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A b s t r a c t .  We present fast and practical methods for generating ran- 
domly distributed pairs of the form (x, g~ mod p) or (x, x ~ rood N), us- 
ing precomputation. These generation schemes are of wide applicability 
for speeding-up public key systems that depend on exponentiation and 
offer a smooth memory-speed trade-off. The steps involving exponenti- 
ation in these systems can be reduced significantly in many cases. Our 
schemes are most suited for server applications. We present security anal- 
yses of our schemes using standard assumptions, including analyses for 
fully adaptive attacks. Our methods are novel in the sense that they 
identify and thoroughly exploit the randomness issues related to the in- 
stances generated in these public-key schemes. Our constructions use 
random walks on Cayley (expander) graphs over Abelian groups. Our 
analysis involves non-linear versions of lattice problems. It appears that 
any realistic attack on our schemes would need to solve such problems. 

1 I n t r o d u c t i o n  

Modular exponentiation is a basic operation widely used in cryptography and 
constitutes a computational bottleneck in many protocols. This work presents a 
method to significantly speed up modular exponentiation. 

In practice, two versions of modular exponentiation are most frequent: In 
factoring based schemes, x e mod N must often be computed for fixed N -- pq 
(p, q primes), fixed e and many randomly chosen x. Many discrete log based 

$ 
schemes compute terms of the form gX mod p, for a fixed g E Z~p and many 
random x. 

The well known square-and-multiply algorithm for modular exponentiation 
requires, on average, 1.5 n modular multiplications for an n-bit exponent. In the 
case of 512-bit integers, the algorithm performs, on average, 766 modular mul- 
tiplications of 512 bit numbers. Several authors [5,10,19] describe alternative 
algorithms for the discrete log case which reduce the number of multiplications 
per exponentiation by means of precomputation and table lookup. These al- 
gorithms allow a time-memory trade-off. For 512-bit numbers, the number of 
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multiplications can be reduced to about 100, using a modest amount of memory 
and precomputation time. 

We present new methods to reduce the cost of exponentiation even further. 
In the discrete log case, our scheme may need significantly fewer multiplications 
than even the improved algorithms of [5, 10, 19] (depending on the parameter 
choices; cf. Section 5). This improvement is even more pronounced when com- 
pared to square-and-multiply. Note that  the algorithms of [5, 10, 19] apply only 
to the discrete log case. To the best of our knowledge, our scheme is the only 
available method to speed up exponentiation in the factoring case, and research 
into variants may be of interest. 

The key to these performance improvements lies in abandoning the basic 
input-output relation the known algorithms adhere to: unlike these algorithms, 
our scheme does not receive x as its input but generates a random x together 
with g~ mod p, or x e mod N, respectively. While this joint generation makes it 
possible to reduce the number of multiplications noticeably, it also limits the 
direct applicability of our scheme to protocols in which a party generates a ran- 
dom x and computes g~ mod p or x e mod N. Still, there are many cryptographic 
protocols which involve exactly these two steps and which, in some cases, are 
speeded up significantly by our generation scheme. We present some examples: 
Diffie-Hellman key exchange [12], E1Gamal encryption [14], EIGamal and DSS 
signatures [14, 13], Schnorr's schemes for authentication [23, 24], 2"~-th root iden- 
tification scheme [27], and versions of the RSA cryptosystem which we define 
here. 

The simplest version of our generator is based on a subset sum or subset 
product construction. The set of possible outputs x is determined by the set of 
possible subsets which can be generated given the parameters of the generator. 
A second version of the generator combines the basic version with a random 
walk on an expander which is a Cayley graph of an Abelian group. The random 
walk component expands the set of possible outputs incrementally and spans the 
entire underlying group. Due to space limitations, we do not present the analysis 
of this scheme in this version. We remark that our methods depend only on the 
group structure of the underlying domain and are thus also applicable to elliptic 
curve based schemes. 

