
Speeding up Discrete Log and Factoring Based
Schemes via Precomputations

Victor Boyko .1 , Marcus Peinado *.2, and Ramarathnam Venkatesan .3

1 Massachusetts Institute of Technology, LCS, USA boyko@theory, lcs .mit .edu
2 GMD Research Center, SCAI, 53754 St. Augustin, Germany, peinado@gmd.de

3 Microsoft Research, Redmond, WA 98052, USA, veak i e~ i c ro so f t , corn

A b s t r a c t . We present fast and practical methods for generating ran-
domly distributed pairs of the form (x, g~ mod p) or (x, x ~ rood N), us-
ing precomputation. These generation schemes are of wide applicability
for speeding-up public key systems that depend on exponentiation and
offer a smooth memory-speed trade-off. The steps involving exponenti-
ation in these systems can be reduced significantly in many cases. Our
schemes are most suited for server applications. We present security anal-
yses of our schemes using standard assumptions, including analyses for
fully adaptive attacks. Our methods are novel in the sense that they
identify and thoroughly exploit the randomness issues related to the in-
stances generated in these public-key schemes. Our constructions use
random walks on Cayley (expander) graphs over Abelian groups. Our
analysis involves non-linear versions of lattice problems. It appears that
any realistic attack on our schemes would need to solve such problems.

1 I n t r o d u c t i o n

Modular exponentiation is a basic operation widely used in cryptography and
constitutes a computational bottleneck in many protocols. This work presents a
method to significantly speed up modular exponentiation.

In practice, two versions of modular exponentiation are most frequent: In
factoring based schemes, x e mod N must often be computed for fixed N -- pq
(p, q primes), fixed e and many randomly chosen x. Many discrete log based

$
schemes compute terms of the form gX mod p, for a fixed g E Z~p and many
random x.

The well known square-and-multiply algorithm for modular exponentiation
requires, on average, 1.5 n modular multiplications for an n-bit exponent. In the
case of 512-bit integers, the algorithm performs, on average, 766 modular mul-
tiplications of 512 bit numbers. Several authors [5,10,19] describe alternative
algorithms for the discrete log case which reduce the number of multiplications
per exponentiation by means of precomputation and table lookup. These al-
gorithms allow a time-memory trade-off. For 512-bit numbers, the number of

* Part of the work done while at Bellcore.
** Part of the work was done while visiting ICSI, Berkeley, CA.

222

multiplications can be reduced to about 100, using a modest amount of memory
and precomputation time.

We present new methods to reduce the cost of exponentiation even further.
In the discrete log case, our scheme may need significantly fewer multiplications
than even the improved algorithms of [5, 10, 19] (depending on the parameter
choices; cf. Section 5). This improvement is even more pronounced when com-
pared to square-and-multiply. Note that the algorithms of [5, 10, 19] apply only
to the discrete log case. To the best of our knowledge, our scheme is the only
available method to speed up exponentiation in the factoring case, and research
into variants may be of interest.

The key to these performance improvements lies in abandoning the basic
input-output relation the known algorithms adhere to: unlike these algorithms,
our scheme does not receive x as its input but generates a random x together
with g~ mod p, or x e mod N, respectively. While this joint generation makes it
possible to reduce the number of multiplications noticeably, it also limits the
direct applicability of our scheme to protocols in which a party generates a ran-
dom x and computes g~ mod p or x e mod N. Still, there are many cryptographic
protocols which involve exactly these two steps and which, in some cases, are
speeded up significantly by our generation scheme. We present some examples:
Diffie-Hellman key exchange [12], E1Gamal encryption [14], EIGamal and DSS
signatures [14, 13], Schnorr's schemes for authentication [23, 24], 2"~-th root iden-
tification scheme [27], and versions of the RSA cryptosystem which we define
here.

The simplest version of our generator is based on a subset sum or subset
product construction. The set of possible outputs x is determined by the set of
possible subsets which can be generated given the parameters of the generator.
A second version of the generator combines the basic version with a random
walk on an expander which is a Cayley graph of an Abelian group. The random
walk component expands the set of possible outputs incrementally and spans the
entire underlying group. Due to space limitations, we do not present the analysis
of this scheme in this version. We remark that our methods depend only on the
group structure of the underlying domain and are thus also applicable to elliptic
curve based schemes.

The main part of the paper is devoted to analyzing the security of protocols
under the distribution of outputs produced by our generators. This is necessary
since correlations in the generator's outputs can introduce potential weaknesses
which do not arise in [5, 10, 19]. A scheme for fast generation of pairs of the form
(x, g~ mod p) was proposed by Schnorr [23] for use in his authentication and
signature scheme. It was broken by de Rooij for the small parameters suggested
by Schnorr [9], and fixed by Schnorr [24]. This version was also broken by de
Rooij [11]. De Rooij's at tack easily extends to any discrete-log based signature
scheme for which an equation linear in the random parameter can be written
(e.g. E1Gamal, DSS, and Brickell-McCurley). De Rooij's attack is based on linear
relations between the consecutive outputs and the tables of Schnorr's generator.
We note that an attack of this sort cannot be applied to our generator.

