
The Chain & Sum Primitive and Its Applications to
MACs and Stream Ciphers

Mariusz H. Jakubowski I and R a m a r a t h n a m Venkatesan 2

I Princeton University, mj@cs.princeton.edu
2 Microsoft Research, Redmond, WA 98052, USA, venkie@microsoft, corn

A b s t r a c t . We present a new scheme called universal block chaining with
sum (or chain ?J sum primitive (C~4S) for short), and show its application
to the problem of combined encryption and authentication of data. The
primitive is a weak CBC-type encryption along with a summing step,
and can be used as a front end to stream ciphers to encrypt pages or
blocks of data (e.g., in an encrypted file system or in a video stream).
Under standard assumptions, the resulting encryption scheme provably
acts as a random permutation on the blocks, and has message integrity
features of standard CBC encryption. The primitive also yields a very fast
message authentication code (MAC), which is a multivariate polynomial
evaluation hash. The multivariate feature and the summing aspect are
novel parts of the design. Our tests show that the chain & sum primitive
adds approximately 20 percent overhead to the fastest stream ciphers.

1 Introduction

For combined encryption and authentication of data, one often uses s t ream ci-
phers because of their speed in comparison to block ciphers; one then appends
a separately computed MAC value. However, in some applications, da ta must
be accessed in pages or blocks, and stored encrypted, as in some encrypted file
systems or video streams. For this purpose, it is cus tomary to use CBC en-
cryption on the blocks, and compute an integrity check for the entire s t ream
separately from these individual encrypted blocks. Alternately, one may com-
pute and store one MAC value separately per block, but this causes the size of
the MAC data to expand in proport ion to the number of blocks, and is thus
undesirable. Certain applications, such as encrypted file systems and video, tax
the CPU rather harshly, and using a block cipher can cause a noticeable per-
formance hit. For backward compatibil i ty and max imum efficiency, a different
approach is required.

We would like to encrypt and access da ta in blocks or pages, and mimic CBC
encryption on these block levels; furthermore, we would like to avoid increasing
the lengths of the individual blocks, and keep one incremental MAC value for
the entire stream. (We do not address the incremental MAC issue here.) In
many applications, such as the ones cited above, tha t have implicit semantics,
wrongly decrypted blocks will be immediately noticeable; in addition, the overall

282

stream MAC must defend against the case in which the input data is completely
random.

Here we present a new primitive called universal block chaining with sum
(CSJS). In an application of C&S, a sequence of input data (which typically con-
sists of hundreds of machine words) is first processed by a CBC-like primitive,
in which the cipher is replaced by a pair of invertible universal hash functions
that are applied alternately. The output words are then summed up and written
in place of the next-to-last word. The last two words, called the pre-MAO, are
encrypted with a block cipher; this encrypted value is implicitly a MAC value
for the input data. We use the pre-MAC directly or indirectly to synchronize a
stream cipher (e.g., [1]), or to generate a stream-cipher key, compute a pseudo-
random one-time pad with the stream cipher, and encrypt the rest of the words
with this pad.

We describe our main scheme and prove its security properties. From this
scheme we derive variants that can be analyzed similarly. Then we show two dif-
ferent types of applications. First, using our scheme as a front end (as described
above), we show that it mimics standard CBC encryption in terms of message
integrity. Using standard assumptions about underlying ciphers, we show that
our construction behaves as a random permutation on the entire input. This is
advantageous, since stream ciphers are typically much faster than block ciphers.
The design is intended for encryption of stored or streamed data that must be
accessed and processed in pages or blocks. With a simple incremental scheme,
one can easily compute MAC values for the entire stream. Heuristic considera-
tions can be given to argue how C&S may remove weaknesses in existing ciphers
[6] and strengthen the security of the stream cipher itself. We omit them for lack
of space.

Our construction has the side effect of yielding ciphers that seem stronger
than the stream cipher with which we begin. For example, if we combine the
alleged RC4 stream cipher with our scheme, the second binary derivatives of the
LSBs of the outputs are hard to infer, which is not true with the original alleged
RC4 cipher [6]. Note that the stream cipher encrypts only the weakly encrypted
output from the C&S stage, and the output of the alleged RC4 cipher is not
released in the clear. It is an open problem to analyze this effect precisely.