The main part of the paper is devoted to analyzing the security of protocols 
under the distribution of outputs produced by our generators. This is necessary 
since correlations in the generator's outputs can introduce potential weaknesses 
which do not arise in [5, 10, 19]. A scheme for fast generation of pairs of the form 
(x, g~ mod p) was proposed by Schnorr [23] for use in his authentication and 
signature scheme. It was broken by de Rooij for the small parameters suggested 
by Schnorr [9], and fixed by Schnorr [24]. This version was also broken by de 
Rooij [11]. De Rooij's at tack easily extends to any discrete-log based signature 
scheme for which an equation linear in the random parameter can be written 
(e.g. E1Gamal, DSS, and Brickell-McCurley). De Rooij's attack is based on linear 
relations between the consecutive outputs and the tables of Schnorr's generator. 
We note that  an attack of this sort cannot be applied to our generator. 
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Models of Analysis: Instead of using a restricted adversary model, such as the 
'black box model' of Nechaev [21] or Shoup [28], our analysis considers general 
adversaries. It proceeds either without additional assumptions or invokes stan- 
dard complexity assumptions (e.g. hardness of factoring). We believe that this 
approach, by treating more general adversaries, can yield better optimizations. 
In some cases (e.g. Diffie-Hellman key exchange, EIGamal encryption, EIGamal 
and DSS signatures, and Schnorr's authentication and signature schemes) we 
present an analysis which proves security against certain kinds of non-adaptive 
attacks without using additional assumptions. 

To analyze fully adaptive attacks, we fall back on the known pseudo-random- 
ness properties of subset sum problems: Impagliazzo and Naor [16] have shown 
that, given random weights a~ (i < n) and a modulus M, a random subset sum 
b modulo M is indistinguishable from a random string of the same length. Us- 
ing this and further observations, we show that several protocols which use our 
generator are immune even against fully adaptive attacks, provided the original 
protocols are secure and the adversary cannot break the underlying subset-sum- 
type problem. Consideration of the most efficient attacks on the subset sum 
problem [26] and our own experiments indicate that solving this problem (es- 
pecially the hidden-weight version described below) is hard for the parameters 
used in practice (see below). 

RSA-based schemes: We present some RSA-like systems for applications with 
large encryption exponent. Commonly, the RSA public key exponents are chosen 
to be small in order to reduce encryption times. Consequently decryption takes 
far longer than encryption. In RSA signature schemes, the situation is reversed. 
It may be desirable to decrease the asymmetry of loads on the two ends and 
to have roughly similar costs for encryption and decryption. For example, a 
server which is networked with many small clients that form frequent short-lived 
sessions may be (paradoxically) overloaded. Formally, our speedup scheme can 
only be applied to the encryption of messages. Decryption times can be reduced 
by using small decryption exponents d, which should be chosen according to 
Wiener's recommendations [29] (also discussed later). We also note that certain 
attacks on RSA exploit low exponents, and some future applications appear to 
require large exponents [3, 7]. We analyze the generation schemes using standard 
assumptions. 

Lattice attacks on subset sum problems: Subset sum constructions have been 
so successfully attacked by lattice reduction [18] based methods [4, 17, 8] that 
it is often considered risky to base cryptographic constructions on them. Our 
experiments show that the L 3 algorithm can be expected to solve subset sum 
problems up to about n -- 40, where n is the size of the set from which subset 
sums are formed. Let s be the length of the integers in this set. As n becomes 
larger than 40, L 3 finds the shortest vector only if s (or n/~) exceeds some 
threshold to. The value to itself grows rapidly with n. 

At present, the most successful attack on subset sum is described in [26, 25]. 
It combines the L 3 algorithm with a branch-and-bound search for the shortest 
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vector and search pruning heuristics. Algorithms of this kind can be expected 
to solve subset sum problems for all values of g up to about n = 100. Based on 
our own experiments, we observe that  as n is increased far beyond 100 - 200 the 
behavior of the algorithms becomes qualitatively similar to tha t  of L 3 for n > 40: 
The shortest vectors are found only if g is sufficiently larger (or smaller) than n. 
In practice, all known attacks break down at n around 200 for the more difficult 
SUBSET SUM problems (g not much larger than n). Furthermore, the attacks 
do not appear to profit significantly from the fact that  only a-subset sums (as 
opposed to arbitrary subset sums) have to be solved, unless a is extremely small. 
Typical applications of our generators correspond to n ~ g > 500 (the length 
of discrete log or factoring moduli) and a = 64. The known methods appear 
to require excessive amounts of time to solve subset sum problems of this size. 
Furthermore, it is important  to note that  the problem arising in connection with 
our generators is not even a standard subset sum problem. A key property of 
our generators is the fact tha t  the adversary sees only the subset sums (which 
are generated internally). The subset sum weights are secret. There is no reason 
to reveal them. It can be shown that  the task of recovering the weights given 
enough subset sums is a well defined one: 

HIDDEN SUBSET SUM PROBLEM: Given integers M ,  b l , . . . , b m  E {0,1} ~, find 
integers a l , . . . ,  (~n (c~j E {0, 1} t) such that  each bi (1 , . . .  ,m) is some subset 
sum modulo M of a l , . . . ,  c~,. 

