
The Chain & Sum Primitive and Its Applications to 
MACs and Stream Ciphers 

Mariusz H. Jakubowski I and R a m a r a t h n a m  Venkatesan 2 

I Princeton University, mj@cs.princeton.edu 
2 Microsoft Research, Redmond, WA 98052, USA, venkie@microsoft, corn 

A b s t r a c t .  We present a new scheme called universal block chaining with 
sum (or chain ?J sum primitive (C~4S) for short), and show its application 
to the problem of combined encryption and authentication of data. The 
primitive is a weak CBC-type encryption along with a summing step, 
and can be used as a front end to stream ciphers to encrypt pages or 
blocks of data (e.g., in an encrypted file system or in a video stream). 
Under standard assumptions, the resulting encryption scheme provably 
acts as a random permutation on the blocks, and has message integrity 
features of standard CBC encryption. The primitive also yields a very fast 
message authentication code (MAC), which is a multivariate polynomial 
evaluation hash. The multivariate feature and the summing aspect are 
novel parts of the design. Our tests show that the chain & sum primitive 
adds approximately 20 percent overhead to the fastest stream ciphers. 

1 Introduction 

For combined encryption and authentication of data,  one often uses s t ream ci- 
phers because of their speed in comparison to block ciphers; one then appends 
a separately computed MAC value. However, in some applications, da ta  must 
be accessed in pages or blocks, and stored encrypted, as in some encrypted file 
systems or video streams. For this purpose, it is cus tomary to use CBC en- 
cryption on the blocks, and compute an integrity check for the entire s t ream 
separately from these individual encrypted blocks. Alternately, one may com- 
pute and store one MAC value separately per block, but this causes the size of 
the MAC data  to expand in proport ion to the number  of blocks, and is thus 
undesirable. Certain applications, such as encrypted file systems and video, tax 
the CPU rather  harshly, and using a block cipher can cause a noticeable per- 
formance hit. For backward compatibil i ty and max imum efficiency, a different 
approach is required. 

We would like to encrypt and access da ta  in blocks or pages, and mimic CBC 
encryption on these block levels; furthermore,  we would like to avoid increasing 
the lengths of the individual blocks, and keep one incremental MAC value for 
the entire stream. (We do not address the incremental MAC issue here.) In 
many applications, such as the ones cited above, tha t  have implicit semantics, 
wrongly decrypted blocks will be immediately noticeable; in addition, the overall 
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stream MAC must defend against the case in which the input data  is completely 
random. 

Here we present a new primitive called universal block chaining with sum 
(CSJS). In an application of C&S, a sequence of input data  (which typically con- 
sists of hundreds of machine words) is first processed by a CBC-like primitive, 
in which the cipher is replaced by a pair of invertible universal hash functions 
that  are applied alternately. The output words are then summed up and written 
in place of the next-to-last word. The last two words, called the pre-MAO, are 
encrypted with a block cipher; this encrypted value is implicitly a MAC value 
for the input data. We use the pre-MAC directly or indirectly to synchronize a 
stream cipher (e.g., [1]), or to generate a stream-cipher key, compute a pseudo- 
random one-time pad with the stream cipher, and encrypt the rest of the words 
with this pad. 

We describe our main scheme and prove its security properties. From this 
scheme we derive variants that  can be analyzed similarly. Then we show two dif- 
ferent types of applications. First, using our scheme as a front end (as described 
above), we show that  it mimics standard CBC encryption in terms of message 
integrity. Using standard assumptions about underlying ciphers, we show that  
our construction behaves as a random permutation on the entire input. This is 
advantageous, since stream ciphers are typically much faster than block ciphers. 
The design is intended for encryption of stored or streamed data that  must be 
accessed and processed in pages or blocks. With a simple incremental scheme, 
one can easily compute MAC values for the entire stream. Heuristic considera- 
tions can be given to argue how C&S may remove weaknesses in existing ciphers 
[6] and strengthen the security of the stream cipher itself. We omit them for lack 
of space. 