223

Models of Analysis: Instead of using a restricted adversary model, such as the
'black box model' of Nechaev [21] or Shoup [28], our analysis considers general
adversaries. It proceeds either without additional assumptions or invokes stan-
dard complexity assumptions (e.g. hardness of factoring). We believe that this
approach, by treating more general adversaries, can yield better optimizations.
In some cases (e.g. Diffie-Hellman key exchange, EIGamal encryption, EIGamal
and DSS signatures, and Schnorr's authentication and signature schemes) we
present an analysis which proves security against certain kinds of non-adaptive
attacks without using additional assumptions.

To analyze fully adaptive attacks, we fall back on the known pseudo-random-
ness properties of subset sum problems: Impagliazzo and Naor [16] have shown
that, given random weights a~ (i < n) and a modulus M, a random subset sum
b modulo M is indistinguishable from a random string of the same length. Us-
ing this and further observations, we show that several protocols which use our
generator are immune even against fully adaptive attacks, provided the original
protocols are secure and the adversary cannot break the underlying subset-sum-
type problem. Consideration of the most efficient attacks on the subset sum
problem [26] and our own experiments indicate that solving this problem (es-
pecially the hidden-weight version described below) is hard for the parameters
used in practice (see below).

RSA-based schemes: We present some RSA-like systems for applications with
large encryption exponent. Commonly, the RSA public key exponents are chosen
to be small in order to reduce encryption times. Consequently decryption takes
far longer than encryption. In RSA signature schemes, the situation is reversed.
It may be desirable to decrease the asymmetry of loads on the two ends and
to have roughly similar costs for encryption and decryption. For example, a
server which is networked with many small clients that form frequent short-lived
sessions may be (paradoxically) overloaded. Formally, our speedup scheme can
only be applied to the encryption of messages. Decryption times can be reduced
by using small decryption exponents d, which should be chosen according to
Wiener's recommendations [29] (also discussed later). We also note that certain
attacks on RSA exploit low exponents, and some future applications appear to
require large exponents [3, 7]. We analyze the generation schemes using standard
assumptions.

Lattice attacks on subset sum problems: Subset sum constructions have been
so successfully attacked by lattice reduction [18] based methods [4, 17, 8] that
it is often considered risky to base cryptographic constructions on them. Our
experiments show that the L 3 algorithm can be expected to solve subset sum
problems up to about n -- 40, where n is the size of the set from which subset
sums are formed. Let s be the length of the integers in this set. As n becomes
larger than 40, L 3 finds the shortest vector only if s (or n/~) exceeds some
threshold to. The value to itself grows rapidly with n.

At present, the most successful attack on subset sum is described in [26, 25].
It combines the L 3 algorithm with a branch-and-bound search for the shortest

224

vector and search pruning heuristics. Algorithms of this kind can be expected
to solve subset sum problems for all values of g up to about n = 100. Based on
our own experiments, we observe that as n is increased far beyond 100 - 200 the
behavior of the algorithms becomes qualitatively similar to tha t of L 3 for n > 40:
The shortest vectors are found only if g is sufficiently larger (or smaller) than n.
In practice, all known attacks break down at n around 200 for the more difficult
SUBSET SUM problems (g not much larger than n). Furthermore, the attacks
do not appear to profit significantly from the fact that only a-subset sums (as
opposed to arbitrary subset sums) have to be solved, unless a is extremely small.
Typical applications of our generators correspond to n ~ g > 500 (the length
of discrete log or factoring moduli) and a = 64. The known methods appear
to require excessive amounts of time to solve subset sum problems of this size.
Furthermore, it is important to note that the problem arising in connection with
our generators is not even a standard subset sum problem. A key property of
our generators is the fact tha t the adversary sees only the subset sums (which
are generated internally). The subset sum weights are secret. There is no reason
to reveal them. It can be shown that the task of recovering the weights given
enough subset sums is a well defined one:

HIDDEN SUBSET SUM PROBLEM: Given integers M , b l , . . . , b m E {0,1} ~, find
integers a l , . . . , (~n (c~j E {0, 1} t) such that each bi (1 , . . . ,m) is some subset
sum modulo M of a l , . . . , c~,.

It appears that attacks on the generator need to cope with the complications
due to the hidden weights. We defer a detailed discussion to the full version of
the paper. We can show that this problem is at least as hard as the s tandard
subset sum problem and thus, by the results of Ajtai, as hard as worst case
lattice approximation problems. Our experiments and discussions with other
researchers lead us to conjecture that it is potentially harder. Our results have
applicability to general lattice based problems (like Ajtai's), random affine codes
(or syndrome decoding) based systems [15, 1], and polynomials.

