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Abstract .  Large weak key classes of IDEA are found for which mem- 
bership is tested with a differential-linear test while encrypting with a 
single key. In particular, one in every 2 e6 keys for 8.5-round IDEA is 
weak. A related-key differential-linear attack on 4-round IDEA is pre- 
sented which is successful for all keys. Large weak key classes are found 
for 4.5- to 6.5-round and 8-round IDEA for which membership of these 
classes is tested using similar related-key differential-linear tests. 

K e y  words-" IDEA, differential-linear cryptanalysis, related-key cryptanalysis, 
weak keys. 

1 I n t r o d u c t i o n  

The International Data Encryption Algorithm (IDEA) [14] is a 64-bit block ci- 
pher using a 128-bit key. IDEA consists of eight rounds of encryption (referred 
to as full rounds) followed by an ou~pu~ transformation. For this reason IDEA 
is said to be an 8.5-round cipher, and on occasion when the output transforma- 
tion is omitted for the sake of analysis, we refer to the cipher as 8-round IDEA. 
Further, when the number of rounds is reduced to say 4 rounds, the resulting 
cipher is referred to as 4.5-round and 4-round IDEA depending on whether the 
output transformation is included or not. 

The full 8.5-round version of IDEA is considered to be practically secure 
against differential cryptanalysis [2, 14] (see [13, 17, 12, 5]), linear cryptanaly- 
sis [16] (see [9]) and various generalizations of linear cryptanalysis (see [8, 10]). 
A related-key attack on 8.5-round IDEA has been proposed [11], although this 
attack utilized a weakness in the implementation rather than the algorithm. 
Successful attacks exist against IDEA with a reduced number of rounds. These 
attacks include: differential attacks against 2.5-round IDEA [17, 6]; a differential- 
linear cryptanalysis [4, 5] against 3-round IDEA; and a truncated differential 
attack against 3.5-round IDEA [12, 5]. The results obtained in this paper are 
extensions of the two following attacks. 

A weak key class is a set of session keys for which membership can be deter- 
mined with a relatively small workload. Daemen, Govaerts and Vandewalle [7] 
found two weak key classes of 8.5-round IDEA. In the first weak key class, con- 
sisting of 223 session keys, membership is tested by confirming that  a certain 
linear approximation holds with probability one, while in the second weak key 
class, consisting of 251 session keys, membership is tested by confirming that  
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a certain differential approximation holds with probability one. This work is 
extended in this paper by finding weak key classes for which membership is 
tested by confirming that a differential-linear approximation holds with proba- 
bility one. These weak key classes are significantly larger than those found in [7]. 
In particular, the full 8.5-round IDEA has a weak key class containing 2 es ses- 
sion keys. Testing membership of this weak key class requires an average of 19.5 
plaintexts. If the session key is weak, then the membership test recovers 72 bits 
of the session key. 

In a re/a~ed-key a~ack [i, 11] the attacker obtains the encryption of certain 
plaintext not only under the original session key K, which is unknown, but 
also under some other associated session keys K' = f(K). Kelsey, Schneier and 
Wagner [11] found a related-key attack on 3.5-round IDEA using six chosen 
plaintexts encrypted under two related-keys. In this paper we extend this attack 
to a related-key differential-linear attack on 4-round IDEA which recovers 15 bits 
of information about the session key using an average of 38.3 chosen plaintexts 
encrypted under two related-keys. This is the first known attack on 4-round 
IDEA which is successful for all session keys. Every session key of the 4-round 
version of IDEA is susceptible to a related-key differential-linear attack. The 
attack is based on a related-key differential-linear approximation which holds 
with probability one for all session keys. A similar approach is used to detect 
membership of large weak key classes of IDEA with more rounds. 

No feasible attacks have been proposed to attack IDEA with more than 3.5- 
rounds, so we focus our attention on IDEA with 4 or more rounds. Using the two 
methods above, we determine the largest known weak key classes of R-round and 
R.5-round IDEA, 4 < R < 8. Table 1 provides a summary of the size of the weak 
key classes and the data complexity of the corresponding membership tests. Note 
that all session keys are weak keys for the related-key differential-linear attack 
on 4-round IDEA. Membership of the weak key classes of IDEA with between 
4.5 and 6.5 rounds is tested by confirming that a related-key differentiM-linear 
approximation holds with probability one, as is membership of the weak key class 
of 8-round IDEA. Membership of the the remaining weak key classes is tested 
by confirming that a differential-linear approximation holds with probability one 
while encrypting with a single key. 