Our construction has the side effect of yielding ciphers that  seem stronger 
than the stream cipher with which we begin. For example, if we combine the 
alleged RC4 stream cipher with our scheme, the second binary derivatives of the 
LSBs of the outputs are hard to infer, which is not true with the original alleged 
RC4 cipher [6]. Note that  the stream cipher encrypts only the weakly encrypted 
output  from the C&S stage, and the output of the alleged RC4 cipher is not 
released in the clear. It is an open problem to analyze this effect precisely. 

A more detailed version of this paper will be available from the authors, or 
at http ://www. cs. princeton, edu/~mj/. 

P r i o r  Work :  One commonly uses a block cipher in CBC mode, which has 
been recently analyzed in [5] and shown to be secure in the ideal cipher model. 
However, CBC is very slow in software; in the applications mentioned earlier, 
CBC leads to an unacceptable performance hit. Another approach is to use 
collision-resistant hash functions (see ([3] for techniques and references). How- 
ever, our schemes are faster than those methods; in addition, such methods do 
not offer a way to add local integrity at block level and to enhance the security 
of the stream cipher, as our scheme does. 

Universal hash constructions are due to Carter and Wegman [16], and were 
used by grawczyk [10], aogaway [14], Shoup [15] and nalevi and Krawczyk [9]. 
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Shoup's paper gives a comprehensive survey of all technical definitions needed 
here. 

Our  con t r ibu t ions :  We introduce a new method for combining encryption 
and authentication, which also has the benefit of yielding a fast reversible MAC. 
We present and analyze our main construction for the chain & sum primitive 
and prove its security under standard assumptions. The analysis of the addition 
step's effect is quite novel, and the addition permits us to build 2/-bit valued 
MACs from/-bit  operations. This output-doubling problem is usually not easy 
to solve (see [15, 2]). Our primitive differs from related schemes in a striking way. 

This in turn allows us to construct random permutations from nl bits to nl 
bits, given a 2/-bit to 2/-bit ideal cipher and a stream cipher with a 2/-bit key. Our 
MAC operations work hand in hand with the stream ciphers and heuristically 
seem to have the effect of enhancing them. We would hope that this would be 
good front end to many stream ciphers which may have some minor defects. 
The MAC value of a block or page can be read off from the last 2/-bits of the 
encrypted input. 

1.1 Implementation and performance 

Our construction yields a very efficient MAC, which uses only basic processor 
operations. Nonetheless, the speed of the MAC computations can depend sig- 
nificantly on their implementation on a particular processor; for example, when 
using simple instructions such as bit test, some modern processors with aggres- 
sive branch prediction incur a penalty of about 10 cycles when branches are 
mispredicted and the processor pipeline stalls. Hence, careful processor-specific 
hand optimization and testing of assembly-language code are needed to achieve 
maximum speed. 

We report on the speeds of our main algorithm, described in section 2. Our 
implementations and tests were done on Pentium 200 MHz and 266 MHz sys- 
tems. The computations operated on values in the fields Z231_ 1 and GF(232), 
and computed 64-bit MACs. In Z231_1, the resulting MAC has actually only 62 
bits of security. 

The overhead of adding the chain & sum computations to stream ciphers 
(RC4 and VRA) was between 10 and 45 percent, depending on which stream 
cipher was used and how key setup was done. On our Pentium 200 MHz and 
266 MHz systems, the respective speeds of an assembly-language version of the 
chain & sum operations in the field Z231_ 1 were approximately 360 Mbps and 
470 Mbps when data were in cache, and 240 Mbps and 350 Mbps when data 
were in memory. The fastest 64-bit MAC of which we are aware, MMH [9], was 
reported to run at 500 Mbps and at 380 Mbps on in-cache and in-memory data, 
respectively, on a 200 MHz Pentium; however, unlike the chain & sum MAC, 
the MMH MAC does not seem to admit reversible implementations. 