It appears that  attacks on the generator need to cope with the complications 
due to the hidden weights. We defer a detailed discussion to the full version of 
the paper. We can show that  this problem is at least as hard as the s tandard 
subset sum problem and thus, by the results of Ajtai, as hard as worst case 
lattice approximation problems. Our experiments and discussions with other 
researchers lead us to conjecture that  it is potentially harder. Our results have 
applicability to general lattice based problems (like Ajtai's), random affine codes 
(or syndrome decoding) based systems [15, 1], and polynomials. 

Convent ions  and outline: Given an integer x, let Ixl denote its length in bits. 
We use r  to denote the size of the multiplicative group kZ~v. We use [a, b] to 
denote the set { a , . . . ,  b}, where a, b are integers. 

Section 2 describes our generation scheme for pairs of the form (x, x e 
mod N).  Section 3 describes and analyzes applications of this scheme, in partic- 
ular RSA-like public-key systems and Shoup's 2m-th root identification scheme. 
Section 4 describes the generator for pairs of the form (x, g~ mod p) and its ap- 
plication in several protocols, including signature schemes. Section 5 discusses 
parameter choices and presents some performance results. 

Due to space restrictions, most proofs and parts of the discussion have been 
omitted in this version. A full version of the paper will be available shortly. 
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2 T h e  G e n e r a t o r  f o r  ( x ,  x e r o o d  N )  

2.1 The Basic Generator 

The generators in this section are targeted towards speeding up protocols in 
which a party must generate a random x E Z~v and x ~ mod N (below all com- 
putations, if not specified otherwise, are done modulo N),  for a given N = pq, 
where p, q are primes, and e E Z~ + of length m. The generator has two param- 
eters n, ~. Its outputs correspond to R-subsets of a set of n random numbers 
ai .  We choose the parameters n , a  such that  ( :)  (the number of possible ~- 
subsets) is sufficiently large to make the corresponding subset product problem 
intractable, and to make birthday attacks infeasible (cf. Section 5). 

Generation algorithm G: 
Preprocess ing Step: Generate n random integers ai E ~Z* N. Compute fl~ -- 
(c~i) e mod N for each i and store both ~i 's and fli's in a table. 
Whenever  a pair (x, x ~) is needed: Randomly generate S C [1, n] such that  
ISI = a. Let k -- l-Iies ai  mod N. Let g -- I-Iics fli mod N.  Return (k, K)  as 
the result of G. 

Obviously, K -- k e. The preprocessing takes O(mn) multiplications. Subse- 
quently, each output  (x ,x  ~) is computed with only 2~ multiplications. Similar 
ideas have been used previously in [1]. G can be used in many schemes and 
analyzed without further assumptions. We now present computationally simple 
modifications of the generator that  improve its performance. We will state the 
security proofs for the simple generator. They can be easily adapted for the full 
generator. 

Remark 1. Note that  the table is internal to the user, and no external updates 
or synchronizations for the schemes we discuss are needed. 

Remark 2. We assume throughout  the paper tha t  (:)  is large enough so that  the 
first g outputs of the generator are distinct with high probability. This simplifies 
matters and avoids repetitive statements. 

2.2 The Full Generator: Introducing a R a n d o m  Walk 

Our full generator combines a random walk on expanders based on Cayley 
Graphs on Abelian groups with the outputs  of G. For standard references on 
expanders, rapid mixing and their set hitting properties see [20]. Notable are 
"Chernoff Bounds" for random walk sequences that  allow remarkable state- 
ments about passing general statistical (e.g. arbi trary moment) tests on the 
output  numbers. For our applications, we need expanders on specific domains 
over which discrete log and factoring are defined. Fortunately these graphs exist: 
It is sufficient to select a small set of generators at random. The resulting Cayley 
graph is an expander with high probability [2]. A graph H is called a c-expander 
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if for every set of vertices S, IF(S)] > cISI(1 - [SI/IH]), where I ' (S )  is the set of 
all neighbors of S. The Cayley graph X ( A ,  S)  of a group A with respect to the 
set S of elements in the group is the graph whose set of vertices is A and whose 
set of edges is the set of all unordered pairs {{g, gs} : g E A, s E S}.  It is shown 
in [2] that  for every 1 > e > 0 there exists a c(e) > 0 such that  the following 
holds. Let A be a group of order N,  and let S be a random set of c(e)log N 
elements of A. Then the Cayley graph X ( A ,  S) is an c-expander almost surely. 

