
How to Improve an Exponentiation
Black-Box

G d r a r d C o h e n

ENST, Informatique et Rdseaux

46 rue Barrault , F-75634

Paris~ France.

cohen@inf , e n s t . f r

A n t o i n e L o b s t e i n

ENST, Informatique et Rdseaux

46 rue Barrault , F-75634

Paris, France.

lobstein~inf, enst. f r

D a v i d N a c c a c h e

Gemplus Card International

34 rue Guynemer, F-92447

Issy-les-Moulineaux, France.

naccacheOcompuserve, com

Gil les Z d m o r

ENST, Informatique et Rdseaux

46 rue Barrault , F-75634

Paris, France.

zemor@res , e n s t . fr

A b s t r a c t . In this paper we present a method for improving the perfor-
mance of RSA-type exponentiations. The scheme is based on the observa-
tion that replacing the exponent d by d' ---- d + kr has no ari thmetic
impact but results in significant speed-ups when k is properly chosen.
Statistical analysis, verified by extensive simulations, confirms a per-
formance improvement of 9.3% for the square-and-mult iply scheme and
4.3% for the signed binary digit algorithm. However, the most at t ract ive
feature of our method seems to be the fact tha t in most cases, e x i s t i n g ex-
ponentiation black-boxes can be accelerated by simple external one-time
pre-computations without any internal code or hardware modifications.

1 I n t r o d u c t i o n

R S A - t y p e c ryp to sys t ems use two func t ions :

m ~ m e m o d n

m ~-+ ~Tt d m o d n

where n = p q is genera l ly the p r o d u c t of two pr imes , e d _= 1 m o d r and r
is the Euler to t i en t funct ion. The pub]ic e x p o n e n t can be chosen shor t (typ ica l ly
e = 3) b u t the secret exponen t d mus t no t have any p a r t i c u l a r s t ruc tu re .

The c o m p u t a t i o n of m d m o d n is c u m b e r s o m e and any of i ts speed -up t r icks
is po t en t i a l l y in te res t ing for a c t u a l i m p l e m e n t a t i o n s . The s imples t and mos t
p o p u l a r way to compu te m d m o d n is the s q u a r e - a n d - m u l t i p l y m e t h o d which
consis ts of r e p e a t e d squar ings and mul t i p l i ca t ions by m. I t can be s u m m a r i l y
desc r ibed by the following a l g o r i t h m :

212

X:----I
for i:= 1 to ~ do

x := x 2 mod n
i f al- i -- 1 t hen x :---- xm mod n

~-1 where d is an l-bit integer with binary representation d = ~-:~i=o ai2i"

The complexity of this scheme is :

c(d) = i(d) + ~w(d)

where w(d) denotes the Hamming weight of the binary vector [a~ - l , ' - - , al , ao]
representing d (the number of a~'s equal to 1) and a represents the cost of a mod-
ular multiplication compared to a modular squaring. For large n, using standard
techniques it is asymptotically considered [8] tha t c~ ~ 2. The cost c(d) therefore
represents the squaring-equivalents needed to complete the exponentiation. Note
that in general, r is of the same order of magnitude as n, so that when d
ranges over the integers 1, 2 , . . . , r - 1, the average Hamming weight of the
binary representation of d is approximately �89 log 2 n; when c~ = 2 the average
cost is therefore :

~(d) ~ 2 log 2 n.

For the sake of completeness, let us mention that exponentiations are fre-
quently done separately modulo p and q and re-combined modulo n using the
Chinese remainder theorem [11].

