VA e Ak : Recover({Di(s'--i)lPi �9 A}) = s', 

where Di �9 ~ (called public vemfiability). If s' = ( E l ( s l ) , . . . , E t ( s t ) ) ,  s' is 
equivalent to the dealer's secret, s (called correctness). Here, in the P u b V e r i f y  
procedure, the verifier uses public parameters such as the public key of E (say 
pk) and parameters for secret sharing (say ssp). In the Recover procedure, each 
shareholder uses a secret key (say sk).  

Clearly, the security for the dealer depends on the difficulty of inverting of 
encryption function family s In PVSS schemes, the most secure case exists 
when we can prove that the conspiracy of any less than k shareholders can not 
compute secret s as long as they can not invert any Ej(s j )  where Pj doesn't 
join the conspiracy. So as to formalize this situation, we define the hard instance 
generators and the adversary model and then introduce the secrecy condition. 

D e f i n i t i o n  1. Let GE be a instance generator which on input 1 IMES[ out- 
puts ((pk, sk), ssp, y) where y �9 CYPHEpk .  CYPHEpk  is defined by encryp- 
tion function Epk and parameter for secret sharing ssp (ssp defines S H A  and 
CYPHEpk  := Epk(SHA)) .  We say GE is hard if every probabilistic polynomial 
time circuit family C, for given (pk, ssp, y) (taken from the distribution of GE), 
computes Dsk(y) with negligible probability e in IMES], that is 

GE is hard if VC: Pr[C(pk, ssp, y) ---+ Dsk(y)] < e. 

The probability is taken over the distributions of GE and C. 
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.ATOP denotes the set of the adversaries that  can obtain up to (k - 1) shares 
from shareholders and output  secret s. More formally, it is defined as follows: 

D e f i n i t i o n  2..A:DY is defined as the set of the adversaries such that  A D V  E 
A:D/3 is a probabilistic polynomial- t ime interactive algorithm which on input 
g:= ( ~ ' l , . . . , ~ )  E C Y P H  z works as follows: 

1. A D V  executes, with dealer U, PubVeri fy(g)  as a verifier. 
2. A D V  is allowed to ask oracle O up to (k - 1) queries at any time, namely, 

A D V  can ask the inverses of up to (k - 1) elements in g before, during, and 
after the execution of PubVeri fy(g) .  

3. A D V  goes the following step if oracle O returns the inverses of the queries 
otherwise A D V  quits. 

4. If  PubYeri fy(g)  = 1, A D V  outputs  s E R(g) where 

R(g) := {sl3A E .Ak : Recover({D~(~i)lP~ E A}) = s}. 

we denote this adversary model by ADVU'~ 

A PVSS scheme has the secrecy condition if the probabil i ty that  ADVU'~ 
outputs  s E R(g) is negligible in ]MES  I where the distribution of g follows that  
of a hard instance generator G E.  

We define a secure (k, /)-publicly verifiable secret sharing scheme as follows: 

D e f i n i t i o n  3. (Share, Pub V eri f y, Recover) is a secure ( k, /)-publicly verifiable 
secret sharing scheme if 

- ( C o r r e c t n e s s )  Vs E M E S  : 

Share(s) = (S l , . . . ,  sl) '.. PubVer i fy (E1 ( s l ) , . . . ,  Ez(st)) = 1, 

- ( P u b l i c  Ve r i f i ab i l i t y )  V~ E C Y P H  z, 3s E M E S ,  VA E .Ak : 

Pr[PubVerify(g) = 11 < Pr[Recover({D,(-gi)lPi E A}) = s] + e, 

where �9 is negligible in [MES[, and Di is the decryption function corre- 
sponding to Ei (The probabil i ty is taken over the coin tosses of U and V), 
and 

- ( S e c r e c y )  3 hard GE, VC, V A D V  E .A~'I2 : 

Pr[ADVU'~ E R(g)] < Pr[C(pk, ssp, ~) ---+ Dsk(~)] + c, 

where e is negligible in IMESI and the distributions of g, pk, ssp, and ~ are 
equivalent that  of hard instance generator GE. The probabil i ty is taken over 
the coin tosses of GE, U, and A D V .  
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3.2 A p p l i c a t i o n s  o f  P V S S  

The VSS schemes proposed by Feldman and Pedersen in [Fe187, Ped91] are ex- 
tremely efficient. Their schemes are even non-interactive. They are utilized in var- 
ious cryptographic protocols because of their efficiency and non-interactiveness. 
However, considering some applications, they also have some demerits. 

Assume that  U is a dealer and P1,. �9 �9 P1 are I shareholders in a network. Here 
suppose that they do not have any broadcast channel nor any bulletin board. 
In this situation, it seems to be difficult to construct a practical (k, /)-threshold 
VSS scheme by only using the techniques of [Fe187, Ped91]. Public verifiability 
can resolve the problem. 