Generation algorithm Gexp: Let N, e, n, ~ be as in G. There is an additional 
parameter  ne = c logr  for some constant c (e.g. c = 0.5 or c = 1). 
Preproeessing Step: Generate n random integers c~i E Z~v. Compute fli = c~ 
for each i and store the ai ' s  and fi,'s in a table. 

Generate a random subset Se C ~Z~v of size ne (by the result of [2] X(~Z~v, Se) 
is an expander almost surely). For each di E S~, 1 < i < ne, set Di = d~ and 
store (di, Di) in a table. Set r to a random element of z2~v and R to r% 
Whenever a pair (x, x ~) is n e e d e d :  Randomly generate S C [1, n] such that  
IS I = t~. Select a random j E [1,he]. Set r := r �9 dj and R := R �9 Dj.  Let 
k = r .  I-Ii~s ~i. Let K = R .  1-IiEs fli and return (k, K)  as the result of Ge~p. 

2.3 Randomness  Properties of  the Full Generator 

Theorem 1. (Resistance to Birthday attacks) The expected number of repeti- 
tions in a run of length g is at most 

, ( 1 , )  
(~) + -- + ct~logn (1) 

r ( -~  1 - 2  -c  

for some constant c and sufficiently large N, n. 

The proof is outlined in the appendix. The first term of (1) is the expected num- 
ber of repetitions in an ideal sequence whose elements are independent random 
elements of kZ~v and is negligible for feasible runs of the generator. The point 
to note is that  the second term - which represents the additional collisions due 
to our generator - contains g only as a linear factor. In contrast, the goal of a 
birthday attack is to increase the expected number of collisions proportional to 
g2. The constant c depends on the parameters of the expander, which can easily 
be chosen such that  c ~ 1. 

Achieving similar security against bir thday attacks without the expander 
would require a to be almost doubled reducing the speed by a factor of 2. At the 
expense of the additional storage for the (di, Di) table, the expander component 
requires only two additional multiplications per output.  In addition, it improves 
the randomness properties of the output  numbers substantially (see [1]). Here 
it makes the outputs look like subset sums of size approximately 2to. which can 
heuristically be seen by dividing two successive outputs. 
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3 R S A - B a s e d  S c h e m e s  

Our generators do not speed up RSA-based schemes in a general way, but  open 
some new possibilities. The generator cannot be applied directly to RSA since it 
requires exponentiation of a given message rather than random one. We analyze 
versions of the following scheme, in which f is an appropriately chosen function. 
The schemes defined in this section will use either f ( x )  = x or consider f as 
a random oracle. Attacks on low exponent RSA due to Hs and Copper- 
smith suggest (see [7]) that the RSA function should be applied to a suitably 
randomized version of the input (plaintext), rather  than the input itself. 
Key generation: The public and private keys (e, d), as well as the modulus N are 
generated as in RSA. That  is, a party generates two large random primes p, q, 
sets N = pq, computes e,d such that  ed - 1 mod r  and publishes e and N. 
Encryption: A message M is encrypted as E ( M )  = (x ~, f (x )@ M),  where (x, x ~) 
is an output  of G. 
Decryption: Given a pair a, b, output  D(a, b) = f (a  d) ~ b. 

Our generator speeds up encryption, when the encryption exponent is large. 
We also discuss how the decryption times may be reduced. In comparison with 
ordinary RSA, the length of the ciphertext is doubled. We can prove that  the 
scheme is secure by relating it to RSA and by analyzing it in the random oracle 
model. 