R 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 
Size (log2) 128 113 106 98 91 84 80 75 70 63 

Av. Data Comp. 38.4 19.5 38,4 38.4 21~'2 613 14.8 31,2 21~'3 19.5 

Table  1. Summary of the size (log2) of the weak key classes of R-round and R.5-round 
IDEA, 4 < R < 8, and the average data complexities of the corresponding membership 
tests. 
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We begin introducing notation in w In w we construct differential-linear 
approximations which hold with probability one for a subset of the session keys. 
Weak key classes of R-round and R.5-round IDEA, 4 < R _< 8, are determined 
for which there is a differential-linear approximation of probability one. In w 3.1 
we describe an attack for testing membership of these weak key classes. In w 
we describe attacks which exploit related-key differential-linear approximations 
of probability one. The encryption process and key schedule of IDEA, and some 
results of Daemen, Govaerts and Vandewalle [7] are given in the Appendix�9 

2 N o t a t i o n  

IDEA is constructed from three group operations acting on 16-bit subblocks. 
These group operations are: bitwise exclusive-OR (XOR), denoted by @; addition 
modulo 216, denoted by [ ]  ; and multiplication modulo 216+ 1 with the subblock 
0 . . .  0 - 216, denoted by | The computation graph of the encryption process 
of IDEA is shown in Figure 2 in the Appendix�9 The full round function of IDEA 
consists of two "layers". The first layer is called the key combining stage, while 
the second layer contains the multiplication-addition (MA) s$ructure. The 16- 
bit subkeys are determined from the session key as shown in Table 5, in the 
Appendix�9 Due to the subblock nature of the cipher, the input to the r-th round 
(and the output of the (r - 1)-st round) is denoted C (r) - P(r)r4")P(~)r4~) -- "Jl ~"2 "-'3 "'4 " 

For each plaintext P let p[K] denote P encrypted by the first key combining 
stage under the session key K.  Also let C denote the encryption of P under 
the session key K,  and C [K] denote the ciphertext C decrypted by one layer 
under the session key K.  (By one layer, the author means either the output 
transformation, if encrypting with R.5-round IDEA, or the MA structure in the 
last round, if encrypting with R-round IDEA.) 

Yt~ 
For A �9 Z 2 , m > 1, let A[i] represent the bit in position i of A, 0 < i < m - 1 .  

Linear approximations between the input and output of the r - t h  round are 
represented by 0/(~). C (~) + 0/(r+1). C(r+l) = %, where 0/(r), 0/(r+1) �9 Z~ 4, 7r �9 
{0, 1} and a (r) C (r) ---- x--'~6S Ir~ �9 2.,,=00/' ,[i]C(')[i] (mod 2) is the binary inner product. 
The value 0/(~) is known as the mask for C (r). Note that in any linear relation in 
this paper, addition is assumed to be modulo two. Due to the subblock nature of 
the cipher we often write masks for linear approximations in terms of subblocks, 

e.g. 0/r = (0/~"), ( ' )  (") r 0/2 , 0 / 3  , 0/4 )" All differences in this paper are of the form 
AA = A@A*, and we denote the 16-bit difference 10. . .  0 = 215 by ~. Differences 
for differential characteristics are also written in terms of subblocks, e.g. 6 (~) -- 
[6~), x(~) x(') 6(4~)]. Round brackets ( ) are used for masks, to distinguish these v2  ' ~3  ' 

values from differences which use square brackets [ ]. 

3 C o n s t r u c t i n g  D i f f e r e n t i a l - L i n e a r  A p p r o x i m a t i o n s  o f  

P r o b a b i l i t y  O n e  

A differen$ial-linear approzimation (DL-approzimation) is denoted by a triple 
(6, 0/, e) where 6, 0 /e  Z~ \ {0} and e �9 {0, 1}, and the DL-approximation predicts 
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that  there exist plaintext pairs P, P* such that  p[K] (9 p[K]. = 6 and o~. C [K] + 
a �9 C [K]* = e. The probability of the DL-approximation is defined as 

P r ( a .  G [K] + a .  C [K]* = e [ p[K] (9 pig],  = 6). 

A differential-linear weak (DL-weak) key class ~42 is a set of session keys for 
which some associated DL-approximation (6, a,  e) holds with probability one. 
The one-round differential and linear approximations given in the Appendix can 
be used to construct DL-approximations (6, a,  e) which hold with probability 
one for large DL-weak key classes, as shown in the following example. 

Ezample 1. Let )4; consist of all session keys for which the 65-bit positions 0-18, 
29-71 and 123-127 are zero. These positions are known as the weak bit posiiions. 
Consider 8.5-round IDEA. We show below that  if the session key K 6 ]IV then 
the DL-approximation (6, a, e) = ([0, v, 0, v], (1, 1, 0, 0), 0) holds with probability 
one. Figure 1 shows how this DL-approximation is constructed. 

First note that  ZIP [u] = [0, v, 0, v] =~ ZIC (2) = [0, 0, v, v] with probability 

one, due to the structure of IDEA. If K 6 VV then the subkeys Z~ 2), Z~ 2), Z~ s), 

and g~4) are either zero or one. Consequently, each of the following characteristics 
holds with probability one, as 

AP[ K] = [0, v, O, v] =~ 

AC(2) = [0, 0, v, v] 
AC (3) = [0, v, v, 0] =~ 
ZIC (4) = [o, v, o, v] 

the appropriate subkeys are either zero or one: 

ZiO (~) = [0, 0, v, u], for all subkeys; 

AC(~ = [o, ~.,., o], ~ z(2),z~e {o, I}; 

ac(~) = [o, ~, o, H, ~ z~ ~) E {o, i}; 

~c(s~ = [o, o, ~, ~], as z~ (~ e {o, i}. 