Convent ions and outline: Given an integer x, let Ixl denote its length in bits.
We use r to denote the size of the multiplicative group kZ~v. We use [a, b] to
denote the set { a , . . . , b}, where a, b are integers.

Section 2 describes our generation scheme for pairs of the form (x, x e
mod N). Section 3 describes and analyzes applications of this scheme, in partic-
ular RSA-like public-key systems and Shoup's 2m-th root identification scheme.
Section 4 describes the generator for pairs of the form (x, g~ mod p) and its ap-
plication in several protocols, including signature schemes. Section 5 discusses
parameter choices and presents some performance results.

Due to space restrictions, most proofs and parts of the discussion have been
omitted in this version. A full version of the paper will be available shortly.

225

2 T h e G e n e r a t o r f o r (x , x e r o o d N)

2.1 The Basic Generator

The generators in this section are targeted towards speeding up protocols in
which a party must generate a random x E Z~v and x ~ mod N (below all com-
putations, if not specified otherwise, are done modulo N), for a given N = pq,
where p, q are primes, and e E Z~ + of length m. The generator has two param-
eters n, ~. Its outputs correspond to R-subsets of a set of n random numbers
ai . We choose the parameters n , a such that (:) (the number of possible ~-
subsets) is sufficiently large to make the corresponding subset product problem
intractable, and to make birthday attacks infeasible (cf. Section 5).

Generation algorithm G:
Preprocess ing Step: Generate n random integers ai E ~Z* N. Compute fl~ --
(c~i) e mod N for each i and store both ~i 's and fli's in a table.
Whenever a pair (x, x ~) is needed: Randomly generate S C [1, n] such that
ISI = a. Let k -- l-Iies ai mod N. Let g -- I-Iics fli mod N. Return (k, K) as
the result of G.

Obviously, K -- k e. The preprocessing takes O(mn) multiplications. Subse-
quently, each output (x ,x ~) is computed with only 2~ multiplications. Similar
ideas have been used previously in [1]. G can be used in many schemes and
analyzed without further assumptions. We now present computationally simple
modifications of the generator that improve its performance. We will state the
security proofs for the simple generator. They can be easily adapted for the full
generator.

Remark 1. Note that the table is internal to the user, and no external updates
or synchronizations for the schemes we discuss are needed.

Remark 2. We assume throughout the paper tha t (:) is large enough so that the
first g outputs of the generator are distinct with high probability. This simplifies
matters and avoids repetitive statements.

2.2 The Full Generator: Introducing a R a n d o m Walk

Our full generator combines a random walk on expanders based on Cayley
Graphs on Abelian groups with the outputs of G. For standard references on
expanders, rapid mixing and their set hitting properties see [20]. Notable are
"Chernoff Bounds" for random walk sequences that allow remarkable state-
ments about passing general statistical (e.g. arbi trary moment) tests on the
output numbers. For our applications, we need expanders on specific domains
over which discrete log and factoring are defined. Fortunately these graphs exist:
It is sufficient to select a small set of generators at random. The resulting Cayley
graph is an expander with high probability [2]. A graph H is called a c-expander

226

if for every set of vertices S, IF(S)] > cISI(1 - [SI/IH]), where I ' (S) is the set of
all neighbors of S. The Cayley graph X (A , S) of a group A with respect to the
set S of elements in the group is the graph whose set of vertices is A and whose
set of edges is the set of all unordered pairs {{g, gs} : g E A, s E S}. It is shown
in [2] that for every 1 > e > 0 there exists a c(e) > 0 such that the following
holds. Let A be a group of order N, and let S be a random set of c(e)log N
elements of A. Then the Cayley graph X (A , S) is an c-expander almost surely.

Generation algorithm Gexp: Let N, e, n, ~ be as in G. There is an additional
parameter ne = c logr for some constant c (e.g. c = 0.5 or c = 1).
Preproeessing Step: Generate n random integers c~i E Z~v. Compute fli = c~
for each i and store the ai ' s and fi,'s in a table.

Generate a random subset Se C ~Z~v of size ne (by the result of [2] X(~Z~v, Se)
is an expander almost surely). For each di E S~, 1 < i < ne, set Di = d~ and
store (di, Di) in a table. Set r to a random element of z2~v and R to r%
Whenever a pair (x, x ~) is n e e d e d : Randomly generate S C [1, n] such that
IS I = t~. Select a random j E [1,he]. Set r := r �9 dj and R := R �9 Dj. Let
k = r . I-Ii~s ~i. Let K = R . 1-IiEs fli and return (k, K) as the result of Ge~p.