There are several strategies and t ime-memory trade-offs for lowering the com-
plexity of the computation of m d mod n in different scenarii : one line of research
has been to look for short additions chains [14, 12] which prove to be suited to
settings where squarings are not significantly faster than multiplications. Most
methods adapted to the situation when squarings are faster than multiplications
involve redundant binary representations (RBRs) of the exponent. An RBR of

t - - 1 d is a vector [be - i , - . . , bl, b0] where d = ~-~=o bi2i, and where the bi's belong to
some enlarged set of integers B 3 {0, 1}. Given an RBR of d, the square-and-
multiply algorithm generalises naturally to :

pre-compute the set {m b mod n, b 6 B}.

x:--I
for i= 1 to ~ do

x := x 2 mod n
i f bt- , # 0 t hen x := xm b~-, mod n

The time complexity of this algorithm is easily shown to be

cs(d) = g(d) + ~ws(d) + p(B) (1)

where wB(d) is the Hamming weight of the vector [bt-1, ." ,bl ,bo] and p(B)
denotes the number of squaring-equivalents necessary to pre-compute the set
{mb mod n, b 6 B}.

213

Several choices of B have been put forward and extensively analysed. The set
B = {0, 1, - 1 } yields the signed digit binary representation of d and appears also
useful in many (non-cryptographic) arithmetic contexts [2, 13]. The sets B' =
{ 0 , 1 , 2 , 3 , . . . , 2 r - 1} and B = { - (2 ~ - 1) , . . . , - 2 , - 1 , } U B ' yield essentially
the q-ary and signed q-ary representations of d [9]. An improved choice of B
consists of the set B = {0, 1, 3 , - - . , 2i + 1 , . . . , 2 ~ - 1} which yields [7]. The set
B = {0, 1, 3, 7 , . - . , 2 ~ - 1 , . - . , 2 ~ - 1} was considered in [6] and the set B obtained
after a Lempel-Ziv parsing of the binary representation of d was also considered
in the literature [1].

In this paper we decrease the exponentiation cost by replacing d by d+kr
This approach, suggested in a sentence 1 but never taken-up for study since, will
increase the number l of squarings but, for properly chosen k, will diminish the
number w of multiplications to do more than compensate. Finding the proper k
may require a few thousands of additions but, for RSA-type applications where
d is fixed, this needs to be performed only once. In the next sections, we first
apply this idea to the square-and-multiply method. We then adapt it to its
various improvements involving RBRs and discuss its practical aspects.

2 The Binary Case

From now on we write r for short instead of r Suppose that we replace d by
d + kr The number of squarings increases from ~ = ~(d) to ~(d + kr which we
can consider approximately equal to ~(kr = ~(k) +~(r The size of d being most
of the time very close to that of r the number of squarings can be considered
to be approximately (1 + t)~ where t~ = ~(k). The idea is to compensate the
growth in the number of squarings by decreasing the number of multiplications,
i.e. w(d + kr In theory, an extensive computing effort may be necessary to find
the proper k. However this pre-computation needs to be performed only once
per d and, as will appear from the equations to come, happens to be moderate
for nearly-optimal exponents.

We need to study the minimum of w(d § kr when k ranges over the set of
integers of length t~. Let us set ~ = (1 + t)~ and d' = d + kr of minimum binary
weight when k ranges over the integers of length tl.

Let us make the further reasonable assumption (confirmed by field experi-
ments) that the set of the 2 tl binary (1 + t)~-tuples behaves as a set of vectors
chosen randomly and independently among the 2 ~' binary vectors of length E.
In this case, the expectation of the number of vectors of weight u in the set is :

and is greater than 1 as long as

1 "[11] : let us remark that the exponents dl and d2 may be chosen to be greater than
p - 1 a n d q - l . "