These one-round differential characteristics are concatenated to form a 4-round 
differential characteristic Zip[K] = [0, v, 0, v] =~ A C  (5) ---- [0, 0, v, v], which holds 

with probability one for all K 6 IN. Note that  AC(s) -- [0, 0, v, v] => AC~ 6) (9 

AC~ ')  ---- v with probability one, due to the structure of the round function. 
Therefore, if K 6 ]4;, then 

~P'~ = [o,~,, o, H => AC~'~ e AC~'~ = ~,. (I) 

If K 6 FV, then the subkeys Z~ '), Z~ '),  g~"  and g~S) are also either zero or 
one. Thus, following from the results in the Appendix, the one-round linear 
characteristics 

I"C~ ')+l'c~ ')+l'c~ ')+I'C ('):7, -- I'Z~ ')+I'Z (')+I'Z~ 6), 
l'C~ 7)+I'c (')+l'c[ s)+l'Ci s)=7, = I'Z~ ')+I'Z (')+I'Z~ ')+I, 
I"C~ s)+l'c (s)+I'c~ 9)+I'c~ 9)=7, = I'Z~ ,)+I'Z (s)+l, 

hold with probability one. These one-round linear characteristics are concate- 
nated to form the linear characteristic 

8 

i. c?~ + i. c?~ + I c~ ~ + 1 c?~ : ~ : ~,, (2) 
i=6 



116 

P~ Pt* P~ t,~* P3 e3* P~ P4*,-C-O-~-d-it!-~ ~, 

1 ~ 1" 1 ~ l v - - ~  , ..... ~:..i__-~_~-_., 
i 

Round 1 

I o  ~o Iv ~v 
Round 2 

Round 3 

Round 4 

lo lo P 
Round 5 

1~8,  118~ o ~  
Round 6 

ol ~l 11 
Round 7 

Round 8 

II l~ ol 
Output Transformation ] 

CICl* C2C ~ C3C3" C4C ~ 

I - -  48-62 i q 
i 
I 

i 

I - -  41-55!57-71 
: 

I" . . . . . . .  I" . . . . . . .  § . . . . . . .  

I - -  - -  5 o - 6 4 i  

] - 2-16 -i 

Iv ~ . . . . . . .  ~ . . . . . . .  § . . . . . . .  ~ "'-/46"~---~ 
- -  - -  - -  I 

ol~i . . . . . . .  ~ . . . . . . .  ! . . . . . . .  i . < , ,  ~-t-+L~Y :' 
1 : 4 3 " 5 7 1 -  i4-18 i ]  

o l i  ....... f ....... i ....... i /  
: ,, : : Linear I ,  - , - ,125-11, 'S. 
, i I ) h ,d  . . . .  ( C  aractensUc 

u t ,~ . . . . . . .  ,~ . . . . . . .  : . . . . . . .  ~ |  
1129-43i - -  i - -  i /  

o ~ [  . . . . . . .  i . . . . . . .  i . . . . . . .  J . J  

Guess Bits 22-28 of Z ~9) 

~,.cDifferential 
haracteristic 

NOTE: ! 
1 v \ / 

mask difference 
on the left on the right 

F i g .  1. The DL-approximation (6, a, e) = ([0, u, 0, v], (I, 1, 0, 0), 0) for 8.5-round IDEA 
which holds with probability one and the corresponding conditions on the session key 
bits. The bits 22-28 of the subkey Z~ ~) in the last round are guessed. 

w h i c h  h o l d s  w i t h  p r o b a b i l i t y  one  w h e n e v e r  K 6 }4;. C o m b i n i n g  (1) a n d  the  
linear relation (2), we see that if p[K] ~ p[K]. = [0, v, 0, v] then 

~.c?~ + ~.c~) + ~.cF~* + ~.c~" 
= ~. c~ ~) + ~. c~ ~ + ~. c~ ~)" + ~. c~ ~'" = ~. (~c~  ~ , ~ c l  ~)) = ~ . ,  = o, 

whenever the K 6 PP. That is, whenever the session key K 6 ]4;, the DL- 
approximation (6, a, e) = ([0, u, 0, u], (1, 1, 0, 0), 0) holds with probability one. [] 
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To test if a DL-approximation (6, ~, e / holds with probability one, the at- 
tacker must guess enough information about the subkeys in the first round to 
obtain pairs P and P* for which ZiP[g] -- 6, and enough information about the 
subkeys in the last round to determine ~ - C  [~q + ~ .  C [K]* from the corresponding 
ciphertexts C and C*. 