A more detailed version of this paper will be available from the authors, or
at http ://www. cs. princeton, edu/~mj/.

P r i o r Work : One commonly uses a block cipher in CBC mode, which has
been recently analyzed in [5] and shown to be secure in the ideal cipher model.
However, CBC is very slow in software; in the applications mentioned earlier,
CBC leads to an unacceptable performance hit. Another approach is to use
collision-resistant hash functions (see ([3] for techniques and references). How-
ever, our schemes are faster than those methods; in addition, such methods do
not offer a way to add local integrity at block level and to enhance the security
of the stream cipher, as our scheme does.

Universal hash constructions are due to Carter and Wegman [16], and were
used by grawczyk [10], aogaway [14], Shoup [15] and nalevi and Krawczyk [9].

283

Shoup's paper gives a comprehensive survey of all technical definitions needed
here.

Our con t r ibu t ions : We introduce a new method for combining encryption
and authentication, which also has the benefit of yielding a fast reversible MAC.
We present and analyze our main construction for the chain & sum primitive
and prove its security under standard assumptions. The analysis of the addition
step's effect is quite novel, and the addition permits us to build 2/-bit valued
MACs from/-bit operations. This output-doubling problem is usually not easy
to solve (see [15, 2]). Our primitive differs from related schemes in a striking way.

This in turn allows us to construct random permutations from nl bits to nl
bits, given a 2/-bit to 2/-bit ideal cipher and a stream cipher with a 2/-bit key. Our
MAC operations work hand in hand with the stream ciphers and heuristically
seem to have the effect of enhancing them. We would hope that this would be
good front end to many stream ciphers which may have some minor defects.
The MAC value of a block or page can be read off from the last 2/-bits of the
encrypted input.

1.1 Implementation and performance

Our construction yields a very efficient MAC, which uses only basic processor
operations. Nonetheless, the speed of the MAC computations can depend sig-
nificantly on their implementation on a particular processor; for example, when
using simple instructions such as bit test, some modern processors with aggres-
sive branch prediction incur a penalty of about 10 cycles when branches are
mispredicted and the processor pipeline stalls. Hence, careful processor-specific
hand optimization and testing of assembly-language code are needed to achieve
maximum speed.

We report on the speeds of our main algorithm, described in section 2. Our
implementations and tests were done on Pentium 200 MHz and 266 MHz sys-
tems. The computations operated on values in the fields Z231_ 1 and GF(232),
and computed 64-bit MACs. In Z231_1, the resulting MAC has actually only 62
bits of security.

The overhead of adding the chain & sum computations to stream ciphers
(RC4 and VRA) was between 10 and 45 percent, depending on which stream
cipher was used and how key setup was done. On our Pentium 200 MHz and
266 MHz systems, the respective speeds of an assembly-language version of the
chain & sum operations in the field Z231_ 1 were approximately 360 Mbps and
470 Mbps when data were in cache, and 240 Mbps and 350 Mbps when data
were in memory. The fastest 64-bit MAC of which we are aware, MMH [9], was
reported to run at 500 Mbps and at 380 Mbps on in-cache and in-memory data,
respectively, on a 200 MHz Pentium; however, unlike the chain & sum MAC,
the MMH MAC does not seem to admit reversible implementations.

In the field GF(232), multiplication can be done using lookup tables, as
in [15]. Finding irreducible polynomials in this field takes about lOps on our
Pentium 200 MHz machine, and is an order of magnitude faster than finding such

284

polynomials in GF(264). Our schemes take advantage of this when generating a
64-bit MAC using only 32-bit operations.

In addition, the speed of our schemes may be increased significantly by ex-
ploiting the following observation: Given a randomly fixed a E GF(2 t) , for all
x E GF(2t) , x ~-~ ax must be considerably easier to compute than the case
when a is a variable. If x can be expressed uniquely as a linear combination of
1,a, a2 , . . . , a e - l , then the map is computed by left shifting x and adding the
bit string c l - 1 , . . . , cl, Co where a l = Y]i cia ' . The analysis of using this obser-
vation in our constructions is surprisingly complicated and lengthy, and we do
not present this implementation-related issue here.