3.1 R a n d o m  O r a c l e  M o d e l  

The random oracle model (e.g. [6, 22] and references therein) provides an ideal- 
ized view of cryptographic hash functions. Protocols are allowed to use a random 
oracle, i.e. a publicly available function f whose values f ( x )  are determined in- 
dependently at random for each input x. In the absence of bet ter  analysis, one 
often extrapolates the security results from random oracles to existing hash func- 
tions by using a heuristic assumption that  some secure hash function behaves 
like a random oracle. We view this as a strong assumption warranting caution, 
but  such analysis seem to yield bet ter  results than without it. 

In the random oracle model, we choose f ( x )  = h(x), where h(x) is a random 
function. Let the parameters of the generator be such that  repetitions in the 
output  sequence are unlikely (e.g. see Thm. 1). 

T h e o r e m  2. Let all elements in the sequence X l , - . - ,  Xk (k ~ 1) be different. 
For k > O, distinguishing E(Mk)  from a random string, given ( M 1 , E ( M 1 ) ) , . . . ,  
( M k - i , E ( M k - 1 ) ) , M k  is as hard as inverting x ~-~ x ~ (i.e. RSA)  on random 
inputs. 

3.2 x e , x  ~ M 

This subsection considers the simplest case, i.e. f ( x )  = x. We describe some 
practical implications of our scheme. We omit our security analysis due to space 
restrictions. 
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Small decryption exponents: Use of G speeds up encryption for any exponent.  
Decryption still requires an exponentiation with the decryption exponent d. De- 
cryption can be speeded up by choosing d and e such that  d is small. The  most 
efficient attack against RSA with small decryption exponent is the Diophantine 
approximation method of Wiener [29]. The attack breaks down if d > N 1/4+6 
(~ > 0), or if e is replaced by e' = e + r e ( N )  such that  le'l > 1.5 INI, where r is 
a random number. 

Quadratic Residues: e -- 2 It is known that  given enough bits of the plain- 
text,  one can uniquely pick one of the square roots for decryption. The proof of 
the following theorem is outlined in the appendix. 

Theorem 3. Fix some ~, let e = 2, and let I +- G~(.) be a run of g outputs from 
the generator. Assume that there exists an algorithm that, given I ,  computes the 
square root (modulo N )  of the next output of G ~ with a noticeable success rate 

. Then there is an algorithm to compute square roots of arbitrary quadratic 
residues modulo N in expected time 1/c. Furthermore, there is an algorithm to 
factor N .  

3.3 2'~-th Root  Identification Scheme 

In this subsection, we show that  using G in the 2'~-th root identification scheme 
[27] preserves its full security. We recall the scheme first: N is the product  of two 
randomly selected primes of equal length, both congruent to 3 mod 4. q = 2 m 
is the exponent, for some sufficiently large m. a E ~ v  is the private key and 
b = aq rood N is the public key. If Alice (Prover) wants to prove her identity to 
Bob (Verifier), she chooses k E Z ~  at random, computes x = kq, and sends x 
to Bob. Bob checks that  x ~ 0, chooses r E [0, q - 1] at random and sends r to 
Alice. Alice computes y -- ka r and sends y to Bob. Bob accepts if yq -- xb r. 

Note that  an authentication scheme can be converted into a signature scheme 
by replacing the verifier's challenge by a hash of the message [24]. It can be seen 
that,  if an authentication scheme is secure when used with G, then so is the 
corresponding signature scheme. 

Theorem 4. Let n > Cl l ogN and n >> ~ > c2 for some constants cl and c2. 
I f  factoring is intractable then the 2m-th root scheme is secure against active 
attacks when the prover uses G to generate its first-round messages. 

The omitted proof can be adapted to show security against active attacks for the 
generalized Ong-Schnorr authentication scheme when used with G ([27] shows 
the security for the case of fully independent random numbers). We defer the 
details to the final version of this paper. 

4 D i s c r e t e  L o g  B a s e d  S c h e m e s  

In this section, we present a modification of our generation scheme which makes 
it suitable for speeding up protocols based on the discrete logarithm problem. 
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These include EIGamal, DSS, and Schnorr signatures, Diflie-Hellman key ex- 
change, and E1Gamal encryption. 

4.1 Generators 

All versions of the generator presented in Section 2 can be translated into the 
discrete logarithm framework. Due to space limitations, we present only the 
basic version G ~. The corresponding full version including an expander G~e,p is 
analogous to Ge,p. Thm. 1 is easily adapted to G~,p. 