We consider other applications. Assume a public-key cryptosystem with the 
key escrow property. Let U be a user of the network, V be the network manager 
or the Government and the other shareholders, P1, - - . ,  Pt, be escrow agencies. In 
the key escrow cryptosystems using the ordinary VSS schemes, V has to interact 
with escrow agencies every time each user U first joins in the network. Publicly 
verifiable secret sharing (PVSS) schemes can resolve this problem. V never have 
to wait for any acknowledgments from escrow agencies, while V itself can verify 
the validity of the shares. 

Moreover, the PVSS schemes can construct key escrow cryptosystems with 
hierarchy. This means that  there exist classes of escrow agents and the secret 
key of a lower escrow agent is escrowed by upper class escrow agents. 

4 B u i l d i n g  B l o c k s  

In this section, we prepare some building blocks for our protocol. By the space 
limitation, some protocols are described in Appendix. First of all, we set up two 
commitment schemes. 

Set=up: A verifier (or a trusted third party)  generates (N, b, gl,g2) and a se- 
curity parameter m(=  O([ND), where g = PQ where p --- ( P -  1)/2 and 
q = ( Q -  1)/2 (p r q) are primes and < b > = <  gl > = <  g~ > =  Gpq. The 
prover or the verifier decides v where v is co-prime to r  The verifier 
proves that  b, gl, g2 have the same order[FO97] and he knows b 1/~ by using 
zero-knowledge protocols [BCDG87, FFS88]. 

C o m m i t m e n t :  Three different forms of the commitments for secret s are uti- 
lized: SC(b,~)(s, v) := bSr ~ mod N, BC(b,g,)(s, r l ) :=  b'g~ 1 mod N, and 

b gl g2 m o d N ,  w h e r e r G 2 ~ r ,  r l , r 2 E 2 .  BC(b,g,,g~) (s, rl,r2):= 8 ~,  ~ 

The first commitment scheme, BC, has appeared in some previous papers and 
it is well known that  opening the commitment with different representations is 
equivalent to breaking RSA. The latter commitment scheme, BC, was presented 
in [FO97]. In [FO97], it was proved that  opening the commitment with different 
representations is as hard as breaking the factoring. 

In Crypto'97, [FO97] presented practical statistical zero-knowledge protocols 
to prove modular polynomial relations in the secrets by using commitment BC. 
The following protocols are an improvement. By using commitment BC, the 
protocols can demonstrate the s tatement  above more efficiently and in a perfect 
zero-knowledge manner (if including the set-up protocol) [Fuj98]. Those proto- 
cols are as secure against cheating provers as the RSA assumption. See Appendix 
for the actual protocols. 
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Check ing  P ro toco l :  a (perfect) witness hiding protocol between a prover and 
a verifier in which the prover, on input ( (g ,  b, v), c), convinces the verifier 
that  he knows (x, r) such that c = BC(b,~)(x,r). We denote the checking 
protocol by CHCK(b,~)(c).  

M o d - M u l t i  P ro toco l :  a (perfect) witness hiding protocol between a prover 
and a verifier in which the prover, on input ( (N,  b, v)cl, c2, c3), convinces the 
verifier that he knows (zl,  x2, z3, r l ,  r2, r3) such that  x3 -- xlx2 (mod v), 
el = BC(b,v)(Xl, rl),  e2 = BC(b,~)(z2, r2) and e3 = BC(b,~)(x3, r3). We de- 
note the mod-multi protocol by MUL(b,~) 
(cl, c2; c3). 

Squa r ing  P ro toco l :  a (perfect) witness hiding protocol between a prover and 
a verifier in which the prover, on input ((N,  b, v)c~, c2), convinces the verifier 
that he knows (Xl, x2, rl ,  r2) such that x2 - x~ (mod v), el = BC(b,v)(xl, rl), 
and e2 = BC(b,~)(x2, r2). We dcnotes the squaring protocol by SQU(b,v)(el;c2). 

P R O O F [ c  = BC(s )  A f ( s )  = 0 ]: a (perfect) witness hiding protocol between a 
prover and a verifier in which the prover, on input ((N, b, v), e), convinces the 
verifier that he knows (s, r) such that  f ( s )  = 0 mod v and c = BC(b,~)(s, r). 

Example 1. Suppose that  f ( X )  = X 3 - a (mod v). P R O O F [ c  = BC(s )  A 
f ( s )  = 0] is executed as follows: The prover sets (c', c") = (Be ( s2 ) ,  BC(s3))  and 
executes with a verifier SQR(b,~)(c : c') and MUL(b, , )(c ,  c' : c"). The prover then 
opens (e"b-a) sly. In general, provided f ( X )  = X e - a (mod v), P R O O F [ e  = 
BC(s )  ^ f (s)  = 0] is executed by ( log2e)SQR and d g ( l o g 2 e ) M U L ,  where 
dH(log 2 e) is the Hamming distance of e. 