1.2 Conventions and notation

All our algorithms operate on values belonging to some finite field F, typically
GF(232) or Zp for some large prime p. We use the period ('.') to denote con-
catenation of values such as the elements of GF(2a2), which are represented by
bit strings. We use X = Xo.Xl . . .xn to denote a plaintext message consisting of
n + 1/ -bi t blocks xo, xl , ..., xn, where n -- 2m + 1. We assume that X contains
an even number of blocks.

Let h(x) denote an ideal cipher (random permutation), where x represents a
two-block (2/-bit) input, and let G(s) represent an ideal stream cipher.

2 T h e cha in &: s u m p r i m i t i v e and its use in e n c r y p t i o n

We now describe a typical encryption scheme that uses the chain & sum primi-
tive. In later sections, we describe variants of this basic algorithm.

Let the encryption key K be composed of s ix / -b i t strings a, b, c, d, e, and
e ~. Define : f(x) = ax + b and g(x) = cx + d. The first two steps below show an
application of chain & sum. We define C S K (C) = y o , . . . , yn.

1. Let C = CO.Cl...cn, where co = f (e x o) , ci = f (c i - 1 + ex i) for even i > 0, and
ci = g(c i -1 + e 'x i) for odd i > 1.

?2
2. Let Yk = Ck for k ~ n - 1, Y,~-I = ~ k = o ck, and s = y n - l . y ~ .
3. Replace yn-1 .Yn with the encryption of s, namely h i s).
4. Let Z -- G(s) @ Yo.Yl. . .Yn-2 denote the result of encrypting Y with the

pseudorandom sequence G (s) . Here ~ denotes bitwise exclusive OR of two
quantities of equal length in binary.

We refer to the string s as the pre -MAC, and to the string Yn- l .Yn after the
step (3) above as the MAC value of X.

3 S e c u r i t y o f the basic s c h e m e

3.1 Preliminaries

Let H w (X) be an indexed (by w) hmi ly of functions mapping X to 21 bits. A
random member of the family is chosen by picking a random w, which normally

285

here would correspond to the secret keys. We say that such a random member
f is pairwise independent if for any pair of distinct xl and x: we have that
P r [f (x) = •] = 2 -2t, and P r [f (x2) = ~'~'[f(xl) = ~] ~-- Pr [f (x2) = f2'], for
any ~, $2 ~ in the range. We say that the family has collision probability e if for a
random w and any pair X, X ~, the probability that Hw(X) = H w (X ~) is at most
e. We will model stream ciphers or secure pseudo-random number generators by
a function G(s) = R tha t maps 21 bit inputs s to (n - 2)l-bit strings R randomly.
We will assume that G is ideal and behaves like a random function.

We use the ideal block cipher model when analyzing DES or other related
ciphers. In this model, DESK, (m) = e will be t reated as a family of independent
random permutations indexed by K ~, each mapping 21 bits to 21 bits.

Let E K (X) = Y be a family of permutations mapping hi-bits to hi-bits.
We say EK(.) has local integrity if the mapping is a random permutation from
IXI = nl bits to nl-bits. In such a case, if one changes any bit of a given input X
to obtain X t, this will result in completely random output; that is, E K (X) and
E K (X ~) will be statistically uncorrelated or independent. A desirable aspect
of traditional CBC encryption is that if one bit of the encrypted message is
changed, decryption will result in one garbled block and a bit error in another
block. However, local integrity does not imply integrity in the usual sense; it
fails if the input data is random. We consider the problem of achieving local
integrity and mimicking the properties of CBC encryption in terms of the effects
that ciphertext modification has on the decrypted inputs.

Now we define our encryption scheme EK(Xi) . To encrypt Xi, we first com-
pute CSK(Xi) = Yi, and then encrypt the last 2l bits of Y/, denoted by hi, with
an ideal cipher to obtain zi. Then we compute G(hi) = R~ of length (n - 2)l bits,
and bitwise-XOR this with the first (n - 2)l bits of CSK(Xi) to obtain Ri. We
output Ri, zi. Let A be an adversary who has unbounded resources, obtains an
nl-bit input, and outputs either 0 or 1. Let #, A be two probability distributions
on nl bit strings. We write X +-- #(.) if Xi is chosen according to the distribution
#(.). Then we say that A distinguishes the distributions A and # with advantage

if Pr[(Z~) = l lXi +-- #(.)] and Pr [(Xi) = l lXi +-- A(.)] differ at most by ~.