Let p be a prime of length m, and let g E Z~. The task is to generate 
a random k and compute gk rood p - as required by many protocols. In the 
remainder of this section, all operations are done modulo p. Again, the purpose 
of the generator is to speed up the modular exponentiation. 
Generation algorithm Gt: 
Preprocessing Step: Generate n random integers cq E ~ord(g)" Compute 
/~i = g~' for each i and store both c~i's and/~, 's in a table. 
Then, whenever a pair (x, g~) is needed: Randomly generate S C [1, n] such 
that  ISI = a. Let k = ~ i c s  (~ mod ord(g). If k = 0, stop and start  again. Let 
K -- [ I ~ s  f~ and return (k, K)  as the result of G. 

4.2 Speeding up Discrete-log-based Schemes 

Our first theorem outlines a main aspect of our generator, which stems from the 
fact that  the precomputation tables are chosen by the generator and kept secret. 

Theorem 5. Fix some ~ and let I := (gk,)~ +_ G(.) be a run of ~ outputs from 
the generator. Assume that there exists an algorithm that, given I, computes 
the discrete log of the next output of G with success rate ~ . Then there is an 
algorithm to compute discrete log on arbitrary inputs in expected time O(1/c) .  

The proof is outlined in the appendix. Despite the small number of multipli- 
cations used in G, for all but  a negligible fraction of the choices of the initial 
precomputation tables, computing the discrete log of any new output  of the gen- 
erator is as hard as solving the full discrete log problem, namely given arbitrary 
y = g* compute x. Note that  the attack algorithm never sees the discrete log of 
any element from the list of its outputs. In practice this means that  it suffices 
to ensure that  in any run of practical interest its outputs do not repeat. More 
complicated issues will arise when the discrete logs are used to generate some 
outputs. This is the case in many signature schemes. 

4.3 Signature Schemes 

Our generators can be used to speed up several signature schemes. The signa- 
ture schemes we consider use pairs (k, gk) in two contexts. For example, in the 
E1Gamal scheme, a signer generates one pair (x, y = g*), publishes y and keeps 
x secret. This pair is generated only once and corresponds to the generation of 
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a private and a public key. We do not use our generator to speed up the gen- 
eration of this pair. Our generator is only used to speed up the generation of 
the random pairs (k, gk) which are needed every time a message is to be signed. 
However, given y, a third table containing (y~')i<n can be added to our gener- 
ator. Thus, the computation of yk can also be speeded up. This does not raise 
further security issues. 

Let a(M, k) be some discrete-log based signature of message M using a ran- 
dom number k. Suppose there exists an attack algorithm A such that  A(y, 217/,I) = 
a(M,k)  for some k, where I = {(M,,a(M,,ki))}~=l, with k, generated by G. 
Note that  A does not query the signing algorithm. It is simply given a sequence 
of signatures and messages. The messages given to A can be arbitrary. This 
corresponds to a known message attack. 

Theorem 6. The following signature schemes are secure against known-message 
attacks when used with G~ : ElGamal, DSS and Schnorr. 

Security Against Adaptive attacks: Theorem 6 does not does not cover adver- 
saries who can choose their messages adaptively, depending on previous messages 
and their signatures. 

Our first approach to making the scheme resistant against adaptively cho- 
sen message attacks is to make the outputs of G very close to uniform and 
independent. This can be achieved by choosing the parameters of the generator 
appropriately. It can be shown that  the new schemes that  use G for generation 
are secure if and only if the original schemes are. Details omitted. 

Our second approach is to use cryptographic pseudo-randomness in the 
sense of Blum-Micali and Yao. As a motivation, consider the E1Gamal signature 
scheme. Unlike in Thm. 5, an attacker sees not only numbers of the form r = gk 
but additional information that  depends on k. Namely, the triple (r, M, g=) and 
k - l ( M  - xr) m o d p -  1. 

Theorem 7. If  the sequence of k is cryptographically pseudo-random, then the 
speeded-up versions of the following schemes are secure against polynomial time 
adaptive attacks: E1Gamal Signatures, DSS, Schnorr authentication and signa- 
tures. 

The attacker does not see the subset sums directly. For example, in the case of 
E1Gamal signatures, he sees only k - l ( M -  xr), a multiple of the inverse of a 
hidden number k. It is not clear how to accommodate this in lattice attacks. It 
is worth noting that  de Rooij's attack succeeds in recovering the hidden number 
(the signer's secret key) using tight correlations among consecutive outputs.  But 
in our case the numbers are chosen from a large set every time, and this set 
itself moves over the entire group with a mixing rate which is logarithmic in the 
group size (since expander random walks mix rapidly). 