4.1 C h e c k i n g  P r o t o c o l  I I  

The following protocol is a modification of "Basic Protocol" in [FO97]. It is a sta- 
tistical witness hiding protocol in which the prover, on input ((N, b, gl, g2), c, m), 
convinces the verifier that  he knows (x, r) such that  c = BC(b,g,)(x, r) and x G 
( a -2mv ,  a+2rnv), r G (-22mv, 22my). We denotes that  by CHCK2(b,g,,(a,v,m))(e). 

Pro toco l :  C H C K 2( b,g~ ,( a,,,m ) ) ( c ) 
C o m m o n  I n p u t :  ((N, b, gl, g2), (a, v, m), c) where m = o ( I g l )  and 1 / 4 N  < v. 
P r o v e r ' s  I n p u t :  (x, r) such that c -: BC(b,gl)(x, r) where x G ( a -  v, a + v) and 
r �9 (-2my, 2my). 

P r o v e r ' s  Cla im:  (x , r )  such that  e = BC(b,g~)(x,r) where x �9 ( - 2 ' n v  + 
a, 2mv + a ) and r �9 ( -22mv,  22my ). 

1. P sets 0 1 (Wl, w0) such that 
- w ~ ER [ 0, 2my) i fx  E [ a, a + v  ), otherwise w ~ e n  [ 2r~v, 2m+lv ), and 
- w~ GR [ 0, 22my ) if r E [0, 2my ), otherwise w~ GR [22mY, 22m+% ). 

P sets w ~ w~ by w ~ = w ~ - 2my and w~ -- w~ - 22"~v. P picks four elements, 
w2.,s 0 l w ~ )  ' ~,3 Gn [ 0, 2my ), then computes t i , j  -~ BC(b,g 1,g~)(w i , w j ,  where 
l < i , j < 2 .  

2. P sends to V, four unordered commitments, t/, i 's.  
3. V picks a challenge e En [ 0, 2 m) and sends it to P. 
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4. P sets X := e ( x -  a) + w ~ and R := er + w) such that  X �9 [0, 2my ) and 
R �9 [ O, 22my ), and he sends to V, the pair, ( X,  R, w?. ). z ,J 

5. V checks X �9 [ 0, 2my ) and R �9 [ 0, 2~mv ), and there exists a t~,j such that 

BC(b,g,,g,)(X,R,w~j) ~ t , , j(c,  boa) ~ (mod g ) .  

Here so as to prove soundness we state the modified RSA assumption [FO97]. 

A s s u m p t i o n 4 .  ( M o d i f i e d  R S A  A s s u m p t i o n )  There exists a probabilistic 
polynomial-time generator A which on input 11NI outputs  (N, Y) such that  for 
any probabilistic polynomial-size circuit family g, the probability that C can on 
input (N, Y) �9 Z x  Z~v outputs  (e, Y~I~ mod N) where e > 1 is negligible in IN]. 
The probability is taken over the random choices of A and C. 

L e m m a  5. Under Assumptwn .~, there exists a probabilistic poly-time knowledge 
extractor M such that for any probabilistzc poly-time algorithm P* if probabilistic 
interactive algorithm (P*, V)  accepts with non-neghgible probability in ]NI, then 
M with P* as an oracle can extract (x, r) with non-negligible probabdity in IN[ 
s ch that e = BC( , where �9 ( - 2 a v + a ,  2 a v + .  ) and r �9 ( 2 av ). 
S k e t c h  o f  P roof :  

M can extract the pairs, (ti,j, e, X,  R, wi2j) and ( t i j ,  e', X' ,  R', wi2j) where 
e,e '  �9 [0, 2 m ) (e # e'), X , X '  �9 [0, 2my) ,  and R , R '  �9 [0, 22mv). Then, 
under the modified RSA assumption, we can prove that  c _~ ba~gla~ (mod N) 
where Ax -- a = x - x '  and Ar = n - n '  (See [FO97]). Clearly Ax �9 ( --2my + 

e - - e  I e - - e  I 

a,2mv + a ), Ar �9 ( --22mv,22mv ). 0 

L e m m a  6. CHCK2(b,g,,(a,v,m))(c) is statzstical witness indistznguishable if x �9 
( - v + a ,  v + a  ), and r e ( -2mv ,2mv  ). 

4 . 2  T r a n s i t  P r o t o c o l  

The transit protocol is a statistical witness hiding protocol in which the prover, 
on input ((N, b, gl, g2, vl, v2)cl, c2), convinces tile verifier that he knows (Xl, x2, rl,  r2) 
such that  xl mod vl = x2 mod v2, el = BC(b,v,)(Xl, r l ) ,  and e2 = BC(b,~2)(x2, r2). 
We denotes the transit protocol by TRAN(b,~,,~2)(Cl,C2 ). The complexity of 
TRAN(b,~I,,2)(cl,c2) is that  of 4 * C H C K  + C H C K 2 .  