2.3 Randomness Properties of the Full Generator

Theorem 1. (Resistance to Birthday attacks) The expected number of repeti-
tions in a run of length g is at most

, (1 ,)
(~) + -- + ct~logn (1)

r (-~ 1 - 2 -c

for some constant c and sufficiently large N, n.

The proof is outlined in the appendix. The first term of (1) is the expected num-
ber of repetitions in an ideal sequence whose elements are independent random
elements of kZ~v and is negligible for feasible runs of the generator. The point
to note is that the second term - which represents the additional collisions due
to our generator - contains g only as a linear factor. In contrast, the goal of a
birthday attack is to increase the expected number of collisions proportional to
g2. The constant c depends on the parameters of the expander, which can easily
be chosen such that c ~ 1.

Achieving similar security against bir thday attacks without the expander
would require a to be almost doubled reducing the speed by a factor of 2. At the
expense of the additional storage for the (di, Di) table, the expander component
requires only two additional multiplications per output. In addition, it improves
the randomness properties of the output numbers substantially (see [1]). Here
it makes the outputs look like subset sums of size approximately 2to. which can
heuristically be seen by dividing two successive outputs.

227

3 R S A - B a s e d S c h e m e s

Our generators do not speed up RSA-based schemes in a general way, but open
some new possibilities. The generator cannot be applied directly to RSA since it
requires exponentiation of a given message rather than random one. We analyze
versions of the following scheme, in which f is an appropriately chosen function.
The schemes defined in this section will use either f (x) = x or consider f as
a random oracle. Attacks on low exponent RSA due to Hs and Copper-
smith suggest (see [7]) that the RSA function should be applied to a suitably
randomized version of the input (plaintext), rather than the input itself.
Key generation: The public and private keys (e, d), as well as the modulus N are
generated as in RSA. That is, a party generates two large random primes p, q,
sets N = pq, computes e,d such that ed - 1 mod r and publishes e and N.
Encryption: A message M is encrypted as E (M) = (x ~, f (x)@ M), where (x, x ~)
is an output of G.
Decryption: Given a pair a, b, output D(a, b) = f (a d) ~ b.

Our generator speeds up encryption, when the encryption exponent is large.
We also discuss how the decryption times may be reduced. In comparison with
ordinary RSA, the length of the ciphertext is doubled. We can prove that the
scheme is secure by relating it to RSA and by analyzing it in the random oracle
model.

3.1 R a n d o m O r a c l e M o d e l

The random oracle model (e.g. [6, 22] and references therein) provides an ideal-
ized view of cryptographic hash functions. Protocols are allowed to use a random
oracle, i.e. a publicly available function f whose values f (x) are determined in-
dependently at random for each input x. In the absence of bet ter analysis, one
often extrapolates the security results from random oracles to existing hash func-
tions by using a heuristic assumption that some secure hash function behaves
like a random oracle. We view this as a strong assumption warranting caution,
but such analysis seem to yield bet ter results than without it.

In the random oracle model, we choose f (x) = h(x), where h(x) is a random
function. Let the parameters of the generator be such that repetitions in the
output sequence are unlikely (e.g. see Thm. 1).

T h e o r e m 2. Let all elements in the sequence X l , - . - , Xk (k ~ 1) be different.
For k > O, distinguishing E(Mk) from a random string, given (M 1 , E (M 1)) , . . . ,
(M k - i , E (M k - 1)) , M k is as hard as inverting x ~-~ x ~ (i.e. RSA) on random
inputs.

3.2 x e , x ~ M

This subsection considers the simplest case, i.e. f (x) = x. We describe some
practical implications of our scheme. We omit our security analysis due to space
restrictions.

228

Small decryption exponents: Use of G speeds up encryption for any exponent.
Decryption still requires an exponentiation with the decryption exponent d. De-
cryption can be speeded up by choosing d and e such that d is small. The most
efficient attack against RSA with small decryption exponent is the Diophantine
approximation method of Wiener [29]. The attack breaks down if d > N 1/4+6
(~ > 0), or if e is replaced by e' = e + r e (N) such that le'l > 1.5 INI, where r is
a random number.

Quadratic Residues: e -- 2 It is known that given enough bits of the plain-
text, one can uniquely pick one of the square roots for decryption. The proof of
the following theorem is outlined in the appendix.

Theorem 3. Fix some ~, let e = 2, and let I +- G~(.) be a run of g outputs from
the generator. Assume that there exists an algorithm that, given I , computes the
square root (modulo N) of the next output of G ~ with a noticeable success rate

. Then there is an algorithm to compute square roots of arbitrary quadratic
residues modulo N in expected time 1/c. Furthermore, there is an algorithm to
factor N .