4.4 Diffie-Hellman Key Exchange and EIGamal Encryption 

Diflie-Hellman key exchange is defined as follows. Alice generates a random 
a E ~ord(9) and sends ga to Bob. Bob generates a random b E ~Zord(g) and 
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sends gb to Alice. Now they share a secret gab = (gb)a = (ga)b. Alice and Bob 
can use G to generate (a, ga) and (b, gb), respectively. 

EIGamal encryption [14] is defined as follows, x is the secret key, y = g= is 
the public key. A message M is encrypted as E(M, k) = (gk, Myk). We speed 
up the scheme by using G to generate k and gk for each encryption. G is not 
used to compute x and y. 

L e m m a  1. (a) Dij~ie-Hellman key exchange with G used to generate (a, ga) and 
(b, gb) is as secure as Di~ie-Hellman key exchange with independent a's and b 's. 

(b) EIGamal encryption with G used to generate (k,g k) is secure against 
ciphertext-only attacks if standard EIGamal encryption is secure. 

The proof is similar to the proof of Thm. 5. One can cope with adaptive attacks 
by achieving output distributions that  are statistically close to being uniform. 
Details are omitted due to space constraints. 

5 Performance Results 

The time and storage requirements as well as the security of our generators 
depend on the choices of the parameters n, a, nr For the purpose of making direct 
performance comparisons with existing algorithms and based on our analysis, we 
consider concrete parameter choices for two broad classes of applications: 

If the security of the protocol using our generator depends on the hardness of 
the hidden subset sum problem (e.g. adaptive attacks against signature schemes), 
the parameters should be chosen such that  solving the hidden subset sum prob- 
lem is infeasible. If the security of the protocol using our generator does not 
depend on the hardness of the hidden subset sum problem (e.g. Diffie-Hellman 
key exchange), it is only necessary to choose the parameters large enough to 
avoid birthday attacks. In this case, the number of multiplications per exponen- 
tiation can be made extremely small. 

Table 1 gives the storage requirements and average number of multiplications 
using various methods to generate random pairs (x, g= mod p) and (x, x ~ mod N) 
for 512-bit numbers. For protocols of the first kind (hardness of subset sum is 
important), it appears that  n = ne = 512 and a = 64 (or a -- 32 for the expander 
version) should provide sufficient security. For certain protocols of the second 
kind, it appears that  ~ can be chosen to be as small as 6 or 16 and n = 256. 
Table 1 displays the resource requirements for these parameter choices as well as 
those for the algorithms of [5, 10, 19] and square-and-multiply. For the algorithms 
of [5, 19], we display examples with small and large storage requirements. Using 
comparable amounts of memory, our generators need fewer multiplications than 
the other algorithms, especially in the case of GCxp, G/exp. 

6 C o n c l u s i o n s  

We have suggested methods for speeding up public key schemes which are based 
on discrete log and factoring. Our methods focus on the generation of distribu- 



232 

t ions of  pairs of  the form (k ,g  k) (gk E Z~) or (x ,x  e) C (Z*) 2. We have analyzed 
the  securi ty of their use in several example schemes. 

In  the  process of this analysis,  we had to consider versions of a h idden lattice 
problem which seems to  be of  interest in its own right and  whose hardness  should 
be s tudied further. An  interest ing question is if the apparen t  non-l ineari ty of this 
problem is an inherent property.  An  extension of this problem to  o ther  (i.e. non- 
lattice) domains will be presented in a future work. 

A c k n o w l e d g m e n t s :  We thank  Arjen Lenst ra  for his generous discussions. We 
also t h a n k  D. Boneh, C.P. Schnorr,  D. Coppersmith ,  D. Bienstock and  R. Kan- 
nan  for discussions on me thods  for a t tacking hidden subset  sum problems.  

Tab le  1. A comparison of methods of generating pairs (x, g= mod p) and (x, x ~ mod N) 
for IPl ---- 512, ord(g) = 512, INI = 512, lel -- 512. Storage requirements are in 512-bit 
numbers. Times are in multiplications per exponentiation. 