T h e o r e m 1. The encryption function EK(Xi) = Y cannot be distinguished
from truly random permutations mapping nl bits to nl bits with probability bet-
ter than 26, using adaptive attacks with q ~ 2 l chosen plaintext-ciphertext pairs.
Here ~ is the probability of a collision among the M A C values hi , i ~_ q.

Proof (outline): First, we note tha t if all the MAC values hi, h 2 , . . . , hq corre-
sponding to the q queries are distinct, then the distribution of the outputs of
EK(.) is identical to tha t of a perfect random permutation. Secondly, we bound
the probability of the collision as required. The bulk of the paper is devoted to
this latter task.

If the hi's are distinct, then the zi's are independent outputs of a random
permutation and Rt~ are outputs of a random function. The random function and
the random permutation are independent. Note that the outputs of the random

286

permutation are all distinct, but we perform fewer than 2 t queries, and thus
a truly random function would output distinct strings as well with probability
1 - e. From this the indistinguishability follows.

O v e r v i e w : Lemmas 1 through 5 are towards bounding the collision probabil-
ity of the MACs in the above theorem. The subsection 3.2 presents an algorithm
which has a quadratically smaller fraction of bad keys. Finally, in section 4, we
give another algorithm variant and analyze its collision probability.

Let C = c o c l ...cn represent the result of one chaining step performed on X, as
in step 1 of the encryption algorithm; that is, let Co = f (exo) , ci = f (c i - 1 + exi)
for even i > 0, and ci = g(c i -1 + e'xi) for odd i > 0. Let (~ = ac and/~ = ae. We

b use the convention ~ i = a F(i) = 0 if a > b.
Let Y = YoYl...Yn denote the result of step 2 of the encryption algorithm;

n that is, let Yi = ci for i # n - 1, and Yp-1 = ~ k = 0 Ck"
For 0 < r < m, we obtain the following:

L e m m a 1.

r--1 ~ tX
C 2 r ' = b + t 3 X 2 r + a E a k (d + b c) + ak(~X2r-2k + e 2 r - 2 k + i) (1)

k=0 k=l

c2r+1 = a k (d + be) + c E ak(flx2r_2k + e'x2~-2k+l) (2)
k=O k=O

Proof. We use induction on r. For r = 0, eqs. 1 and 2 give Co = b + flXo and
Cl = d + c(b + flXo + e'xl) , so the base case holds. Assume eqs. 1 and 2 are true
for r _< p. For r = p + 1, we have

C2(p+l) --~ a(e2p+l + ex2(p+l)) + b
p p

-- b -{- ZX2(p+i) -~- a E ogk(d + bc) .-[.- E OlkTi(ZX2p--2k "j'- el X2p--2k+i)
k=0 k=0

p p+l

= b + ~X2(p+l) + a E O~k(d + be) + E olk(]~X2(pTl)-2k + elX2(pT1)-2k+l)
k=O k=l

= c2(v+D

and

C2(p+1)+1 ---- C(C2(p+I) -{'- et X2(p+l)+l) --}- d
p

= C~X2(p+I) + CdX2(p+l)+t + d + bc + E ak+l (d + be) +
k=O

p + l

+ c E ak (~X2(p+l) -2k + e'x2(p+l)-2k+l)
k=l

p + l p + l

= E Otk(d + bc) "-}- C E oLk(~x,2(p+l)_2k "}- elX2(pTi)_2k+l)
k=0 k=0

---- C2(p+1)+1.

Thus, eqs. 1 and 2 are verified. []

287

P a i r w i s e i n d e p e n d e n c e o f las t b locks Let X ~ = XoX 1 ' ' ...x n' denote a plaintext
different from X, and let Y~ ~ ~ ' = YoYl...Y, represent the result of step 2 of the
encryption algorithm performed on X ' . We show that the following holds:

L e m m a 2. The mapping X ~ Yn defined above is an almost 2-universal hash
function. That is, for arbitrary ~P and 12, Pr[yn = ~P] = 2 - t , and there exists a
1 - 4m/2 t fraction of coin flips (for the choice of the key K) for which Pr[yn -

Y~n = 12]Yn = ~l = P r [y . - y~ = 121-

Proof. We will show that given two plaintexts, X and X ' , the random variables
Yn and y" are pairwise independent when a is set appropriately. That is, given
any ~P a n d / 2 from F, we shall find values of a, b, c, d, e, and e' such that both
Yn = ~P and yn - y" = 12.