P r o t o c o l :  TRAN(b,~,,2)( cl , c2) 
C o m m o n  I n p u t :  ((N, b, Vl, v~, gl, 92), m, (el, c~)) where m = O(IN]) and 0 < 
2 m + l v l  < VS. 
P r o v e r ' s  I n p u t :  (xl ,  x2, r l ,  r2) such that  cl = SC(b,~l)(xl, r l )  and e2 = SC(b,,2) 
(x2,r2) where xl �9 [ 0,vl ), x2 �9 [ 0,v2 ), x2 = xl + (2 m - ~)vl, and ~ �9 {0,1}. 
P r o v e r ' s  Cla im:  (xl,  x2, r l ,  r~) such that  el = BC(b,,,)(Xl, r l )  and e2 = BC(b,,~) 

where x, = (mod v , )  

1. P sets ~ =  BC(b,gD(x2,a) and sends it to V. 
2. P executes with V, 

C " " ~ C H  K(b,,l)(e,), CHCK(b,~)(e2), CHCK(gl,,,)(-~I ), CHCK(g,,v,)(-~2 ), 

and CHCK2(b,g~,(2,~,,~,,m))('~). 
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L e m m a  7. Under Assumption ~, there exists a probabzhstic poly-time knowledge 
extractor M such that for any probabdzstic poly-time algomthm P* if probabilis- 
tic interactive algorithm (P*, V )  accepts with non-negligible probability in INI, 
then M with P* as an oracle can extract (xl ,  z2, r l ,  r2) with non-negligible prob- 
ability in INI such that cl = BC(b,,I)(Xx, rl),  c2 = BC(b,~)(z2, r2), and Zl = x2 
(mod Vl). 

S k e t c h  o f  P r o o f :  

Assume that  ~ = SC((b,as)(X , a).  By C HC K (g l ,~ , ) (~ )  and CHCK(g , , ,~ ) (~ ) ,  
we can show that  x = xl +k lv l  = x2+k2v2. As CHCK2(b,aI,(2,~,~,m))(-d) gives 
that  0 < x < 2re+iv 1 (< v2), we can show x = x2 and Xl = x2 mod vl. fq 

5 P u b l i c l y  V e r i f i a b l e  S e c r e t  S h a r i n g  S c h e m e  

Hereafter, ( s  denotes the RSA cryptosystem, pk := (n, e), sk := d, ssp := 
(v, m),  M E S  := Z~, S H A  := ( (2 m - 1)v, (2 m + 1)v ), E := RSAn,e,  where 
RSA,~,~(x) := x e mod n, and C Y P H E  := {ylx �9 S H A A y  := x ~ mod n}, where 
1 ~lnl < Ivl < Inl - (m + 1), and m = O(Ivl). 

Here we give an assumption. If the modified RSA assumption and the fol- 
lowing assumption hold true, our proposed PVSS scheme can be proved to be 
secure (k, l)-publicly verifiable secret sharing schemes (Our proposed PVKE and 
PV P KE systems based on the factoring can also be proved to be secure under 
these assumptions while those based on the discrete logarithm are not). 

A s s u m p t i o n 8 .  Let E := ( E l , . . .  ,El)  where Ei �9 s and 

S := {C E C Y P H I I 3 s  �9 Zo,VA �9 Ak : Recover({Di(Ci)lPi �9 A}) = s}. 

There exist two probabilistic polynomial-time l-tuple instance generators, G(~ ) 

and G (2) having the following properties: E , 

- G(~ ) and G(~ ) are l-tuple hard instance generators (hard instance generator 
assumpt,on (see Def. a)), 

--  C 1 e--- G (1)  C 2 G ( ~  ) E , ~- : C1 G S a n d  C2 r  and 
- there exists no probabilistic polynomial-time circuit family A, which on input 

(Ca, Cz),  such that  3poly(.), n ~ cx~: A guesses correctly with the probabil- 
x (computationally indistinguishable assumption). ity greater than �89 + 

Here we present a secure (k, /)-threshold publicly verifiable secret sharing 
scheme (PVSS scheme). Let D be a dealer, P 1 , . . . ,  Pt be participants (or share- 
holders), and V be a verifier. (N, b, gl,g2, v, m)  denotes a set of the public pa- 
rameters and (ni ,ci)  denotes an RSA public key of Pi, where v is a prime of 
1~2[nil < ]vl < ]nil - (m + 1), and m = O(]v D = O(IN]). D has secret s E Zv. 

The dealer D chooses a polynomial 

k - 1  

/ ( x )  :=  s + 

j = l  

(mod v), 
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where s is D's  secret, each aj Eft Z~, and ak-1 • 0. Then D sets, for i = 1 , . . .  ,1, 
si := (f(i) mod v) + (2 m - 6i)v where 6, E {0, 1}. Here note that (2 m - 1)v < 

~' mod ns for i = 1, . .  I. si < (2 m + 1)v. D sets and broadcasts Ci := s i ., 
The protocol is as follows: 

[ C o m m o n  I n p u t ]  (N, b, gl, g2, v, m), {(hi, ei)}, (C1,. . . ,  Ct). 
[Dea le r ' s  Claim] he knows (C~/~1 rood n l , . . . ,  C)/e~ mod n , ) such  that  

k - 1  

(C)/~' mod hi) = s + E ajiJ 
3 = 1  

(mod v). 