(x,g= mod p) (x, x ~ mod N) 
Storage Time Storage[ Time 

Square-and-multiply 0 766 0] 766 
Brickell et al. [5] 512 100 not applicable 
Brickell et al. [5] 10880 64 not applicable 
Lim and Lee [19] 317 100 not applicable 
Lim and Lee [19] 13305 52 not applicable 
de Rooij [10] 64 128 not applicable 
G (n -- 512, tr -- 64) 1024 63 1024 126 
Gexp (n = n~ = 512, t~ = 32) 2048 33 2048 66 
G (n = 256, t~ = 16) 512 15 512 30 
Gexp (n = n~ = 256, tr = 6) 1024 7 1024 14 
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A A p p e n d i x  

A.1 P r o o f  o f  T h e o r e m  1 

The  following theorem is a version of results obtained in [1]. 

T h e o r e m  8. The probability that any particular number output by the full gen- 
erator repeats after exactly m steps is at most 

min (~) '~b(N) + 2 - c m  

(for some constant c > 0). 

If  there exists an integer m < g such that  1 / r  + 2 -cm < 1/(~) then let (i 
be the smallest such integer. Otherwise, let (i = L Let the random variable C 
denote the number  of collisions. Then 

) 
i j  i<j; j-- i<6 \t~] i < j ; j - - i ~  

0 (1 1) 
< *-TN5 +e( i   (Tv) + 2-c(J -') , (2) 

i<j; 3-~>~ 

where xi is the i- th element in the output  sequence and the sums go over all 
ordered pairs (i, j )  such tha t  1 _< i < j _< e and either j - i < (i or j - i _> (i. 

By the definition of(f, we obtain 6 < [ - l o g D / c ] ,  where D = (~)-1 _r  
For sufficiently large (2), the second term of (2) is at  most 

g 1 ( : )  
gSD <_ gD [log(1/D)/c] < e ( -~  log , 
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because the function x log( l /x )  is increasing for sufficiently small x > 0. Con- 
cerning the third term of (2), it is easily seen that  

2 -c~ ~ 1 
Z 2-c0-i) <gl_2--------~ < (:~I_2-~ ' 

i< j ; j - - i )6  

as 2_c( f < (:)--1. The theorem follows by combining these bounds with (2). 

A.2  P r o o f  o f  T h e o r e m  5 

Suppose it is possible to compute the discrete log of an output  of G after seeing 
a sequence of g outputs. In other words, suppose there exists i E [1, g] and an 
algorithm A such that  for I = {gk, }~=o generated by G, A( I )  = k,. Without  
loss of generality we can assume i = ~. Let A's success rate be ~. 

We construct an algorithm B A such that ,  given any y = g=, B A ( y )  = x with 
success rate e. B A would work as follows. Generate random a-sized subsets Sj ,  
for 1 < j < g. Let h be a random element of St. Let r be a random number. 
Set ~h to g~g= and set ah to undefined. Now, for i C [1,n] \ {h}, set ~i to 
be uniformly distributed independent (both of each other and of r) random 
numbers, and set ~i = g~'. Let K j  = l-Ii~s~ fl,- Let z = A({Kj}~=I) .  Compute 

X = z - r - )-~,eSA{h} c~i. Return X.  
Next, we show that  the Kj ' s  produced by B A have the correct distribution. 

Since r is uniformly distributed and independent offl~ for i E [1, n]\{h}, and since 
the fli's (for i �9 [1, n] \ {h}) are uniformly distributed and independent of each 
other, fl, for all i �9 [1, n] are uniformly distributed and independent. The S 3 's for 
1 < j < g are also random and independent. Since the distribution of the outputs 
of G depends only on the distributions of the fl's and S's, the sequence {Kj } 
generated by B has the same distribution as the output  of G with completely 
random tables. Hence A has success rate e on such input. Suppose that  A is 
successful. By assumption on A we have g= = K t  = l-n~st fl, = flh 1-Ii~sA{h} ~i, 

g~ I-Iiest\{h} g~' g~ Yiiest \{h} ~i = flh/g~ = g=" 

It  follows that  X = x, and that  A would find the discrete log in expected 
1/E steps. 

A.3  P r o o f  o f  T h e o r e m  3 

The proof of the first par t  is similar to the proof of Thm. 5. Indeed both theorems 
are special cases of a more general fact about groups. The statement about 
factoring follows from the well known reduction from factoring to quadratic 
residues. 