' The equation Yn - Y~n = 12 can be written as Let ~ = xi - x i.

m m

e ~ ' ~ ogkq- 1(~ E A. , 2m-2k + ce' akS=.~_2k+l = 12 (3)
k=0 k=0

where the values of 12 and 5i, 0 < i < m, are fixed. We may represent eq. 3 as

ePl(a) + ce'P2(a) = 12 (4)

where the polynomials P1 and P2 correspond to the summations in eq. 3. For
technical reasons mentioned later, we assume that our choice of a satisfies
P3(a) -- a m+l - 1 ~ 0. In addition, a will satisfy some conditions relative
to P1 and P2 mentioned next. We will call such a ' s good.

If X and X ~ are distinct then, the polynomials P1 and P2 cannot be both
trivial (i.e. vanish at all points). Thus, for some i, Pi is not trivial. Note that
there are at most m values of c~ that are roots of P1 or P2; thus, we can find a
value a such that at least one of P~(a) is non-zero.

Assuming we have chosen a good a, we substitute its value in eq. 3, obtaining
the two-variable linear equation

eC1 + ce'C2 = 12 (5)

where C1 and C2 are constants equal to P1 and P2, respectively, evaluated at a.
We may now compute the values of a, c, e and e * as follows:

1. If C1 = 0 and C2 r 0, for every choice of e, one can set ce' = 12C21, and
a ~- (]~e -I .

2. If C1 ~ 0 and C2 -- 0, then set e = 12C~ -1. In this case any choice of
a, ce' E F such that a is good will suffice.

3. If C1 ~ 0 and C2 ~ 0, then set ce' = (12 - eC1)C~ 1 and a is such that a is
good.

288

Thus, we can assume we have picked values of a, c, e, and e ~ to set Y n - Y ~ = E2,

given tha t ~i are fixed for 0 < i < n. Since P3(~) ~ 0, we can pick b and d to
satisfy Yn = ~ as follows. By eq. 2, we have

m

Yn = k(d + bc) + C (6)
k = 0

c~ m+l - 1
= (d + bc) + C (7)

a - - 1

where C is a constant. Thus, if OZ m + l -- 1 ~ 0, we can choose values of b and d
to set Yn to any value.

I t is easily seen tha t the choices we made for the values of the parameters
will occur with uniform probability, thus yielding the lemma. The number of the
offending cases of c~ which violate the conditions relative to Pi , i _< 2 is at most
4m, which bounds the error probabili ty as required. []

Note tha t we may modify the basic scheme to use f (x) = a x and g (x) = cx

as the functions to be chained, and to add b and d to the values of the next-
to-last (Yn-1) and last (Yn) blocks, respectively. This allows us to use b and d
more easily to prove the pairwise-independence propert ies in the above proof,
and speeds up computat ions slightly in implementations; however, these changes
appear to decrease the heuristic effectiveness of the primitive in enhancing the
s t ream cipher (although we have not fully analyzed the effect of the primitive
on the s t ream cipher). For example, when a block of da ta consisting of all O's is
processed by the primitive in this case, the result is a block consisting mostly of
O's; this is not true with our original scheme.

C o l l i s i o n s in the last and next - to - las t blocks

The need f o r the s u m Using two-function block chaining is natural , and one may
expect tha t the last two/ -b i t blocks must result in a good pre-MAC. If this were
the case, one would expect tha t on two distinct inputs, X, X ~ the events, "there
is a collision in the last block of the output" and "there is a collision in the
next-to-last blocks" be uncorrelated. But this is not true: If two inputs X and
X ~ do not differ in the last block, then the collisions of yn and Y~n are strongly
correlated with those of Cn-1 and cn_ 1 ~ ."