[P ro toco l ]  

1. D sets and sends to V Co = BC(b,v)(s, ro) where r0 E/~ Z~v. 
2. D sets, for j = 1 , . . . , k -  1, cj = BC(b,~)(aj,r~), where r l , . . . , r ~ - i  ER Z~r. 

Then, for i = 1 , . . . , l ,  D sets Ai = BC(b,~)(si,ti) and Bi = BC(b,,,)(si,r~) 
k - 1  i J ! , where ti := l-Ij=0 rj mod N and r, Etr ZN. D broadcasts (ca, . . .  ,ek-1), 

( A , , . . .  , a l ) ,  and (B1 , . . . ,  BI). 
3. V checks 

k - 1  

A,=l-Ic~." (rood N).  
j = O  

4. For i = 1 , . . . ,  l, D executes with V TRAN(b,,,~.)(Ai, Bi) and PROOF[Bi = 
BC(b,n,)(si) A Di(si) = 0 mod ni] where Di(X) := X ~' - Ci. 

L e m m a 9 .  Under Assumption 4, 

f( i)  - (C 1/~' mod ni) (mod v). 

From Lemma 7, the proof is obvious. 

T h e o r e m l O .  Under Assumptions, 4 and 8, the proposed protocol is secure 
(k, l)-publicly verifiable secret sharing. 

Ske t c h  o f  P r o o f :  
From Lemma 9 and analogies of the traditional VSS schemes, the correctness 

and public verifiability are obvious, because any k shareholders, P j l , . . . ,  Pj , ,  can 
recover a unique and valid secret s by 

k 
j i  , , ~ d j ,  

s = E ( H  ~ ) ( ( Y L  mod n j , ) m o d  v. 
i = 1  i ' r  

(1) 

We consider the secrecy condition. Our protocol is statistical zero-knowledge 
if the set-up protocol is executed. Therefore, without loss of generality, we can 
consider A D V  U'~ as A D V  ~ that  works as follows: 

1. Input, to ADV,  C := ( C t , . . . ,  Ct)E C Y P H  l generated by GE. 
2. ADV sends (C j l , . . .  ,Cj~_x) to oracle O. 
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3. If oracle O returns (Djl(Cil) , . . .  ,Djk_,(Cjk_l)), ADV outputs s �9 R(~) 
with non-negligible probability where 

R(~) := {slqA �9 Ak : Recover({ni(-gi)lPi �9 A}) = s}, 

otherwise ADV quits. 

Let G(~ ) and G(~ ) be the same defined in Assumption 8. We have G(~ ) generate 
C := (C1,...,C1). We randomly choose ( j l , . . . , j l - 1 )  �9  ( 1 , . . . , / )  and then 

8 t S t ch~176 "" s~" �9 ( ( 2 m - 1 ) v ' ( 2 m + l ) v ) s u c h t h a t E j , (  j l )""  EJ'-I( j,-1) 
3 1 '  " ~ 3 1 - - 1  , ' ' 

are taken from the distribution of G(~). Let C;, := Ej,(s ~. ) We input (C ~., C ~. 
.7, �9 j , ' ' ' )  j l _ l )  

Cj,) into ADV. If Cj, is not included in (k - 1) queries of ADV, we answer their 
corresponding RSA roots to ADV,  otherwise quit. If ADV outputs s �9 R(~) 
= {slqA �9 Ak : Recover({Di(~i)lPi �9 A}) : s}, and Pj, �9 A, from Lemma 9 

and the property of G (2) C d'z E , we can compute mod n j, by 

k - 1  

C;" mod nj, = (s + E at f f  mod v) + (2 m - 6)v 
t = l  

where 6 �9 {0, I} and at = ~-~=l(I-l/,#i "J~--" )s~ mod v. This strategy succeeds 
3 , - 3 , '  ~ 3, 

with non-negligible probability in ]v]. [] 

6 P u b l i c l y  V e r i f i a b l e  K e y  E s c r o w  ( P V K E )  C r y p t o s y s t e m s  

6.1 P V K E  c r y p t o s y s t e m  b a s e d  on  t h e  f a c t o r i n g  

In this section, we describe a (k, /)-threshold publicly verifiable key escrow (PVKE) 
scheme based on the factoring. 

Let U be a user, P1,. . . ,  Pt be trustees and V be a verifier. Let (N, b, gl, g2, m) 
be the public parameters, (hi, el) denotes a public key of Pi and (n, e) denotes 
a public key of U, where (_~!) = 1, 1~2[nil < Inl < In i l -  (m + 1), and m = 
O(Inil) = O(INI). 