In the field GF(232), multiplication can be done using lookup tables, as 
in [15]. Finding irreducible polynomials in this field takes about lOps on our 
Pentium 200 MHz machine, and is an order of magnitude faster than finding such 
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polynomials in GF(264). Our schemes take advantage of this when generating a 
64-bit MAC using only 32-bit operations. 

In addition, the speed of our schemes may be increased significantly by ex- 
ploiting the following observation: Given a randomly fixed a E GF(2 t ) ,  for all 
x E GF(2t ) ,  x ~-~ ax  must be considerably easier to compute than the case 
when a is a variable. If x can be expressed uniquely as a linear combination of 
1,a, a2 , . . .  , a  e - l ,  then the map is computed by left shifting x and adding the 
bit string c l - 1 , . . . ,  cl, Co where a l = Y]i cia ' .  The analysis of using this obser- 
vation in our constructions is surprisingly complicated and lengthy, and we do 
not present this implementation-related issue here. 

1.2 Conventions and notation 

All our algorithms operate on values belonging to some finite field F,  typically 
GF(232) or Zp for some large prime p. We use the period ('.') to denote con- 
catenation of values such as the elements of GF(2a2), which are represented by 
bit strings. We use X = Xo.Xl . . .xn  to denote a plaintext message consisting of 
n + 1/ -bi t  blocks xo, xl ,  ..., xn, where n -- 2m + 1. We assume that  X contains 
an even number of blocks. 

Let h(x )  denote an ideal cipher (random permutation),  where x represents a 
two-block (2/-bit) input, and let G(s )  represent an ideal stream cipher. 

2 T h e  cha in  &: s u m  p r i m i t i v e  and  its  use  in e n c r y p t i o n  

We now describe a typical encryption scheme that  uses the chain & sum primi- 
tive. In later sections, we describe variants of this basic algorithm. 

Let the encryption key K be composed of s ix / -b i t  strings a, b, c, d, e, and 
e ~. Define : f(x)  = ax  + b and g(x )  = cx  + d. The first two steps below show an 
application of chain & sum. We define C S K ( C )  = y o , . . . ,  yn. 

1. Let C = CO.Cl...cn, where co = f ( e x o ) ,  ci = f ( c i - 1  + ex i )  for even i > 0, and 
ci = g(c i -1  + e 'x i )  for odd i > 1. 

?2 
2. Let Yk = Ck for k ~ n - 1, Y,~-I = ~ k = o  ck, and s = y n - l . y ~ .  
3. Replace yn-1 .Yn with the encryption of s, namely h i s  ). 
4. Let Z -- G(s )  @ Yo.Yl. . .Yn-2 denote the result of encrypting Y with the 

pseudorandom sequence G ( s ) .  Here ~ denotes bitwise exclusive OR of two 
quantities of equal length in binary. 

We refer to the string s as the pre -MAC,  and to the string Yn- l .Yn  after the 
step (3) above as the MAC value of X.  

3 S e c u r i t y  o f  the  basic  s c h e m e  

3.1 Preliminaries 

Let H w ( X )  be an indexed (by w) hmi ly  of functions mapping X to 21 bits. A 
random member of the family is chosen by picking a random w, which normally 
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here would correspond to the secret keys. We say that  such a random member 
f is pairwise independent if for any pair of distinct xl and x:  we have that 
P r [ f ( x )  = •] = 2 -2t,  and P r [ f (x2 )  = ~'~'[f(xl) = ~ ]  ~-- Pr [ f (x2 )  = f2'], for 
any ~,  $2 ~ in the range. We say that  the family has collision probability e if for a 
random w and any pair X, X ~, the probability that  Hw(X)  = H w ( X  ~) is at most 
e. We will model stream ciphers or secure pseudo-random number generators by 
a function G(s) = R tha t  maps 21 bit inputs s to (n - 2)l-bit strings R randomly. 
We will assume that  G is ideal and behaves like a random function. 