Ezample ~. Consider the DL-approximation (6, ~, e) = ([0, u, O, u], (I, I, O, 0), O) 
and the associated DL-weak key class W discussed in Example 1. Note that  
Z~ 1} = 0 whenever K 6 "~, and therefore AVi [g] = v if and only if AP, = v, 
i �9 {2, 4}, (see the Appendix). Thus, if g �9 W, then ZIP[ K] = [0, ~,, 0, ~,] if 
and only ZIP = [0, ~, 0, v]. To determine if the DL-approximation holds with 
probability one, the attacker must obtain the encryptions of plaintext pairs P, P* 
for which P �9 P* = [0, v, 0, ~] and then determine whether 1. C~ g] + 1. C~ K] + 

1 �9 C~ g]* + 1 �9 C~ g]* = 0, from the corresponding ciphertext pairs. The attacker 
can obtain i. C~ K] + i. C~ gl" from i. C~ g] + I. C[ Kl" = i. Cs + I. C;. However, 

to obtain 1. C~ K] + 1. C[ K]*, the attacker needs to determine the value of Z~ 9), 

and from this calculate C~ K] = C: | (Z:9)) -:. We call a value Z* a candidate 

for ~he value of Z~ 9) if it is a possible value for Z~ 9) when K �9 YY. Note that  

Z~ 9) consists of the bits in positions 22-37 of K, and if K �9 W then the 9 least 

significant bits (LSBs) of Z~ 9) are zero, and there are 2 ~ = 128 candidates for 

the value of Z~ 9). For each candidate Z* the attacker tests to see if 

i. (Cl e (Z*) -I)-F i. C3 + i-(C~ (D (Z*) -I) + I. C'~ -- 0, (3) 

whenever zIP = [0, u, 0, u]. If (3) holds for the ciphertext pair C, C*, then C, C* 
is said to be a DL-righ~ pair for Z*. Therefore, if the session key K �9 W, 
and Z* = Z~ 9), then all ciphertext pairs will be DL-right pairs for Z* when 
Z I P  ---~ [0, 1/, 0,/2].1 

The attacker can compute a table beforehand to avoid calculating (3 / explic- 
itly for each ciphertext pair and candidate Z*. For each C: �9 Z~ 6 the attacker 
computes the 128-bit vector Ac ,  where for 0 < i < 127, Ac ,  [i] = 1-(C:| -1) 
where Z* -- i.29. The vector Ac ,  contains the possible values of 1. (C: |  
for every candidate Z*. The 216 vectors Ac~ are stored in a table which is 1 
megabyte in size. For each ciphertext pair C, C* the attacker calculates the 128- 
bit vector B with B[i] = 1 + 1. (Ca @ C~) for 0 < i < 127, and determines the 
128-bit vector V = Ac ,  @ A c ;  @ B. For 0 < i < 127, V[i] = 1 if and only if (3) 
holds for Z* = i �9 29. Hence, determining V is equivalent to determining if (3) 

holds or not for every candidate for the value of Z~ 9). [3 

1 Remark. Some session keys in this DL-weak key class are also members of a weak key 
class for which the differential characteristic Z1P = [0, ~, 0, ~] =~ AC (~~ = [0, v, v, 0] 
holds with probability one. As C1 = C~ for all ciphertext pairs, all ciphertext pairs 
will be DL-right pairs for every value of Z~ 9), and the value of Z~ ~) cannot be 
determined. A simple method to avoid this situation is to first test for membership 
of weak key classes for which a differential characteristic holds with probability one. 
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In Example 2, the subkey Z4 (1) is fixed to zero for all K E ~ .  However, this 
is not always the case. For example, to obtain pairs for P and P* for which 
A P  [K] = 6 ---- [0, 0, v, v], the attacker may be required to guess the value of 

Z4 (1). For each candidate Z for the value of Z (1), the attacker determines a pair 
P4(Z), P~(Z) for which (P4(Z) | Z) (~ (P~(Z) | Z) ~ u. To increase the speed 
of the attack, these pairs are computed beforehand and stored in a table. The 
size of the table depends on the number of candidates, and would be at most 
256 kilobytes in size. The attacker obtains the encryptions of plaintexts P and 
P* for which A P  1 = AP2 = 0, ziPs = u, P4 = P4(Z) and P~ = P~(Z). Such 
a plaintext pair is called a 6-pair for Z. The attacker then tests each candidate 
Z* for the value of the subkey in the last round to see if the corresponding 
ciphertext pairs are DL-right pairs for Z*. 

3.1 Testing Membership 

Consider a DL-approximation (6, a,  e) for which the corresponding DL-weak key 
class W has b weak bit positions (so there are 212s-b DL-weak keys in this class). 
Suppose that  t l  bits of a subkey in the first round and t2 bits of a subkey in the 
last round are guessed. Let Z and Z* be candidates for the values of the subkeys 
in the first and last rounds respectively. 