214

Let t ing w' = infE~>l u, the average cost of a raising to the power d' = d + kr
is therefore c' = g' + a w ' . Set t ing w' = yg', we get f rom (2) :

in o ther words

e'H(y) = g,

1
H (y) - 1 + t

where H(x) = - x log 2 x - (1 - x) log 2 (1 - x) is the b inary en t ropy funct ion [10].
Consequently,

c ' / g : (l + t) (l + o l H - l (1 - - ~)) ,

the evolution of which as a funct ion of t for c~ = 2 is depicted in figure 1.
Note tha t we have :

c'/g = ~ y) (1 + ay)

whence

g(y) (9 c' (1 . g ' (y) = _ + ~ y) ~ (y) g Oy oe

f rom which we deduce t h a t the m i n i m u m of c' is ob ta ined when y satisfies

cell(y) - (1 + cey)H'(y) = 0

which (since H'(y) = log2((1 - y) / y)) boils down to

(1 - y) l + ~ _ y = 0 . (3)

Summaris ing , the m i n i m u m of c'/g is ob ta ined when

1
t - 1

g (r

where ~ is the root belonging to [0, 1/2] of equa t ion (3), which yields, in the
a sympto t i c case c~ = 2 :

We obta in

4= 5 +5 +1

t ~ 0.109.

For this t, the average n u m b e r of squar ing-equivalents diminishes f rom 2g to
1.813g and represents a non-negligible speed-up of 9.3%, confirmed by extensive
simulations.

215

.95

I

0.05
J 0 15 0 2 0.25 0.3

Fig. 1. Evolution of c'/e as a function of t, when k ranges over the integers of size tL

3 T h e S i g n e d D i g i t B i n a r y C a s e

A particular redundant binary representation is obtained when B = {-1, 0, 1}.
In this case, the square-and-multiply requires the storing of m -1 mod n.

If d is an integer, a signed digit binary representation of d is of the form

= b 2' (4)
t

with bi E B = {-1 , 0, 1}. Such a representation is not unique. Any form (4) with
a minimal number wa (d) of nonzero coefficients bi is called minimal and wa (d)
is called the arithmetic weight of d. A minimal representation is generally not
unique. However, the representation:

l - 1

= b,2 (5)
s z 0

with bi �9 bi+l = 0 for i = 0, 1 , . . . , g - 2, (called nonadjacent form (NAF) of d) is
unique, minimal, exists for all integers, and is easy to compute. If d is gbi t long,
then its NAF is at most (g + 1)-bit long and its average arithmetic weight is ~/3
(see [3, 4]), whereas the average Hamming weight of a binary f-tuple is Q2. The
cost (1) of computing m d rood n now becomes

ca(d) =~(d)+awa(d)

216

plus an asymptotically negligible extra squaring and the amount of work neces-
sary to pre-compute m -1. Consequently, the average cost of the scheme using the
signed digit binary representation is essentially ~(d)+ al (d) /3 ~ (1 + a/3) log 2 n,
instead of e(d) + a~(d)/2 ,.~ (1 + a/2) log 2 n for the binary representation (for
a = 2, we get ~ log 2 n instead of 2 log 2 n).

Now suppose that we replace d by d + kr We need to study the minimum
c~ of ca(d + kr when k ranges over the set of integers of length tg. As before,
set lr = (1 + t)~ and d r = d + kr of minimum arithmetic weight when k ranges
over the integers of length ft.

Let us make again the assumption that the 2 tt vectors representing d + kr
behave like a set of 2 t~ vectors chosen randomly and independently amongst
ternary nonadjacent vectors of length ~ = (1 + t)~.

A random ternary nonadjacent vector of length ~, and of Hamming weight u
can be looked upon as a string of i t _ u symbols of the form 0, 10, and -10 . Any
such vector can therefore be obtained by first choosing a binary vector of length
~r _ u and weight u and then replacing each 1 symbol by either 10 or -10 . Their
number equals 24 (~ '~) . The expectation of the number of ternary nonadjacent
vectors of weight u in the set of ternary nonadjacent vectors representing d + kr
is therefore :

Eu = (g ' -U)u x 2 t l+u-l '

which is greater than 1 as long as

(~r - u) > 2~-~" u (6)

As before, set w r = infEr_>1 u. The average cost of a raising to the power d r =
d + k~b is therefore

cr = ~' + aW r.