Pr[cn ' ' ~ 0] Pr [cn-1 ' c ' = Cn_ll n = ~,~ O] 1 (8) = CnlCn--1 O n - - l , n

r and thus ~n = 0, our addition Decoupl ing the correlat ions Given tha t cn = c n,

construction will hope to produce Yn, Yn-1 so tha t these variables have their
collision probabilities decoupled; since there must be some j < n such tha t j - th

!
blocks of inputs X and X ~ are distinct, there must be some Cw, c w, w < n which
do not collide, and the addition may break up the collisions in the last but one
block. This is what we prove next.

Let A = Y2m and A ~ = Y~m. We show the following:

289

L e m m a 3. W h e n a is good, P r (A = A ' t y n = y ') = P r [A = A'] = 1~IF I.

Proo f . Given two plaintexts, X and X ' , we show how to choose values of a, b, c,
' 0. Assume d, and e such tha t A - A ' = 9 , for any 9 6 F , given tha t Cn - c,~ =

e' 1. Note tha t y,~ = y" if and only if Cn-1 - c' = C~n. Hence P r [A - A '

n l y . y '] . - 2 . - 2 - c' n l c . - 1 - c' = = = Pr[~-']~j= o cj + Cn-1 - ~-'~j=o cj n-1 = n-1
After one C&S step is performed on the plaintext X , the next- to- las t block

of the result is given by
m

A = E C2. ~t- C2i_ka " (9)

i=0

A similar formula holds for A ' .
The equat ion A - A ~ = 12 can be wri t ten as

m

E ' ' ---- O (10) C2i -- 4 i "~ C2i+1 -- C2i+1
i=0

which is equivalent to

f152r + ~k (/~52r-2k + 52r-2k+l) + C E at` (f152r-2k + 52r--2k+l) = 12 (1 1)
r = 0 k = l k = 0

The above can be rewri t ten as

) [352, + fl at'~.2,-2k + ak52r_2k+l + Cfl ak52,_2t, + C at'62,_2t,+l = 12 (12)
r = O k : l k = l k = 0 k = 0

which can be expressed as

where

~(Co -t- C1 -.l- cC3) .-1- C2 .-I- cC4 = J~ (13)

m m r m r

r=O r=O k= l r=O k= l

C3 : E olk i~2r-- 2k' C4 : oLk (~2r--2k-I-1
r=0 k=0 r=O k=0

Let t ing D1 = Co + C1 + cC3 and D2 = 6'2 + cC4, we have

flD1 + D2 = 1"2. (14)

We consider Ol and D2 as polynomials in a . After some manipula t ion , we
write D1 and D2 as

D1 = l + c + (l + c) a k 52i (15)
i=0

290

D2 = c + (1 + c) a k 52i+t. (16)
i-~0

We note tha t for each j , the coefficient of each 5~j and 52j+1 in eqs. 15 and
16 is a polynomial of different degree (namely m - j) . Then we use the following:

L e m m a 4. Let f l , f 2 , . . . , f r G F[x] be polynomials of distinct degrees. Then
fi are linearly independent over F. That is, any nontrivial linear combination

~/ifi, where ~/i G F, is a nontrivial polynomial of degree > min j (dcg(f j)) .

Proof: Consider the matr ix where each row represents the coefficients of the
polynomial. Since each degree is distinct in every column, every entry below a
non-zero entry is zero. Consequently, we can delete all-zero columns (if any) and
re-write the matr ix as an upper triangular matrix. Such a matr ix always has full
rank. D.

Thus the polynomial for D1 (i.e., f e F[x] such tha t f (~) = D1) cannot
be trivial unless the inputs coincide in all odd numbered blocks. Similarly, the
polynomial for D2 cannot be trivial (i.e. identically zero for all values of c 0 unless
the inputs agree on all even numbered blocks. Since X, X ~ are distinct, it follows
at least one of these polynomials are nontrivial.

Thus, we can choose values for a and ~ such tha t substituting them in
eq. 14 allows us to solve for nonzero c. We then compute a = a c -1, followed by
e = /~a -1 , and choose values for b and d arbitrarily. []

Collision probability of last block tuples We use the two lemmas above to show
the following:

L e m m a 5. When ~ is good, P r (Y 2 m = Y2m,I Y2m+t = Y~m+l) = 2-2t"

Proof.