The user U generates (u, s) such that  u 2 = s 4 mod n and (~) = -1 .  U choose 
a polynomial 

k - 1  

f ( X )  :-- s + E ajXJ (mo d n ) ,  
j - - - -1  

where aj ER ~n, and ak-1 ~ 0. Then U sets, for i -- 1 , . . . ,  l, si := (f(i)  mod n)+  
(2 m - 6i)n where dfi E {0, 1}. Here note that  (2 m - 1)n < si < (2 m + 1)n. U 
broadcasts (u, C 1 , . . . ,  Ct) where Ci := s f '  mod hi. 

U executes with V the following protocol: 

[ C o m m o n  Inpu t ]  (N,b, gl,g2,m), {(ni,ei)}, (n,e,u), (C1,.. .  ,Cj). 
[User 's  Claim] he knows (C~/~', . . . ,  C}/~') such that  

k - 1  

(CJ  e ' m o d n i ) - s + E a j i j  ( m o d n )  a n d s  2 - s  4 (modn) .  
j - - - -1  
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[Protocol] 
1. U sets and sends to V co = BC(b,.)(s, to) where ro eR Z~v. 
2. U executes with Y PROOF[co = BC(b,.)(s)Ah(s) = 0 mod n] where h(X)  = 

X 4 _ u S. 
3. U executes with V the above-mentioned PVSS scheme from Step 2, replacing 

v with n. 

Note: U has to give V the evidence that n consists of two primes before the 
protocol begins. A non-interactive proof for this purpose is described in [Mic92]. 

L e m m a 1 1 .  Suppose that (~) = -1 ,  ( 3 ) =  1 and u ~ = s 4 (rood n). (u + s ~) 
are non-trivial factors of n. 

T h e o r e m 1 2 .  Under Assumptions, 4 and 8, the proposed protocol zs secure 
(k, l)-pnbhcly verifiable secret shamng. 

6.2 P V K E  cryptosystems based on  t h e  d i s c r e t e  l o g a r i t h m  

Due to the space limitation, we describe it in Appendix. 

7 P u b l i c l y  V e r i f i a b l e  P a r t i a l  K e y  E s c r o w  C r y p t o s y s t e m s  

This section presents (publicly) verifiable partial key escrow cryptosystems. Ver- 
ifiable partial key escrow (VPKE) is well described in [BG97]. In VPKE cryp- 
tosystems, the escrow agencies (shareholders) are only allowed to share pavt~al 
infor~matwn of users' private keys, so as not to recover a large number of users' 
private keys at the same time by malicious authorities. On the key recovery 
phase, the escrow agencies require a non-trivial amount  of work to find private 
keys from the corresponding partial informations. In the VPKE cryptosystems, 
the most serious problem is the early recovery attack, pointed out in [BG97]. The 
early recovery attack is that  the escrow agencies compute the unescrowed infor- 
mation of the private key before the collaboration and recover the whole private 
key quickly after the collaboration. To overcome this attack, [BG97] presented 
a VPKE cryptosystem with the delayed recovery property. The delayed recovery 
is opposite to the early recovery: In VPKE systems with the delayed recovery 
property, the agencies can not compute unescrowed informations before the col- 
laboration and require non-trivial amount to recover the private keys after the 
collaboration (See [BG97] for details). Their scheme was based on the discrete 
logarithm and, to the best of our knowledge, no one seems to have presented any 
VPKE cryptosystem with the delayed recovery based on the factoring after their 
work [Mao97]. In the following, we describe (Publicly) VPKE cryptosystems, one 
based on the factoring and the other based on the discrete logarithm. As men- 
tioned above, the factoring-based one seems to be the first VPKE cryptosystem 
based on the factoring with the delayed recovery. 

Let U, P1 , - - . ,  Pl, and V be the same as described above. Let (N, b, gl, g2, m, 
{(ni, ci)}) be the same as above, too. M E S  := Z, .  However, S H A  and C Y P H E  
are little changed as S H A  := ( -2my ,  2my ) and C Y P H E  := {ylx E S H A A y  := 
x ~ mod n}. 

s E Z~ denotes the secret of user U, f ( X )  is a random polynomial, and 
( s l , . . . ,  sl) denote its shares. In stead of setting si := (f(i) mod n) + (2 ~ - 6i)n 
as in the prior PVKE schemes, U sets si := ( f ( i )  mod n) - 6,(m - v), where 
5 E {0, 1} and v is n in the factoring systems and q in the discrete logarithm 



43 

systems. U sends (C1 , . . . ,  Ct) to verifier V where Ci = Ei(si). U executes with 
V, on input (C 1 , . . . ,  C~), the mentioned-above PVKE cryptosystems replacing 
protocol T R A N  with T R A N 2  (See Appendix). Then the following lemma can 
be proved. 

L e m m a 1 3 .  Under Assumptzon 4, 

f ( i )  -- ((C)! e' --6iv) mod ni) (mod n), where 6i G {0,1}. 