We use the ideal block cipher model when analyzing DES or other related 
ciphers. In this model, DESK,  (m) = e will be t reated as a family of independent 
random permutations indexed by K ~, each mapping 21 bits to 21 bits. 

Let E K ( X )  = Y be a family of permutations mapping hi-bits to hi-bits. 
We say EK(.) has local integrity if the mapping is a random permutation from 
IXI = nl bits to nl-bits. In such a case, if one changes any bit of a given input X 
to obtain X t, this will result in completely random output;  that  is, E K ( X )  and 
E K ( X  ~) will be statistically uncorrelated or independent. A desirable aspect 
of traditional CBC encryption is that  if one bit of the encrypted message is 
changed, decryption will result in one garbled block and a bit error in another 
block. However, local integrity does not imply integrity in the usual sense; it 
fails if the input data  is random. We consider the problem of achieving local 
integrity and mimicking the properties of CBC encryption in terms of the effects 
that  ciphertext modification has on the decrypted inputs. 

Now we define our encryption scheme EK(Xi) .  To encrypt Xi,  we first com- 
pute CSK(Xi )  = Yi, and then encrypt the last 2l bits of Y/, denoted by hi, with 
an ideal cipher to obtain zi. Then we compute G(hi) = R~ of length ( n -  2)l bits, 
and bitwise-XOR this with the first (n - 2)l bits of CSK(Xi )  to obtain Ri. We 
output  Ri, zi. Let A be an adversary who has unbounded resources, obtains an 
nl-bit input, and outputs  either 0 or 1. Let #, A be two probability distributions 
on nl bit strings. We write X +-- #(.) if Xi  is chosen according to the distribution 
#(.). Then we say that  A distinguishes the distributions A and # with advantage 

if Pr[(Z~) = l lXi  +-- #(.)] and Pr [ (Xi)  = l lXi  +-- A(.)] differ at most by ~. 

T h e o r e m  1. The encryption function EK(Xi )  = Y cannot be distinguished 
from truly random permutations mapping nl bits to nl bits with probability bet- 
ter than 26, using adaptive attacks with q ~ 2 l chosen plaintext-ciphertext pairs. 
Here ~ is the probability of a collision among the M A C  values hi , i  ~_ q. 

Proof (outline): First, we note tha t  if all the MAC values hi,  h 2 , . . . ,  hq corre- 
sponding to the q queries are distinct, then the distribution of the outputs of 
EK(.) is identical to tha t  of a perfect random permutation.  Secondly, we bound 
the probability of the collision as required. The bulk of the paper is devoted to 
this latter task. 

If the hi's are distinct, then the zi's are independent outputs of a random 
permutation and Rt~ are outputs  of a random function. The random function and 
the random permutation are independent. Note that  the outputs of the random 
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permutation are all distinct, but we perform fewer than 2 t queries, and thus 
a truly random function would output distinct strings as well with probability 
1 - e. From this the indistinguishability follows. 

O v e r v i e w :  Lemmas 1 through 5 are towards bounding the collision probabil- 
ity of the MACs in the above theorem. The subsection 3.2 presents an algorithm 
which has a quadratically smaller fraction of bad keys. Finally, in section 4, we 
give another algorithm variant and analyze its collision probability. 

Let C = c o c l  ...cn represent the result of  one chaining step performed on X,  as 
in step 1 of  the encryption algorithm; that is, let Co = f ( exo ) ,  ci = f ( c i - 1  + exi)  
for even i > 0, and ci = g(c i -1  + e'xi) for odd i > 0. Let (~ = ac and/~ = ae. We 

b use the convention ~ i = a  F( i )  = 0 if a > b. 
Let Y = YoYl...Yn denote the result of  step 2 of the encryption algorithm; 

n that is, let Yi = ci for i # n - 1, and Yp-1 = ~ k = 0  Ck" 
For 0 < r < m, we obtain the following: 