Pr(y2,, = Y2m, Y'~,,,+l = Y2m+l) = Pr(y'~,n = Y2mlY2,n+l - Y2,t~+I)Pr(Y2,,,+I = Y~,,+I)
= 2-2/.0

Here we use the s tandard facts about the collision probabilities of pairwise
independent hash functions and their approximations. (See [15] for details.)

3.2 I m p r o v i n g s e c u r i t y o f t h e a l g o r i t h m

We modify step 1 of the encryption algori thm as follows:

1. Let C = CoO...cn, where co = f (exo) , ci = f (c i -1 + eZ/2+lxi) for even i > 0,
and ci = g(ci-1 + xi) for odd i > 1.

Eqs. 1 and 2 become

r--1 r

C2r = b-~-acr+lx2 r -{-a E olk(d-[-bc)-~- E otk(aer-k+lX2r-2k - ~ X 2 r _ 2 k + i) (17)

k=0 k= l

291

r r

k : 0 k=0

The expression yn - y~ can now be written as

(is)

m m

k : O k--O
m m

: em-t-2 Z ")'kd-l t~2rn_2k -~- C Z otk t~2m_2kd_ 1
k : O k=O

(19)

(20)

where 7 = a/e .
The following stronger version of lemma 2 can be proved:

L e m m a 6. The mapping X ~-~ y= defined above is an almost 2-universal hash
function. That is, for arbitrary ~ and ~2, Pr[yn = k~] = 2 -z, and there exists
a 1 - 4m2/2 2t fraction of coin flips (for the choice of the key K) for which
P r i n . - u" = lu. = = P r [u . - y" =

Proof. As in the proof of lemma 2, given any ~P and ~ from F, we shall find
values of a, b, c, d, and e such that both y,~ -- ~P and yn - y~ -- ~. Eq. 3 becomes

m m

emW2 E,~k+l(~2m_2 k _[_C E k(~ OL 2rn--2k+l ---- ~2. (21)
k----0 k : 0

This can be written as

e m + 2 P l (7) + cP2(a) = (22)

where the polynomials/)1 and P2 correspond to the summations in eq. 21. Note
that their variables -7 and a are independent variables and hence the probability
that both are satisfied for random choice of the variables is < m2/22t. If X and
X ~ are distinct, then at least one of the polynomials Pt and P2 is nontrivial.
Thus, we can choose a value of 7 or a such that the left side of eq. 21 is nonzero;
we then solve for e or c, compute a, and find b and d exactly as in the proof of
lemma 2. In order to solve eq. 21 for e, it must be true that gcd(IFl -1 , m+2) = 1,
which can be achieved by choosing an appropriate field F and value of m.D

It can be shown that the following still holds, provided an appropriate field
F is chosen.

L e m m a 7. When a is good, P r (A = A'ly n = y~) = P r [A = Aq = 1~IF I.

Proof. As in the proof of lemma 3, we show how to choose values of a, b, c, d,
I ---- O . and e such that A - A ' _-- ~, for any ~2 E F, given that cn - cn

The equation A - A ~ = ~2 can be written as

flD1 + D2 = ~2 (23)

292

where

01 = er(1 + c + (1 + c) 7 k) (f~r (24)
r----0

1)2 = ~ c + (1 + c) ~ ~2i+1. (25)
i = 0

As in the case of lemma 3, the coefficients of ~i's in the expression for D1
(and D2 similarly) are polynomials of distinct degrees. Similar analysis yields
the lemma. []

4 A v a r i a n t o f t h e m a i n a l g o r i t h m

We now consider the following encryption algorithm. Its proof of security holds
whether or not arithmetic is done using the finite-field scheme presented earlier.
This variant differs from the main algorithm in that every/-bi t block is processed
twice.

Let the encryption key K be composed of four integers, a, b, c, and d. Define
f (x) = ax + b and g(x) = cx + d. The algorithm is as follows:

1. Let C = Co.O...cn, where Co = f (xo) , and ci = f (ci-I + xi).
2. Let Y = YoYl...Yn, where Yo = g(xo), Yi = g(Yi-1 + xi), and yn = cn.