3.3 2'~-th Root Identification Scheme

In this subsection, we show that using G in the 2'~-th root identification scheme
[27] preserves its full security. We recall the scheme first: N is the product of two
randomly selected primes of equal length, both congruent to 3 mod 4. q = 2 m
is the exponent, for some sufficiently large m. a E ~ v is the private key and
b = aq rood N is the public key. If Alice (Prover) wants to prove her identity to
Bob (Verifier), she chooses k E Z ~ at random, computes x = kq, and sends x
to Bob. Bob checks that x ~ 0, chooses r E [0, q - 1] at random and sends r to
Alice. Alice computes y -- ka r and sends y to Bob. Bob accepts if yq -- xb r.

Note that an authentication scheme can be converted into a signature scheme
by replacing the verifier's challenge by a hash of the message [24]. It can be seen
that, if an authentication scheme is secure when used with G, then so is the
corresponding signature scheme.

Theorem 4. Let n > Cl l ogN and n >> ~ > c2 for some constants cl and c2.
I f factoring is intractable then the 2m-th root scheme is secure against active
attacks when the prover uses G to generate its first-round messages.

The omitted proof can be adapted to show security against active attacks for the
generalized Ong-Schnorr authentication scheme when used with G ([27] shows
the security for the case of fully independent random numbers). We defer the
details to the final version of this paper.

4 D i s c r e t e L o g B a s e d S c h e m e s

In this section, we present a modification of our generation scheme which makes
it suitable for speeding up protocols based on the discrete logarithm problem.

229

These include EIGamal, DSS, and Schnorr signatures, Diflie-Hellman key ex-
change, and E1Gamal encryption.

4.1 Generators

All versions of the generator presented in Section 2 can be translated into the
discrete logarithm framework. Due to space limitations, we present only the
basic version G ~. The corresponding full version including an expander G~e,p is
analogous to Ge,p. Thm. 1 is easily adapted to G~,p.

Let p be a prime of length m, and let g E Z~. The task is to generate
a random k and compute gk rood p - as required by many protocols. In the
remainder of this section, all operations are done modulo p. Again, the purpose
of the generator is to speed up the modular exponentiation.
Generation algorithm Gt:
Preprocessing Step: Generate n random integers cq E ~ord(g)" Compute
/~i = g~' for each i and store both c~i's and/~, 's in a table.
Then, whenever a pair (x, g~) is needed: Randomly generate S C [1, n] such
that ISI = a. Let k = ~ i c s (~ mod ord(g). If k = 0, stop and start again. Let
K -- [I ~ s f~ and return (k, K) as the result of G.

4.2 Speeding up Discrete-log-based Schemes

Our first theorem outlines a main aspect of our generator, which stems from the
fact that the precomputation tables are chosen by the generator and kept secret.

Theorem 5. Fix some ~ and let I := (gk,)~ +_ G(.) be a run of ~ outputs from
the generator. Assume that there exists an algorithm that, given I, computes
the discrete log of the next output of G with success rate ~ . Then there is an
algorithm to compute discrete log on arbitrary inputs in expected time O(1/c) .

The proof is outlined in the appendix. Despite the small number of multipli-
cations used in G, for all but a negligible fraction of the choices of the initial
precomputation tables, computing the discrete log of any new output of the gen-
erator is as hard as solving the full discrete log problem, namely given arbitrary
y = g* compute x. Note that the attack algorithm never sees the discrete log of
any element from the list of its outputs. In practice this means that it suffices
to ensure that in any run of practical interest its outputs do not repeat. More
complicated issues will arise when the discrete logs are used to generate some
outputs. This is the case in many signature schemes.

4.3 Signature Schemes

Our generators can be used to speed up several signature schemes. The signa-
ture schemes we consider use pairs (k, gk) in two contexts. For example, in the
E1Gamal scheme, a signer generates one pair (x, y = g*), publishes y and keeps
x secret. This pair is generated only once and corresponds to the generation of

230

a private and a public key. We do not use our generator to speed up the gen-
eration of this pair. Our generator is only used to speed up the generation of
the random pairs (k, gk) which are needed every time a message is to be signed.
However, given y, a third table containing (y~')i<n can be added to our gener-
ator. Thus, the computation of yk can also be speeded up. This does not raise
further security issues.

Let a(M, k) be some discrete-log based signature of message M using a ran-
dom number k. Suppose there exists an attack algorithm A such that A(y, 217/,I) =
a(M,k) for some k, where I = {(M,,a(M,,ki))}~=l, with k, generated by G.
Note that A does not query the signing algorithm. It is simply given a sequence
of signatures and messages. The messages given to A can be arbitrary. This
corresponds to a known message attack.

Theorem 6. The following signature schemes are secure against known-message
attacks when used with G~ : ElGamal, DSS and Schnorr.