Setting w' = yi ' , this time (6) yields :

in other words

where

We have therefore

1
f (Y) = 1 + t

1

The evolution of c~/i as a function of t is represented in figure 2 for a = 2.
The minimum of c~/~ is obtained for t = 0.0497 and the corresponding average

217

number of squaring-equivalents drops from 1.6671og 2 n to 1.5951og 2 n which
represents a 4.3% time improvement. Although this appears small, one should
keep in mind that there is a/ready a 5/6 performance ratio between the s tandard
and the signed binary exponentiation algorithms.

1.66

64

) 0.05

1 58

01 015 02

Fig. 2. Evolution of c~/g as a function of t, when k ranges over the integers of size t~.

4 T h e O d d - S e t C a s e

A potential drawback of the signed digit binary representation is that its pre-
computation involves a modular division (m -I rood n). Alternative algorithms
avoid this problem by pre-computing and storing m 3 rood n or some other odd
powers of m. In other words, the set B is chosen to be B = {0, i, 3}. Let us de-
scribe the idea by first observing that the square-and-multiply method computes
at step i the number m [a~-1"'a~-'] where d = ~%1 a~-i21-i and [at-1 ... at-,]

stands for the binary representation of ~j=l al-~ 2 t-j.

If m 3 -- m [II] is pre-computed, then computing rn [a~-1"''a~-'-la~-'-2] from
m [a~-1a~-4 requires two squarings and a multiplication if [ai-i-lai-i-2] equals
[111 or [10].

218

We therefore observe that the number of multiplications necessary in the
square-and-multiply method is the number of nonzero symbols obtained when
[a~- l . . . a0] is parsed and represented as a string of characters belonging to
the alphabet 0, 10, 11. In other words the number of multiplications equals the
Hamming weight of the ternary vector obtained from [al-1 . . . ao] by the above
parsing. We see easily that the analysis of the behaviour of the representation
of d + kr obtained in this fashion is exactly the same as that of the previous
sections.

More generally, the odd-set algorithm [7] uses B = {0, 1, 3, 5 , - - - , 2 r - 1},
and requires 2 r-1 pre-computations. Now if [a] is the binary representation of
an integer, [b] the binary representation of an integer of length r and [a][b]
their concatenation, then it is easy to check that computing m [alIbI f r o m m [a]

requires r squarings and one multiplication. Therefore, if we parse the binary
representation of an integer as a string of symbols belonging to the alphabet ,4
made up of 0 and the binary vectors of length r starting with 1, we see that the
number of necessary multiplications is exactly the weight of the IAI-vector thus
obtained.

Now replace d by d + kr for 0 < k < 2 tl and choose d' of minimum Hamming
weight when represented as a string of elements belonging to A. To evaluate the
average weight of d ~ we proceed as in the previous sections. First evaluate the
expectation of the number of tAI-strings of weight u : this is easily seen to be

Eu =- 2 t~ X
2 ~'

Calculations proceed as before : this time we obtain that the average cost of
raising to the power d' equals

with

' ~(1+ t) (1 + af~-I (~ + t)) C r

(y) f r (Y) = (r - 1) y + (1 - (r - 1) y) H 1 - (r - 1) y '

For r = 3 and a = 2, the evolution of c ' / i as a function of t is represented
in figure 3. Since the original average weight is ~/(r + 1), the game begins with
(r + 3)~/(r + 1) squaring-equivalents for a = 2 and becomes 1.5g for r = 3;
whereas the minimM cost 1.467~ results in a 2.2% speed-up 2.

5 Applications and Further Research

In this paper we investigated the impact of replacing an exponent d by a func-
tionally equivalent d ~ = d + kr This surprisingly simple optimisation, to the

2 when r gets bigger, the exponentiation engine's performances improve but the speed-
up due to our optimisation strategy decreases.