T h e o r e m  14. Under Assumptions, 4 and 8, the P V P K E  system based on the 
factoring is secure (k, O-publicly verifiable secret sharing. 

Note that  Assumption 8 in this section is a little different from this assumption 
in the previous sections because S H A  and C Y P H E  have been a little changed 
in this section. 

If k is enough large (e.g. k = 48), these protocols are partial key escrow 
cryptosystems with the delayed recovery property. Before the collaboration, it is 
impossible to determine 6i, and after the collaboration, trustees require almost 
2 k trials to find s such that s 4 - u  2 - 0  ( m o d v )  ( o r y = g S m o d p )  from 

k 
ji )(( ~d,, 

s : = Z ( H ~ , , C , ' j ,  - 6 j ,  v) m o d n j , ) m o d v ,  where6j ,  E{O, 1}. 
i=1 il#i 

8 Conclusions 

We have presented a provably secure PVSS scheme which is O(Ivl) times more 
efficient than Stadler's PVSS schemes, where Iv] denotes the size of the secret. 
It can be incorporated into key escrow cryptosystems based on the factoring 
and the discrete logarithm, and can transform them to publicly verifiable key 
escrow (PVKE) ones or publicly verifiable partial key escrow ones. The PVKE 
and P V P K E  systems based on the factoring can also be proved to be secure 
while those based on the discrete logarithm were not. 
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A Building Blocks 

A.1 B u i l d i n g  B l o c k s  for  P R O O F [ c  = B C ( s )  A S ( s )  = 01 

[Check ing  P r o t o c o l ] :  CHCK(b,~)(c) 

1. P computes and sends to verifier t := BC(b,~)(w,rl) where w En Z~, and 
en ZTv. 

2. V chooses e ER Zo and sends it to the prover. 
3. P sends (X,R)  to the verifier such that X := es + w mod v, and R := 

re~lb ~ mod N where k = /~'--~-r-/. t. ~ .l 

4. V checks that  BC(b, , ) (X,R) = t .  c ~ (mod N).  

[ C o m p a r i n g  P r o t o c o l ] :  COM(b 1,b~,v)(el, c 2 )  

A perfect witness hiding protocol between a prover and a verifier in which 
the prover, on input ((N, bl, b2, v), cl, c2), convinces the verifier that  he knows 
(z, r l ,  r2) such that  cl = BC(bI,,)(x, r l )  and e2 = BC(b2,,)(x, r2). 

1. P computcs and sends to vcrifier, Ii := DC(bl,~)(w, 'll) and t2 := BC(b~,~)(w, '12) 
where w ER Zv, and rh, t/2 En Z~v. 

2. V chooses e En Z~ and sends it to the prover. 
3. P sends (X, R1,R2) to the verifier such that  X := ex + w mod v, R1 := 

~ ~ ~ / ~___+_~_/. rlThb 1 mod N,  and R2 := r2t/2b ~ mod N, where k = L ~ J 
4. Y checks that  BC(b ,,v)(X, R1) = t l  �9 c~ (mod N) and BC(b2,v)(X, R2) = 

t2-c~ ( m o d N ) .  
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[ A d d i n g  P r o t o c o l ] :  ADD(b,v)(Cl, c2 : c3) 
A perfect  witness hiding protocol  be tween a prover  and a verifier in which 
the  prover ,  on input  ( (N,  b, v), Cl, e2, c3), convinces the verifier t ha t  he knows 
(Xl, x 2 , x 3 , r l , r 2 ,  r3) such tha t  x3 = xl  + x2 (mod v), cl = BC(b,,)(xl ,rl) ,  
c2 = BC(b, ,)(x2,  r2) and c3 = BC(b, ,)(x3,  r3). The  protocol  is executed  as fol- 
lows: P executes  with V CHCK(b,v)(Cl), CHCK(b,,)(c2), and CHCK(b,v)(c3). 
P then  reveals (ClC~C31)U ~ and V checks it. 

[ M o d - M u l t i  P r o t o c o l ] :  MUL@,v)(el, c2: c3) 
P executes  with V CHCK(b,~)(cl). P then executes with V COM(b,~,,,)(c2, c3). 

N o t e :  As c3 b ~ : 3 r 3  v : x 2  k - z ~  v = c 1 (b r 1 r3) where x3 = x l . x 2 + k v ,  P can 
execute  COM(b,~,,)(c2, c3). 

[Squaring Protocol]: SQR(~,,)(c~ : c~) 
T h e  prover  executes with the verifier COM(~,r c~). 

L e m m a  15. Under the RSA assumption, the protocols mentioned above are per- 
fect witness hiding. 

Detai ls  and some secur i ty  r emarks  are described in [Fuj98]. 