It can be shown that  if C, C* is a DL-right pair for Z* then C, C* is also a 
DL-right pair for (0 | Z*). If both values are candidates, then the attacker need 
only test one of these values. However, as 0 | Z* -- Z* [ ]  2 it follows that  only 
one of Z* and 0 | Z* has the LSB equal to zero. In Example 2, the 9 LSB's 
of Z~ 9) are zero, and thus there is only one value of Z* and 0 | Z* which is a 

candidate for the value of Z~ 9). However, if all 16 bits of a subkey in the last 
round are guessed, then the attacker needs only test one candidate out of Z* 
and 0 | Z*. Thus, only 2 is candidates Z* are tested, and we assume, for the 
purposes of calculating the data  complexity, that  ~2 = 15. Similarly, if C, C* is 
6-pair for Z then C, C* is also a 6-pair for (0 | Z). Thus, if ~l = 16, we reduce 
this to ~1 = 15. A candidate, for example Z, is said to be consis~en~ with K if 
either Z or 0 | Z is the correct value of the subkey in the first round, otherwise 
it is inconsis~enL 

If K E )4) and both candidates Z and Z* are consistent with K,  then the 
triple (K, Z, Z*) is said to be complete, otherwise it is incomplete. The aim of 
a differential-linear weal~ key (DL-weak key) membership ~es~ is to either find a 
complete triple (K, Z, Z*) (thus showing K E )IV and determining the values 
of the subkeys guessed), or show that  for all candidates Z and Z*, the triples 
(K, Z, Z*) are incomplete (thus showing K ~ )IV). If the triple (K, Z, Z*) is 
complete then for every 6-pair for Z, the corresponding ciphertext pair is a DL- 
right pair for Z*. However, for each incomplete triple (K, Z, Z*) there are many 
6-pairs for Z for which the corresponding ciphertext pairs are not DL-right pairs 
for Z*. A DL-test on the triple (K, Z, Z*) consists of obtaining the encryptions of 
a 6-pair for Z, and determining if the corresponding ciphertext pair is a DL-right 
pair for Z*. If the corresponding ciphertext pair is a DL-right pair for Z*, then 
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the triple passes the DL-test for that  plaintext pair, otherwise the triple fails. A 
triple (K, Z, Z*) can be shown to be incomplete by failing just one DL-test. We 
can show that  if the triple (K, Z, Z*) passes each of 1.18(b+tl +t2 +8)  DL-tests 
then Pr((K, Z, Z*) is complete) > 1 - 2  -s  = 99.6%. The value 1.18(b+Q+~2+8) 
is called the weak key bound, denoted/3, for a DL-weak key membership test. 
If a triple passes each o f ~  DL-tests then the triple (K, Z, g*) is assumed to be 
complete and K E W. A DL-weak key membership test on a DL-weak key class 
proceeds as follows. 

D i f f e r en t i a l -L inea r  W e a k  K e y  M e m b e r s h i p  Tes t  

S tep  1. Let g be a candidate for the value of the subkey guessed in the first 
round. 
S tep  2. Conduct DL-tests on the triples (K, Z, Z*) for every candidate Z* for 
the value of the subkey guessed in the last round until either every triple fails a 
DL-test, or a triple (K, Z, Z*) passes each off l  DL-tests. 
S tep  3. If all triples using candidate Z fail a DL-test, then try another candidate 
for the value of the subkey guessed in the first round and return to Step 2. 
Otherwise, the triple (K, Z, Z*) which passed all/3 DL-tests is assumed to be 
complete, and K E W, and the subkey guessed in the first round (last round) is 
either Z or 0 | Z (g* or 0 | Z*). [] 

Ezample 3. Recall from Example 2 that  there is only one candidate g~ 4) -- 0 in 
the first round for the DL-weak key class W in Example 1. The corresponding 
DL-weak key membership test consists of conducting DL-tests on the triples 
(K, 0, Z*) where Z* has the 9 LSB's equal to zero. The vectors V defined in 
Example 2 are used to simultaneously conduct DL-tests on the triples (K, 0, Z*) 
for all candidates Z*. The attacker sets every bit of a 128-bit vector X to one, and 
for each ciphertext pair the attacker determines V and updates X = VAX where 
/x denotes the bitwise AND operation. After testing ~ -- 1.18(65 + 0 + 7 + 8) ---- 95 
pairs, if X[i] = 1, then the triple (K, 0, i. 29) passes the DL-test for all ciphertext 
pairs tested. If there is only one such value i, then K E W, Z~ 9) -- i �9 29 and 
the attacker has recovered 65 + 7 -- 72 bits of the session key. If there is more 
than one value of i, which is unlikely to occur, then the attacker can continue 
conducting DL-tests to eliminate the incomplete triples. If X -- 0, then for each 
candidates Z*, the triple (K, 0, g*) fails at least one DL-test and K ~ }iV. [] 

If a triple (K, Z, Z*) is complete, then the DL-weak key membership test 
will require fl ~-pairs for Z, which corresponds to 2j3 encryptions. We can show 
that  for each candidate Z, an average of E: 2 5-pairs for Z are required before 
each incomplete triple (K, Z, Z*) fails a DL-test, where E:2, 0 _~ t2 < 15, is 
given in Table 2. If K ~ ~4~, then all candidates g must be tested. Therefore, a 
total of 2qE:2 plaintext pairs or 2q+lE:~ encryptions on average are required 
to show that  each incomplete triple fails a DL-test, and t~hus K ~ W. As most 
session keys are not DL-weak, this then is the average data  complexity of the 
DL-weak key membership test. For example, the average data  complexity of the 
membership test described in Example 3 is E7 ---- 9.74 pairs, which corresponds to 
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,2 0 1 12 3 14 15 6 17 18 19 11011111211311411 I 
Et2 2.25 3.05 4.04 5.12 8.23 7.40 8.57 9.74 10.9 12.1 13.3 14.5 15.6 16.8 18.0 19.2 

Table 2. The value of Et2, 0 _< t~ _~ 15. 