Security Against Adaptive attacks: Theorem 6 does not does not cover adver-
saries who can choose their messages adaptively, depending on previous messages
and their signatures.

Our first approach to making the scheme resistant against adaptively cho-
sen message attacks is to make the outputs of G very close to uniform and
independent. This can be achieved by choosing the parameters of the generator
appropriately. It can be shown that the new schemes that use G for generation
are secure if and only if the original schemes are. Details omitted.

Our second approach is to use cryptographic pseudo-randomness in the
sense of Blum-Micali and Yao. As a motivation, consider the E1Gamal signature
scheme. Unlike in Thm. 5, an attacker sees not only numbers of the form r = gk
but additional information that depends on k. Namely, the triple (r, M, g=) and
k - l (M - xr) m o d p - 1.

Theorem 7. If the sequence of k is cryptographically pseudo-random, then the
speeded-up versions of the following schemes are secure against polynomial time
adaptive attacks: E1Gamal Signatures, DSS, Schnorr authentication and signa-
tures.

The attacker does not see the subset sums directly. For example, in the case of
E1Gamal signatures, he sees only k - l (M - xr), a multiple of the inverse of a
hidden number k. It is not clear how to accommodate this in lattice attacks. It
is worth noting that de Rooij's attack succeeds in recovering the hidden number
(the signer's secret key) using tight correlations among consecutive outputs. But
in our case the numbers are chosen from a large set every time, and this set
itself moves over the entire group with a mixing rate which is logarithmic in the
group size (since expander random walks mix rapidly).

4.4 Diffie-Hellman Key Exchange and EIGamal Encryption

Diflie-Hellman key exchange is defined as follows. Alice generates a random
a E ~ord(9) and sends ga to Bob. Bob generates a random b E ~Zord(g) and

231

sends gb to Alice. Now they share a secret gab = (gb)a = (ga)b. Alice and Bob
can use G to generate (a, ga) and (b, gb), respectively.

EIGamal encryption [14] is defined as follows, x is the secret key, y = g= is
the public key. A message M is encrypted as E(M, k) = (gk, Myk). We speed
up the scheme by using G to generate k and gk for each encryption. G is not
used to compute x and y.

L e m m a 1. (a) Dij~ie-Hellman key exchange with G used to generate (a, ga) and
(b, gb) is as secure as Di~ie-Hellman key exchange with independent a's and b 's.

(b) EIGamal encryption with G used to generate (k,g k) is secure against
ciphertext-only attacks if standard EIGamal encryption is secure.

The proof is similar to the proof of Thm. 5. One can cope with adaptive attacks
by achieving output distributions that are statistically close to being uniform.
Details are omitted due to space constraints.

5 Performance Results

The time and storage requirements as well as the security of our generators
depend on the choices of the parameters n, a, nr For the purpose of making direct
performance comparisons with existing algorithms and based on our analysis, we
consider concrete parameter choices for two broad classes of applications:

If the security of the protocol using our generator depends on the hardness of
the hidden subset sum problem (e.g. adaptive attacks against signature schemes),
the parameters should be chosen such that solving the hidden subset sum prob-
lem is infeasible. If the security of the protocol using our generator does not
depend on the hardness of the hidden subset sum problem (e.g. Diffie-Hellman
key exchange), it is only necessary to choose the parameters large enough to
avoid birthday attacks. In this case, the number of multiplications per exponen-
tiation can be made extremely small.

Table 1 gives the storage requirements and average number of multiplications
using various methods to generate random pairs (x, g= mod p) and (x, x ~ mod N)
for 512-bit numbers. For protocols of the first kind (hardness of subset sum is
important), it appears that n = ne = 512 and a = 64 (or a -- 32 for the expander
version) should provide sufficient security. For certain protocols of the second
kind, it appears that ~ can be chosen to be as small as 6 or 16 and n = 256.
Table 1 displays the resource requirements for these parameter choices as well as
those for the algorithms of [5, 10, 19] and square-and-multiply. For the algorithms
of [5, 19], we display examples with small and large storage requirements. Using
comparable amounts of memory, our generators need fewer multiplications than
the other algorithms, especially in the case of GCxp, G/exp.

6 C o n c l u s i o n s

We have suggested methods for speeding up public key schemes which are based
on discrete log and factoring. Our methods focus on the generation of distribu-

232

t ions of pairs of the form (k ,g k) (gk E Z~) or (x ,x e) C (Z*) 2. We have analyzed
the securi ty of their use in several example schemes.

In the process of this analysis, we had to consider versions of a h idden lattice
problem which seems to be of interest in its own right and whose hardness should
be s tudied further. An interest ing question is if the apparen t non-l ineari ty of this
problem is an inherent property. An extension of this problem to o ther (i.e. non-
lattice) domains will be presented in a future work.