L e m m a  1. 

r--1 ~ tX 
C 2 r ' = b + t 3 X 2 r + a E a k ( d + b c ) +  ak(~X2r-2k + e  2 r - 2 k + i )  (1) 

k=0 k=l  

c2r+1 = a k ( d  + be) + c E ak(flx2r_2k + e'x2~-2k+l)  (2) 
k=O k=O 

Proof. We use induction on r. For r = 0, eqs. 1 and 2 give Co = b + flXo and 
Cl = d + c(b + flXo + e'xl) ,  so the base case holds. Assume eqs. 1 and 2 are true 
for r _< p. For r = p + 1, we have 

C2(p+l) --~ a(e2p+l + ex2(p+l) ) + b 
p p 

-- b -{- ZX2(p+i) -~- a E ogk(d + bc) .-[.- E OlkTi(ZX2p--2k "j'- el X2p--2k+i) 
k=0 k=0 

p p+l  

= b + ~X2(p+l) + a E O~k(d + be) + E olk(]~X2(pTl)-2k + elX2(pT1)-2k+l) 
k=O k=l  

= c2(v+D 

and 

C2(p+1)+1 ---- C(C2(p+I) -{'- et X2(p+l)+l) --}- d 
p 

= C~X2(p+I) + CdX2(p+l)+t + d + bc + E ak+l (d + be) + 
k=O 

p + l  

+ c E ak (~X2(p+l) -2k + e'x2(p+l)-2k+l) 
k=l 

p + l  p + l  

= E Otk(d + bc) "-}- C E oLk(~x,2(p+l)_2k "}- elX2(pTi)_2k+l) 
k=0 k=0 

---- C2(p+1)+1.  



Thus, eqs. 1 and 2 are verified. [] 
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P a i r w i s e  i n d e p e n d e n c e  o f  las t  b locks  Let X ~ = XoX 1 '  ' ...x n' denote a plaintext 
different from X,  and let Y~ ~ ~ ' = YoYl...Y, represent the result of step 2 of the 
encryption algorithm performed on X ' .  We show that  the following holds: 

L e m m a  2. The mapping X ~ Yn defined above is an almost 2-universal hash 
function. That is, for arbitrary ~P and 12, Pr[yn = ~P] = 2 - t ,  and there exists a 
1 - 4m/2  t fraction of coin flips (for the choice of the key K )  for which Pr[yn - 

Y~n = 12]Yn = ~l = P r [ y .  - y~ = 121- 

Proof. We will show that given two plaintexts, X and X ' ,  the random variables 
Yn and y" are pairwise independent when a is set appropriately. That  is, given 
any ~P a n d / 2  from F,  we shall find values of a, b, c, d, e, and e' such that  both 
Yn = ~P and yn - y" = 12. 

' The equation Yn - Y~n = 12 can be written as Let ~ = xi - x i. 

m m 

e ~ ' ~  ogkq- 1(~ E A. ,  2m-2k + ce' akS=.~_2k+l = 12 (3) 
k=0 k=0 

where the values of 12 and 5i, 0 < i < m, are fixed. We may represent eq. 3 as 

ePl(a)  + ce'P2(a) = 12 (4) 

where the polynomials P1 and P2 correspond to the summations in eq. 3. For 
technical reasons mentioned later, we assume that  our choice of a satisfies 
P3(a) -- a m+l - 1 ~ 0. In addition, a will satisfy some conditions relative 
to P1 and P2 mentioned next. We will call such a ' s  good. 

If X and X ~ are distinct then, the polynomials P1 and P2 cannot be both 
trivial (i.e. vanish at all points). Thus, for some i, Pi is not trivial. Note that  
there are at most m values of c~ that are roots of P1 or P2; thus, we can find a 
value a such that  at least one of P~(a) is non-zero. 