19.5 encryptions. The use of precomputed tables reduces the process complexity 
during a membership test to at most three table look-ups for each plaintext pair 
tested. Table 3 contains the details for the largest DL-weak key classes for R- 
round and R.5-round IDEA, 4 < R < 8. DL-weak key classes can also be found 
using the decryption key schedule. These DL-weak key classes have been found 
to offer no increase in size over the DL-weak key classes using the encryption 
key schedule. 

R 5 a 

4 D1 (1, 1, 0, 0) 
4.5 D2 (1,0,1,0) 
5 D1 (1,0,1,0) 

5.5 D2 (1,0,1,0) 
6 D2 (0,1,1,0) 

6.5 D2 (0,1,1,0) 
7 D2 (1, 1, 0, 0) 

7.5 D2 (1,1,0,0) 
8 D2 (1, 1, 0, 0) 

8.5 02 (1,1,0,0) 

Weak 
b Bit 

Positions 
29 50-78 
31 41-71 
44 50-71, 75-96 
46 2-16, 41-71 
46 2-16, 41-71 
48 2-18, 41-71 
48 2-18, 41-71 
53 0-18, 41-71, 125-127 
82 0-25, 41-71, 123-127 
65 0-18, 29-71, 125-127 

Bits Guessed 
First Last 

Round Round 
48-49 

- 75-90 
48-49 

- 17-18 

0-I, 125-127 
29-40 
93-108 
22-28 

Av. 
fl Data 

Comp. 
18 18 

64 38.4 
64 18 
64 4.5 
67 8.1 
67 4.5 
72 14.8 
87 31.2 
i01 38.4 
95 19.5 

Table 3. DL-weak key classes of R-round and R.5-round IDEA, 4 < R < 8. 
The corresponding differential-linear approximations are of the form (5, a, e) where 
5 E {D1 = [0, 0, u, v], D2 = [0, v, 0, v]} is given in the second column, ,* is given in the 
third column and �9 = 0. 

4 R e l a t e d - K e y  D i f f e r e n t i a l - L i n e a r  A t t a c k s  

The membership tests presented in w are based on testing pairs of plaintexts 
which have been encrypted under the same session key. The membership tests 
presented in the current section are different in that the plaintext pairs P, P* are 
encrypted under two related-key8 K and K' which differ in a certain bit position. 
Otherwise, the concept is identical. The plaintext pairs are chosen to cancel out 
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the differences in the subkeys in the first round, so that  after a few rounds of 
encryption, some corresponding intermediate ciphertext subblocks are the same. 
The attacker then tests if linear approximation between C [/q and C [K']* holds 
by guessing the value of a subkey in the last round. 

This approach is used to develop the first known attack on 4-round IDEA 
which is successful for all session keys. The attack is an extension of the related- 
key attack on 3.5-round IDEA found by Kelsey, Schneier and Wagner [11]. Large 
weak key classes of IDEA with more than four rounds are found for which mem- 
bership is checked using a similar technique. The membership tests are based 
on testing if related-key differential-linear approximations hold with probability 
one. A related-key differential-linear approzimation (RKDl-approzirnation) is 
denoted by a triple ( k a , a , e )  where 0 < kza < 127, a E Z~ \ {0} and e E {0, 1}, 
and the RKDL-approximation predicts that  there exist plaintext pairs P, P* 
such that  p[K] = p[K'], and a �9 C [K] + ~.  C [K']* = 0, where K and K '  differ in 
bit position kza. Note that P is encrypted to C under K and P* is encrypted to 
C* under K ' .  The probability of the RKDL-approximation is defined as 

P r ( a .  C [K] + a .  C [g']* = e I p[K] = ptK'].), 

where K '  differs from K in bit position kza. A related-key differential-linear weak 
(RKDZ-weak) key class ~Y is a set of session keys for which some associated 
RKDL-approximation (kA, a, e) holds with probability one. In the following ex- 
ample we construct a RKDL-approximation for 4-round IDEA which holds with 
probability one for all session keys. Thus, all session keys are RKDL-weak keys 
of 4-round IDEA. 

Ezample4. Consider 4-round IDEA. Suppose that  K and K '  are two session 
keys which differ in bit position 16. Let Z~ ") and Z~ ~)*, 1 < i < 6, 1 < r < 4, 
denote the subkeys generated from the keys K and K '  respectively. Observe that  
g~ ~) 7.(') * = .q , 1 < i < 6, 1 < r < 4 with the exceptions being Z~ 1) = Z~ 1)* @ v, 
Z (3) = Z (s)* @ 2 s and Z~ 4) = Z~ 4)* @ 2. If p[K] = piE']. ,  then C (2) = C (2)*, 

ebb" and 
1. C[/q + 1 �9 ciK] + 1 . c[K'] * + 1 . C I  g']" 

: 1. (ClS)~-qZi s)) + 1. (CiS) ~-lZ (s)) + 1. (Cla)* RqZi 3}~ + 1. (C3(Z)* Fqqg3 (3)*) 

�9 1. ( ( (C[  3,* | g[ s,*) (9 (C~3)* ~ g~3'*)) | Z~ a,*) : O. 