A c k n o w l e d g m e n t s : We thank Arjen Lenst ra for his generous discussions. We
also t h a n k D. Boneh, C.P. Schnorr, D. Coppersmith , D. Bienstock and R. Kan-
nan for discussions on me thods for a t tacking hidden subset sum problems.

Tab le 1. A comparison of methods of generating pairs (x, g= mod p) and (x, x ~ mod N)
for IPl ---- 512, ord(g) = 512, INI = 512, lel -- 512. Storage requirements are in 512-bit
numbers. Times are in multiplications per exponentiation.

(x,g= mod p) (x, x ~ mod N)
Storage Time Storage[Time

Square-and-multiply 0 766 0] 766
Brickell et al. [5] 512 100 not applicable
Brickell et al. [5] 10880 64 not applicable
Lim and Lee [19] 317 100 not applicable
Lim and Lee [19] 13305 52 not applicable
de Rooij [10] 64 128 not applicable
G (n -- 512, tr -- 64) 1024 63 1024 126
Gexp (n = n~ = 512, t~ = 32) 2048 33 2048 66
G (n = 256, t~ = 16) 512 15 512 30
Gexp (n = n~ = 256, tr = 6) 1024 7 1024 14

R e f e r e n c e s

1. W. Aiello, S. Rajagopalan, and R. Venkatesan. Design of practical and provably
good random number generators. In Proceedings of the 6th Annual Symposium on
Discrete Algorithms, pages 1-9, San Francisco, January 1995. ACM Press. (also to
appear in Journal of Algorithms).

2. N. Alon and Y. Roichman. Random Cayley graphs and expanders. Random Struc-
tures and Algorithms, 5, 1994.

3. D. Boneh and R. Venkatesan. Breaking RSA may not be equivalent to factoring.
Eurocrypt '98, this proceedings.

4. E. Brickeil. Solving low density knapsacks. In Proceedings of Crypto'83, pages
25-37, New York, 1984. Plenum Press.

5. E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast exponen-
tiation with precomputation. In R. A. Rueppel, editor, Advances in Cryptology:

233

EUROCRYPT '92, volume 658 of Lecture Notes in Compuier Science, pages 200-
207, Berlin, 1993. Springer-Verlag.

6. R. Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In Advances in Cryptology - Crypto'97, Lecture Notes in Computer
Science, 1997.

7. D. Coppersmith. Small solutions to polynomial equations and low exponent RSA
vulnerabilities. Journal of Cryptology, 10(4), 1997.

8. M. J. Coster, A. Joux, B. A. LaMacchia, A. M. Odlyzko, C. P. Schnorr, and J. Stern.
Improved low-density subset sum algorithms. In Computatzonal Complexity 2,
pages 111-128. Birkhs Basel, 1992.

9. P. J. N. de Rooij. On the security of the Schnorr scheme using preprocessing. In
D. W. Davies, editor, Advances in Cryptology: EUROCRYPT '91, volume 547 of
Lecture Notes in Computer Science, pages 71-80, Berlin, 1991. Springer-Verlag.

10. P. J. N. de Rooij. Efficient exponentiation using precomputation and vector addi-
tion chains. In A. De Santis, editor, Advances in Cryptology: EUROCRYPT '94,
volume 950 of Lecture Notes in Computer Science, pages 389-399, Berlin, 1994.
Springer-Verlag.

11. P. J. N. de Rooij. On Schnorr's preprocessing for digital signature schemes. Journal
of Cryptology, 10(1):1-16, 1997.

12. W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22:644-654, 1976.

13. Digital Signature Standard. National Bureau of Standards FIPS Publication 186,
1994.

14. T. E1Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inform. Theory, 31:469-472, 1985.

15. J. Fischer and J. Stern. An efficient pseudo-random generator provably as secure as
syndrome decoding. In U. Maurer, editor, Advances in Cryptology: EUROCRYPT
'96, volume 1070 of Lecture Notes in Computer Science, pages 245-255, Berlin,
1996. Springer-Verlag.

16. R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably as secure
as subset sum. Journal of Cryptology, 9(4):199-216, 1996.

17. J. Lagarias and A. Odlyzko. Solving low density subset sum problems. Journal of
the ACM, 32, 1985.

18. A. Lenstra, H. Lenstra, and L. Lov~sz. Factoring polynomials with rational coef-
ficients. Mathematische Annalen, 261:513-548, 1982.

19. C. H. Lim and P. J. Lee. More flexible exponentiation with precomputation. In
Advances in Cryptology - Crypto'94, Lecture Notes in Computer Science, 1994.

20. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

21. V. I. Nechaev. Complexity of determinate algorithm for the discrete logarithm.
Mathematical Notes, 55(2):165-172, 1994.