Assuming we have chosen a good a, we substitute its value in eq. 3, obtaining 
the two-variable linear equation 

eC1 + ce'C2 = 12 (5) 

where C1 and C2 are constants equal to P1 and P2, respectively, evaluated at a. 
We may now compute the values of a, c, e and e * as follows: 

1. If C1 = 0 and C2 r 0, for every choice of e, one can set ce' = 12C21, and 
a ~- (]~e -I . 

2. If C1 ~ 0 and C2 -- 0, then set e = 12C~ -1. In this case any choice of 
a, ce' E F such that a is good will suffice. 

3. If C1 ~ 0 and C2 ~ 0, then set ce' = (12 - eC1)C~ 1 and a is such that  a is 
good. 
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Thus, we can assume we have picked values of a, c, e, and e ~ to set Y n - Y ~  = E2, 

given tha t  ~i are fixed for 0 < i < n. Since P3(~) ~ 0, we can pick b and d to 
satisfy Yn = ~ as follows. By eq. 2, we have 

m 

Yn =  k(d + bc) + C (6) 
k = 0  

c~ m+l - 1 
= (d + bc) + C (7) 

a - - 1  

where C is a constant. Thus, if OZ m + l  -- 1 ~ 0, we can choose values of b and d 
to set Yn to any value. 

I t  is easily seen tha t  the choices we made for the values of the parameters  
will occur with uniform probability, thus yielding the lemma. The number  of the 
offending cases of c~ which violate the conditions relative to Pi ,  i _< 2 is at most 
4m, which bounds the error probabili ty as required. [] 

Note tha t  we may modify the basic scheme to use f ( x )  = a x  and g ( x )  = cx  

as the functions to be chained, and to add b and d to the values of the next- 
to-last (Yn-1) and last (Yn) blocks, respectively. This allows us to use b and d 
more easily to prove the pairwise-independence propert ies in the above proof, 
and speeds up computat ions slightly in implementations; however, these changes 
appear  to decrease the heuristic effectiveness of the primitive in enhancing the 
s t ream cipher (although we have not fully analyzed the effect of the primitive 
on the s t ream cipher). For example, when a block of da ta  consisting of all O's is 
processed by the primitive in this case, the result is a block consisting mostly of 
O's; this is not true with our original scheme. 

C o l l i s i o n s  in the  last and next - to - las t  blocks 

The  need f o r  the s u m  Using two-function block chaining is natural ,  and one may 
expect tha t  the last two/ -b i t  blocks must  result in a good pre-MAC. If  this were 
the case, one would expect tha t  on two distinct inputs, X,  X ~ the events, "there 
is a collision in the last block of the output"  and "there is a collision in the 
next-to-last  blocks" be uncorrelated. But  this is not true: If two inputs X and 
X ~ do not differ in the last block, then the collisions of yn and Y~n are strongly 
correlated with those of Cn-1 and cn_ 1 ~  ." 

Pr[cn ' ' ~ 0] Pr [cn-1  ' c ' = Cn_ll n =  ~,~ O] 1 (8) = CnlCn--1 O n - - l ,  n 

r and thus ~n = 0, our addition Decoupl ing  the correlat ions  Given tha t  cn = c n, 

construction will hope to produce Yn, Yn-1  so tha t  these variables have their 
collision probabilities decoupled; since there must be some j < n such tha t  j - th  

! 
blocks of inputs X and X ~ are distinct, there must be some Cw, c w, w < n which 
do not collide, and the addition may break up the collisions in the last but  one 
block. This is what we prove next. 

Let A = Y2m and A ~ = Y~m. We show the following: 
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L e m m a  3. W h e n  a is good, P r ( A  = A ' t y  n = y ' )  = P r [ A  = A']  = 1~IF  I. 