A . 2  B u i l d i n g  B l o c k s  f o r  t h e  P V P K E  c r y p t o s y s t e m s  

P r o t o c o l :  TRAN2(b,vl,v2)(cl, c2) 
C o m m o n  I n p u t :  ( (N,  b, Vl, v2, gl ,  g2), m, (cl ,  c2)) where m = O( IN[ )  and 0 < 
2mVl < V2. 
P r o v e r ' s  I n p u t :  (x l ,  z2, r i ,  r2) such t ha t  c1 -- BC(b,v~)(xl, r l )  and c~ -- BC(b,~)  
(x2, r2)  where Xl E [ 0, vl ), x2 E [ 0, v2 ) and x2 -- Xl or Xl - vl + v2. 
P r o v e r ' s  C l a i m :  (Xl, r l ,  x2, r2) such tha t  el -- BC(b,vl)(xi, rl) and c2 = BC(b,v2) 
(x2, r2) where xl - (x2 - 3v2) (mod  vl)  where $ �9 {0, 1}. 

1. P sets ~ = BC(b,9~)(x, ~) and sends it to V where x := xl  or x l  - vl.  
2. P executes  with V, 

CHCK(b,v,)(cl), CHCK(b,~2)(c2), CHCK(aI,~D( ~I), CHCK(a,,v2)(-~2), 

and CHCK2(b,a,,(o,v~,m))(~). 

L e m m a 1 6 .  Under Assumpt,on 4, there exists a probabdistic poly-time knowl- 
edge extractor M such that for any probabilistic poly-t~me algorithm P* if prob- 
abilistic interactive algorithm (P*, V)  accepts with non-negligible probabddy in 
[NI, then M with P* as an oracle can extract (xl ,  x2, rl,r2) with non-neghgible 
probability in IN I such that c 1 : SC(b,vl)(xl,rl)  , c2 : SC(b,vz)(x2,r2), and 
x, -- (x2-6v2) (modv,) where 6 �9 {O,l}. 
Sketch of Proof: 

Assume tha t  ~ = BC(b,a,)(x, (~). By - z CHCK(a~,vl)(~) and CHCK(a~,v2)(~), 
x = Xl + klVl = x2 + k2v2. As CHCK2(b,a~,(o,~,,m))(-Q gives t ha t  ( -v2  < )  
-2mv l  < x < 2rnVl ( <  v2), we can show tha t  x = x2 or x2 - v2. Therefore ,  
X l - - ( x 2 - 3 v 2 )  ( m o d v l )  w h e r e 6 E { 0 , 1 } .  [] 
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B P V K E  cryptosystem based on the discrete logarithm 

[ C o m p a r i n g - w i t h - D L  P r o t o c o l ]  CO M DL(b,g,q)(c, y) 
C o m m o n  I n p u t :  (g,b,g,p,q) and (c,y) where qlP - 1 and < g > =  Gq C Zp. 
K n o w l e d g e  o f  P r o v e r :  (z, r) E Zq • Z~r such that  y = g* rood p, and c = 
BC(b,q)(X , r).  

1. P chooses (w,~) ER Zq x Z~v and computes t = BC(b,q)(W, rl) and u = 
gW mod p. 

2. P sends to V, (t, u). 
3. V picks e ER Zq and sends it to P.  
4. P sets X := ex + w mod q and R := reTlb k mod N where k = /~JL+--w-/ P 

t .  q A "  

then sends to V, (X, R). 
5. V checks BC(b,q)(X,R) - tc ~ (mod N)  and gX - uye (mod p). 

L e m m a l 7 .  Under the discrete logarithm assumption and Assumption 4, the 
protocol above is perfect witness hidzng. 

Let U, I ' t , . . . ,  Pt, V be the same ,as described above. Let (N, b, gj, g2, m, {(hi, ei)}) 
be the same as above, too. (p, q, g, y) denote public parameters of U for the dis- 
crete logarithm cryptosystems where ord(g) = q, 1/21n~1 < Iql < In~l - ( m  + 1), 
and y E Gq. s E 2~q denotes the secret key of U where y = gS mod p. 

U chooses a polynomial f ( X )  := s+Ek--~ ajX~ (mod n), where aj En Z, ,  
and ak-1 # 0. Then U sets, for i = 1 , . . . , l ,  si := (f(i) m o d q ) + ( 2  "~ -~i )q  
where 6~ E {0, 1}. Here note that (2 m - 1)q < si < (2 m + 1)q. U broadcasts 
(C1, . . . ,  CI) where Ci := s~' rood ni. 

U executes with V the following protocol: 

[ C o m m o n  I n p u t ]  (N, b, gl, g2, m), {(ni, el)}, (g, p, q, y), (C1,. . . ,  Ct). 
[User ' s  Claim] he knows (Cf f~ ' , . . . ,  C J  ~') such that  

k - 1  

(C~/e' mod ni) =-- s + E ajiJ 
j = l  

(mod q), and y = gS (mod p). 

[P ro toco l ]  

1. User U sets and sends to V Co = BC(s, ro) where r0 En Z~v. 
2. U executes with V COMDL(b,g,q)(Co, y) (See Appendix). 
3. U executes with V the PVSS scheme in See.5 from Step 2, replacing v with 

q. 