15

49

4

219

)

1 46

0 02 0 04 0 06 0 08 0 1

Fig. 3. Evolution of c'3/g as a function of t, when k ranges over the integers of size tg.

best of our knowledge never treated in the literature, appears to offer rather sig-
nificant performance improvements and does not present any real disadvantage
(at worst, the exponent size will increase by a few bits). Moreover, this strategy
can be applied to ex is t ing black-boxes (such as compiled arithmetic libraries or
cryptographic co-processors) without any modification. We performed extensive
practical tests on three existing platforms : Mathematica's PowerMod [, ,] func-
tion, BSAFE and the Miracl big number library. In each case we did not modify
the source code and compared the performances of random exponentiations to
those obtained with their optimal equivalents, generated by adding an appro-
priate multiple of r Mathematica's PowerMod[, ,] became 7.1% faster while
Miracl and BSAFE's performances improved by 5.4% and 6.9%. Elliptic-curves
should feature even better : projective doubling over GF(2 m) requires 5 field
squarings and 5 multiplications (4 temporary variables) and projective addition
requires 5 squarings and 15 multiplications (9 temporary variables); wherefrom
an c~ ~ 2.33.

An interesting open question consists in optimising the time complexity of
random exponentiation oracles (black-boxes that compute m d mod n in a time
complexity which does not depend on any regular function of d). In this setting,
the optimiser only knows the oracle's expectation distribution and is allowed to
make a polynomial number of queries in order to find a d' better than d.

220

References

1. I. Bocharova, B. Kudryashov, Fast exponentiation in cryptography, AAECC-11,
Lecture Notes in Computer Science 948, Springer Verlag, pp. 146-157, 1995.

2. A. Booth, A signed binary multiplication technique, Quarterly Journal of Mechan-
ics and Applied Mathematics vol. 4, pp. 236-240, 1951.

3. A. Chiang, I. Reed, Arithmetic norms and bounds of the arithmetic A N codes,
IEEE Trans. on Information Theory, vol. IT-16, pp. 470-476, 1970.

4. W. Clark, J. Liang, On arithmetic weight for a general radix representation of
integers, IEEE Trans. on Information Theory, vol. IT-19, pp. 823-826, 1973.

5. C. Frougny, Linear numeration systems of order two, Information and Computa-
tion, vol. 77, pp. 233-259, 1988.

6. D. Gollmann, Y. Han, C. Mitchell, Redundant integer representations and fast
exponentiation, Designs, Codes and Cryptography, vol. 7, pp. 135-151, 1996.

7. L. Hui, K. Lain, Fast square-and-multiply exponentiation for RSA, Electronic Let-
ters, vol. 30, pp. 1396-1397, 1994.

8. D. Knuth, The Art of Computer Programming, Volume 2 : Seminumerical Algo-
rithms, Addison-Wesley, Reading, Mass., 1981.

9. (~. Ko~, High-radix and bit re-coding techniques for modular exponentiation, In-
tern. J. Computer Math., vol. 40, pp. 139-156, 1991.

10. F. MacWilliams, N. Sloane, The Theory of Error-Correcting Codes, North-Holland,
Amsterdam, p. 309, 1977.

11. J. Quisquater, C. Couvreur, Fast decipherment algorithm for RSA public-key cryp-
tosystem, Electronic Letters, vol. 18, pp. 905-907, 1982.

12. J. Sauerbrey, A. Dietel, Resource requirements for the application of addition
chains in modulo exponentiation, EUROCRYPT'92, Lecture Notes in Computer Sci-
ence 658, Springer Verlag, pp. 174-182, 1992.

13. N. Takagi, S. Yajima, Modular multiplication hardware algorithms with a redun-
dant representation and their application to RSA cryptosystem, IEEE Trans. on
Computers, vol. 41, 1992.

14. Y. Yacobi, Exponentiating faster with addition chains, EUROCRYPT'90, Lecture
Notes in Computer Science 473, Springer Verlag, pp. 222-229, 1991.