Therefore, the RKDL-approximation (kza, a,  e) = (16, (0, 1, 1, 0), 0) holds with 
probability one for all session keys. That  is, all session keys are RKDL-weak 
keys. [] 

RKDL-weak key classes of IDEA with more rounds contain session keys for 
which certain subkeys are either zero or one, so that  appropriate linear approx- 
imations hold with probability one, as with DL-weak key classes. These RKDL- 
weak key classes are exploited using a related-key differential-linear weak key 
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( R K D L - w e a k  key)  membership  test.  As with a DL-weak key membership test, 
the aim of a RKDL-weak key membership test is to either find a complete triple 
(K, Z, Z*) (thus showing K 6 14; and determining the values of the subkeys 
guessed), or show that  for all candidates Z and Z*, the triples (K, Z, Z*) are 
incomplete (thus showing K ~ W). The attack on 4-round IDEA only deter- 
mines the value of the guessed subkey, as all session keys are already known to 
be RKDL-weak. 

Let Z and Z* be candidates for the values of the subkeys guessed in the first 
and last rounds respectively when encrypting under K.  A k s - p a i r  f o r  Z is a 
pair of plaintexts P, P* such that  if Z is consistent with K,  then p[K] = p ig ' ] . .  

For example, if ka = 0 then Z~ 1)* = v (9 Z~ 1) and a /ca-pair for Z satisfies 

P1 | Z = P ;  | (Z (9 v) and P~* = Pi, i �9 {2, 3, 4). In Example 4, Z~ 1) = v + Z~ 1)* 
as kz~ = 16, and therefore p[K] = piP'f .  Ca P @ P* = [0, v, 0, 0]. Thus, when 
attacking 4-round IDEA, no subkeys are guessed in the first round and all ks-  
pairs satisfy P (9 P* = [0, v, 0, 0]. 

To determine if the RKDL-approximation holds with probability one, the 
attacker must obtain a �9 C [K] + a �9 C [g']* from the corresponding ciphertexts 
by guessing subkeys in the last round. For example, in attacking 4-round IDEA, 
we note that the linear approximation 1 �9 C~ g] + 1 �9 C [K] = 1 �9 C2 + 1 �9 C3 + 1 �9 

((C1 @ Ca) | Z~ 4)) holds with probability one, due to the structure of the round 

= z  5 , it follows that if Z* �9 Z~ 4),0 |  4) , t hen  

1. c2 + 1. c3 + 1. ( (c l  r c3) o z*)  (4) 
+1 .  C~ + 1. C~ + 1. ((C~ @ C~)(D Z*) : 0, 

for all ciphertext pairs C and C* when attacking 4-round IDEA. A pair of 
ciphertexts for which (4) holds is called a R K D L - r i g h t  pair ]or Z*.  RKDL-right 
pairs are defined similarly when attacking further rounds. 

A R K D L - t e s t  on the triple (K, Z, Z*) consists of obtaining the encryptions of 
a k,a-pair for Z, and determining if the corresponding ciphertext pair is a RKDL- 
right pair for Z*. If the corresponding ciphertext pair is a RKDL-right pair for 
Z*, then the triple passes the R K D L - t e s t  for that  plaintext pair, otherwise the 
triple fails.  The RKDL-weak membership tests follow DL-weak key membership 
tests, where RKDL-tests are conducted in the place of DL-tests. The weak key 
bound fl is determined as with a DL-weak key membership test. As the RKDL- 
approximation to 4-round IDEA holds with probability one for all keys, a weak 
key bound does not apply. Table 4 contains details of RKDL-weak key classes 
of R-round and R.5-round IDEA, 4 <_ R < 6, and 8-round IDEA. The RKDL- 
weak key class of 8-round IDEA corresponds to a RKDL-approximation to the 
decryption algorithm, rather than the encryption algorithm. The average data  
complexity is determined as with a DL-weak key membership test. Tables are 
computed beforehand, as with DL-weak key membership tests, to reduce the 
process complexity to at most three table look-ups for each plaintext pair tested. 
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R e l a t e d - K e y  D i f f e r e n t i a l - L i n e a r  W e a k  K e y  A t t a c k  

Step I. Let Z be a candidate for the value of the subkey guessed in the first 
round. 
S t e p  2. Conduct RKDL-tests on the triples (K, Z, Z*) for every candidate Z* 
for the value of the subkey guessed in the last round until either every triple fails 
a RKDL-test,  or a triple (K, Z, Z*) passes each of f l  RKDL-tests. 
S t e p  3. If all triples using candidate Z fail a RKDL-test,  then try another 
candidate for the value of the subkey guessed in the first round and return 
to Step 2. Otherwise, the triple (K, Z, Z*) which passed all /3 RKDL-tests is 
assumed to be complete, and K E I/V, and the subkey guessed in the first round 
(last round) is either Z or 0 | Z (Z* or 0 | Z*). [] 