Proo f .  Given two plaintexts,  X and X ' ,  we show how to  choose values of  a, b, c, 
' 0. Assume d, and  e such tha t  A - A '  = 9 ,  for any 9 6 F ,  given tha t  Cn - c,~ = 

e' 1. Note  tha t  y,~ = y"  if and only if Cn-1 - c' = C~n. Hence P r [ A  - A '  

n l y .  y ' ]  . - 2  . - 2  - c' n l c . - 1  - c' = = = Pr[~-']~j= o cj  + Cn-1 - ~-'~j=o cj n-1 = n-1 
After  one C&S step is performed on the plaintext  X ,  the next- to- las t  block 

of  the  result  is given by 
m 

A = E C2. ~t- C2i_ka " (9) 

i=0 

A similar formula  holds for A ' .  
The  equat ion A - A ~ = 12 can be wri t ten as 

m 

E ' ' ---- O (10) C2i -- 4 i  "~ C2i+1 --  C2i+1 
i=0 

which is equivalent to 

f152r + ~k (/~52r-2k + 52r-2k+l ) + C E at` (f152r-2k + 52r--2k+l) = 12 (1 1) 
r = 0  k = l  k = 0  

The  above can be rewri t ten as 

) [352, + fl at'~.2,-2k + ak52r_2k+l + Cfl ak52,_2t, + C at'62,_2t,+l = 12 (12) 
r = O  k : l  k = l  k = 0  k = 0  

which can be expressed as 

where 

~(Co -t- C1 -.l- cC3) .-1- C2 .-I- cC4 = J~ (13) 

m m r m r 

r=O r=O k= l  r=O k= l  

C3 : E olk i~2r-- 2k' C4 : oLk (~2r--2k-I-1 
r=0  k=0 r=O k=0 

Let t ing  D1 = Co + C1 + cC3 and D2 = 6'2 + cC4,  we have 

flD1 + D2 = 1"2. (14) 

We consider Ol  and D2 as polynomials  in a .  After some manipula t ion ,  we 
write D1 and D2 as 

D1 = l + c + ( l + c )  a k 52i (15) 
i=0 
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D2 = c + (1 + c) a k 52i+t. (16) 
i-~0 

We note tha t  for each j ,  the coefficient of each 5~j and 52j+1 in eqs. 15 and 
16 is a polynomial  of different degree (namely m - j ) .  Then we use the following: 

L e m m a  4. Let f l ,  f 2 , . . .  , f r  G F[x] be polynomials of distinct degrees. Then 
fi are linearly independent over F.  That is, any nontrivial linear combination 

~/ifi, where ~/i G F,  is a nontrivial polynomial of degree > min j (dcg( f j ) ) .  

Proof: Consider the matr ix  where each row represents the coefficients of the 
polynomial. Since each degree is distinct in every column, every entry below a 
non-zero entry is zero. Consequently, we can delete all-zero columns (if any) and 
re-write the matr ix  as an upper  triangular matrix.  Such a matr ix  always has full 
rank. D. 

Thus the polynomial for D1 (i.e., f e F[x] such tha t  f (~ )  = D1) cannot  
be trivial unless the inputs coincide in all odd numbered blocks. Similarly, the 
polynomial for D2 cannot be trivial (i.e. identically zero for all values of c 0 unless 
the inputs agree on all even numbered blocks. Since X, X ~ are distinct, it follows 
at least one of these polynomials are nontrivial. 

Thus, we can choose values for a and ~ such tha t  substituting them in 
eq. 14 allows us to solve for nonzero c. We then compute  a = a c  -1,  followed by 
e = /~a  -1 , and choose values for b and d arbitrarily. [] 

Collision probability of last block tuples We use the two lemmas above to show 
the following: 

L e m m a  5. When ~ is good, P r ( Y 2 m  = Y2m,I Y2m+t  = Y~m+l) = 2-2t" 

Proof. 

Pr(y2,, = Y2m, Y'~,,,+l = Y2m+l) = Pr(y'~,n = Y2mlY2,n+l - Y2,t~+I)Pr(Y2,,,+I = Y~,,+I) 
= 2-2/.0 

Here we use the s tandard facts about  the collision probabilities of pairwise 
independent hash functions and their approximations.  (See [15] for details.) 