22. D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. Maurer,
editor, Advances in Cryptology - Eurocrypt'96, Lecture Notes in Computer Science,
1996.

23. C. P. Schnorr. Efficient identification and signatures for smart cards. In G. Bras-
sard, editor, Advances in Cryptology: CRYPTO '89, volume 435 of Lecture Notes
in Computer Sciences pages 239-252, Berlin, 1990. Springer-Verlag.

24. C. P. Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4:161-
174, 1991.

234

25. C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algo-
rithms for solving subset sum problems. Mathematical Programming, 66:181-199,
1994.

26. C.P. Schnorr and H. HSrner. Attacking the Chor-Rivest cryptosystem by improved
lattice reduction. In L. Guillou and J. Quisquater, editors, Advances in Cryptology
- Euroerypt'95, Lecture Notes in Computer Science, 1995.

27. V. Shoup. On the security of a practical identification scheme. In Ueli Maurer,
editor, Advances in Cryptology: EUROCRYPT '96, volume 1070 of Lecture Notes
in Computer Science, pages 344-353, Berlin, 1996. Springer-Verlag.

28. V. Shoup. Lower bounds on discrete logarithms and related problems. In Advances
in Cryptology - Euroerypt'97, Lecture Notes in Computer Science, 1997.

29. M. J. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Transactions
on Information Theory, 36(3):553-558, 1990.

A A p p e n d i x

A.1 P r o o f o f T h e o r e m 1

The following theorem is a version of results obtained in [1].

T h e o r e m 8. The probability that any particular number output by the full gen-
erator repeats after exactly m steps is at most

min (~) '~b(N) + 2 - c m

(for some constant c > 0).

If there exists an integer m < g such that 1 / r + 2 -cm < 1/(~) then let (i
be the smallest such integer. Otherwise, let (i = L Let the random variable C
denote the number of collisions. Then

)
i j i<j; j-- i<6 \t~] i < j ; j - - i ~

0 (1 1)
< *-TN5 +e(i (Tv) + 2-c(J -') , (2)

i<j; 3-~>~

where xi is the i- th element in the output sequence and the sums go over all
ordered pairs (i, j) such tha t 1 _< i < j _< e and either j - i < (i or j - i _> (i.

By the definition of(f, we obtain 6 < [- l o g D / c] , where D = (~)-1 _r
For sufficiently large (2), the second term of (2) is at most

g 1 (:)
gSD <_ gD [log(1/D)/c] < e (-~ log ,

235

because the function x log(l /x) is increasing for sufficiently small x > 0. Con-
cerning the third term of (2), it is easily seen that

2 -c~ ~ 1
Z 2-c0-i) <gl_2--------~ < (:~I_2-~ '

i< j ; j - - i)6

as 2_c(f < (:)--1. The theorem follows by combining these bounds with (2).

A.2 P r o o f o f T h e o r e m 5

Suppose it is possible to compute the discrete log of an output of G after seeing
a sequence of g outputs. In other words, suppose there exists i E [1, g] and an
algorithm A such that for I = {gk, }~=o generated by G, A(I) = k,. Without
loss of generality we can assume i = ~. Let A's success rate be ~.

We construct an algorithm B A such that , given any y = g=, B A (y) = x with
success rate e. B A would work as follows. Generate random a-sized subsets Sj ,
for 1 < j < g. Let h be a random element of St. Let r be a random number.
Set ~h to g~g= and set ah to undefined. Now, for i C [1,n] \ {h}, set ~i to
be uniformly distributed independent (both of each other and of r) random
numbers, and set ~i = g~'. Let K j = l-Ii~s~ fl,- Let z = A({Kj}~=I) . Compute

X = z - r -)-~,eSA{h} c~i. Return X.
Next, we show that the Kj ' s produced by B A have the correct distribution.

Since r is uniformly distributed and independent offl~ for i E [1, n]\{h}, and since
the fli's (for i �9 [1, n] \ {h}) are uniformly distributed and independent of each
other, fl, for all i �9 [1, n] are uniformly distributed and independent. The S 3 's for
1 < j < g are also random and independent. Since the distribution of the outputs
of G depends only on the distributions of the fl's and S's, the sequence {Kj }
generated by B has the same distribution as the output of G with completely
random tables. Hence A has success rate e on such input. Suppose that A is
successful. By assumption on A we have g= = K t = l-n~st fl, = flh 1-Ii~sA{h} ~i,

g~ I-Iiest\{h} g~' g~ Yiiest \{h} ~i = flh/g~ = g="

It follows that X = x, and that A would find the discrete log in expected
1/E steps.

A.3 P r o o f o f T h e o r e m 3

The proof of the first par t is similar to the proof of Thm. 5. Indeed both theorems
are special cases of a more general fact about groups. The statement about
factoring follows from the well known reduction from factoring to quadratic
residues.