3. Replace Yn-1 with ~k=0 Yk.

4. Let s = Yn-l.Yn-

5. Replace Y.-1-Yn with h(s).

6. Let Z = G(s) @ YO.Yl...Yn-2 denote the result of encrypting Y with the
pseudorandom sequence G(s). Here @ denotes bitwise exclusive OR of two
quantities of equal length in binary.

We refer to the string s as the M A C of the message. The next two lemmas
estimate the probability of collisions. Owing to space considerations, we omit
the proofs.

L e m m a 8. The mapping X ~-~ Yn defined above is an almost 2-universal hash
function. That is, for arbitrary ~ and ~ , Pr[yn = k~] = 2 - t , and there exists
a 1 - 4m2/2 2t fraction of coin flips (for the choice of the key K) for which
Pr[yn - y'~ = Y21yn = ~P] = P r [y , - y" = Y21.

Let ,4 = Yn-1 and ,4' = i Yn-l"

L e m m a 9. When a is good, P r (A = A'ly n = y~) = P r [A = /1'] = 1~IF I.

293

5 Conclus ion

We have presented a new cryptographic primitive, chain & sum, with which
we can efficiently add integrity to s t ream ciphers, as well as compute very fast
MACs. The primitive can be used to design new encryption and authenticat ion
algorithms with provable security properties, and to create algorithms custom-
tailored to run fast on machines with specific characteristics. When the opera-
tions of chain & sum are implemented in finite fields, the resulting scheme yields
one of the fastest known MACs.

A c k n o w l e d g e m e n t s : We thank Peter Montgomery for suggestions on im-
plementing finite-field arithmetic, and Gideon Yuval for discussions related to
hardware performance. We thank the anonymous Eurocypt98 referee for com-
ments.

References

1. W. Aiello, S. Rajagopalan, R. Venkatesan, "Design and analysis of provably
good random number generators," ACM SODA-95, pp. 1-9.

2. W. Aiello, R. Venkatesan, "Foiling birthday attacks in output doubling trans-
formations," Advances in Cryptology -Eurocrypt 96.

3. M. Bellare, R. Canetti, H. Krawczyk, "Keying hash functions for message
authentication," Advances in Cryptology-Crypto '96.

4. M. Bellare, R. Gu~rin, P. Rogaway, "XOR MACs: New methods for message
authentication using finite pseudorandom functions," Advances in Cryptology-
Crypto '95, pp. 15-28.

5. M. Bellare, J. Kilian, P. Rogaway, "On the security of cipher block chaining,"
Advances in Cryptology-Crypto '94, pp. 341-358.

6. J. Golic, "Linear Statistical Weaknesses in Alleged RC4 Keystream Genera-
tor," Advances in Cryptology-Eurocrypt '97, pp. 226-238.

7. A. Bosselaers, R. Govaerts, J. Vandewalle, "Fast hashing on the Pentium,"
Advances in Cryptology-Crypto '96.

8. G. Brassard, "On computationally secure authentication tags requiring short
secret shared keys," Advances in Cryptology-Crypto '82, pp. 79-82.

9. S. Halevi, H. Krawczyk, "MMH: Software message authentication in the
Gbit/second rates," Fast Software Encryption Workshop, 1996.

10. H. Krawczyk, "LFSR-based hashing and authentication," Advances in
Cryptology-Crypto '94, pp. 129-139.

11. H. Krawczyk, "New hash functions for message authentication," Advances in
Cryptology-Crypto '95, pp. 301-310.

12. J. Kilian, P. Rogaway, "How to protect DES against exhaustive search," Ad-
vances in Cryptology-Crypto 96.

13. B. Preneel, P. van Oorschot, "MDx-MAC and building fast MACs from hash
functions," Advances in Cryptology-Crypto '95, pp. 1-14.

14. P. Rogaway, "Bucket hashing and its application to fast message authentica-
tion," Advances in Cryptology-Crypto '95, pp. 29-42.

15. V. Shoup, "On fast and provably secure message authentication based on uni-
versal hashing," Advances in Cryptology- Eurocrypt96. Later versions avail-
able from the author.

16. M. Wegman, L. Carter, "New hash functions and their use in authentication
and set equality," Journal of Computer and System Sciences, 22:265-279, 1981.