R kz~ rv 

4 lO (o,1,1,o) 
4.5 15 (i, 1,o, 0) 
5 io (1,1,o,o) 
55 lS (1,1,o,o) 
6 0 (0,1,1,0) 

6.5 0 (1,0,1,0) 
8 III (1,1,0,0) 

Weak 
b Bit 

Positions 
0 

15 82-96 

30 75-96 
30 18-32, 75-89 
37 11-25, 75-96 
44 4-25, 75-89 
58 50-71, 75-110 

Bits Guessed Average 
First Last /~ Data 

Round Round Comp. 
- 1 8 - 3 3  3 8 . 4  

- 7 5 - 8 1  3 5  19.5 

- 1 1 - 2 6  5 4  3 8 . 4  

- 4 3 - 5 8  6 3  3 8 . 4  

0-I0 67 213"~ 
0-3 36-51 84 614 

111-124 0-15 112 2 t~'3 

Table 4. The largest RKDL-weak key classes for R-round and R.5-round IDEA, 
4 _< R _< 6, and 8-round IDEA. Membership of the RKDL-weak key class of 8-round 
IDEA is tested using decryption, while the remaining RKDL-weak key classes are tested 
using encryption. The corresponding RKDL-approximations are of the form (kz~, a, e) 
where kz~ is given in the second column, a is given in the third column and e = 0. 

5 C o n c l u s i o n  

New weak key classes have been found for IDEA which are significantly larger 
than those previously known. The linear key schedule and the choice of group 
operations contribute the size of these weak key classes. We note that  if key 
distribution and exchange protocol allow, then the attacker can determine the 
bits in the weak bit positions of an unknown session key by altering these bits 
until the appropriate test indicates that the resulting session key is weak. We 
recommend that  the key schedule of IDEA be altered so that  IDEA has no weak 
keys, and key distribution and exchange protocol be analyzed to ensure that  
known weak key classes cannot be exploited. 
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Appendix 

z(l) 
1 

P P2 P3 

j -  

z(1) 
2 3 

,() .  

6 

P4 

z(I) 
4 

: : (7 more rounds) : : 
�9 �9 �9 g 

t21 ('2 C3 C4 

F ig .  2. The computational graph of the encryption process of the IDEA cipher. 
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Z1 Z2 
0-15 16-31 

12 96-111 112-127 
3 89-104 105-120 
:4 82-97 98-113 

75-90 91-106 
43-58 59-74 

7 36-51 52-67 
8 29-44 45-60 
9 22-37 38-53 

Z3 Z4 
32-47 48-63 
26-40 41-56 
121-8 9-24 
114-1 2-17 

107-122 123-10 
100-115 116-3 
68-83 84-99 
61-76 77-92 
54-69 70-85 

z~ zs 
64-79 80-95 
57-72 73-88 
50-65 66-81 
18-33 34-49 
11-26 27-42 
4-19 20-35 

125-12 13-28 
93-108 109-124 

Table 5. Deriving the round keys from the 128-bit session key, where the session key 
bits are indexed with the MSB indexed by 0 and the LSB indexed by 127. 

1 . C ~ r ) +  1 . 4  ,) 

1 . c ~ " +  1.4") 

1 .c~"  + l.C~ ") 

AC (r) -- [0, 0, i, i] 

AC(') -- [0, 1, 0, 1] 

~cC,)  = [0,1,1, 0] 

Daemen, Govaerts and Vandewalle [7] noted that  for all A E ~ 6 ,  0 | A = 
A [ ]  2, where A is the bitwise complement of A. Consequently, the following hold 
with probability one: 2 

A@ A* = 2 m-1 = u r (A [ ] Z )  @ (A* [ ] g )  = u, for all Z E Z~s; 
A@A* = u ~ ( A |  if and only i f Z E { 0 , 1 } ;  

1 . A + I . Z  = 1 . ( A [ ] Z ) ,  for a l l Z E Z ~ s ;  
1 . A + I . Z + I  = 1 . ( A O Z ) ,  i fZ  e {0,1}. 

Using these properties, Daemen, Govaerts and Vandewalle [7] found one-round 
linear and differential characteristics which hold with probability one when cer- 
tain subkeys are either zero or one. Of these, the following one-round linear and 
differential characteristics are used in this paper: 

+ 1. c~ "+~' + 1 . 4  "+'1 = 1. z~" + 1. z~'l + 1. z~') + 1, 

ifZ~ ~) E {0, 1}; 

+ 1. e~ "+~ + 1 .4r+ '~  = 1. Z~'I + 1. Zl "~ + 1, 

if Z[ ~) E {0,1}; 

+ 1 . e l  "+') + 1. c~'+~ : 1. z~ r) + 1. z~') + ~. z~", 

i~ z(") 7.(") {0, 1}; 

r A C  r = [0, 1, 1, 0], 

r A C  r = [0, 0, 1, 1], 

AC ('+~) = [0, 1, 0, 1], 

if ~(') ~r {0, 1}; ~ 4  , "-'5 E 

if Z~ r) E {0, 1}; 

if Z~ ") E {0, 1}. 

2 The second result here was verified by testing all values of Z E ~12e. 