3.2 I m p r o v i n g  s e c u r i t y  o f  t h e  a l g o r i t h m  

We modify step 1 of the encryption algori thm as follows: 

1. Let C = CoO...cn, where co = f (exo) ,  ci = f (c i -1  + eZ/2+lxi) for even i > 0, 
and ci = g(ci-1 + xi) for odd i > 1. 

Eqs. 1 and 2 become 

r--1 r 

C2r = b-~-acr+lx2 r -{-a E olk(d-[-bc)-~- E otk(aer-k+lX2r-2k - ~ X 2 r _ 2 k + i )  (17)  

k=0 k= l  
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r r 

k : 0  k=0  

The expression yn - y~ can now be written as 

(is) 

m m 

k : O  k--O 
m m 

: em-t-2 Z ")'kd-l t~2rn_2k -~- C Z otk t~2m_2kd_ 1 
k : O  k=O 

(19) 

(20) 

where 7 = a/e .  
The following stronger version of lemma 2 can be proved: 

L e m m a  6. The mapping X ~-~ y= defined above is an almost 2-universal hash 
function. That is, for arbitrary ~ and ~2, Pr[yn = k~] = 2 -z, and there exists 
a 1 - 4m2/2 2t fraction of coin flips (for the choice of the key K )  for which 
P r i n .  - u" =  lu. = = P r [ u .  - y" = 

Proof. As in the proof of lemma 2, given any ~P and ~ from F,  we shall find 
values of a, b, c, d, and e such that  both y,~ -- ~P and yn - y~ -- ~.  Eq. 3 becomes 

m m 

emW2 E,~k+l(~2m_2 k _[_C E k(~ OL 2rn--2k+l ---- ~2. (21) 
k----0 k : 0  

This can be written as 

e m + 2 P l ( 7 )  + cP2(a)  = (22) 

where the polynomials/)1 and P2 correspond to the summations in eq. 21. Note 
that their variables -7 and a are independent variables and hence the probability 
that  both are satisfied for random choice of the variables is < m2/22t. If X and 
X ~ are distinct, then at least one of the polynomials Pt and P2 is nontrivial. 
Thus, we can choose a value of 7 or a such that  the left side of eq. 21 is nonzero; 
we then solve for e or c, compute a, and find b and d exactly as in the proof of 
lemma 2. In order to solve eq. 21 for e, it must be true that  gcd( IFl -1  , m+2)  = 1, 
which can be achieved by choosing an appropriate field F and value of m.D 

It can be shown that  the following still holds, provided an appropriate field 
F is chosen. 

L e m m a  7. When a is good, P r ( A  = A'ly n = y~) = P r [ A  = Aq = 1~IF I. 

Proof. As in the proof of lemma 3, we show how to choose values of a, b, c, d, 
I ---- O .  and e such that A - A '  _-- ~,  for any ~2 E F,  given that  cn - cn 

The equation A - A ~ = ~2 can be written as 

flD1 + D2 = ~2 (23) 
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where 

01 = er(1 + c + (1 + c) 7 k) (f~r (24) 
r----0 

1)2 = ~ c + (1 + c) ~ ~2i+1. (25) 
i = 0  

As in the case of lemma 3, the coefficients of ~i's in the expression for D1 
(and D2 similarly) are polynomials of distinct degrees. Similar analysis yields 
the lemma. [] 

4 A v a r i a n t  o f  t h e  m a i n  a l g o r i t h m  

We now consider the following encryption algorithm. Its proof of security holds 
whether or not arithmetic is done using the finite-field scheme presented earlier. 
This variant differs from the main algorithm in that  every/-bi t  block is processed 
twice. 

Let the encryption key K be composed of four integers, a, b, c, and d. Define 
f ( x )  = ax + b and g(x) = cx + d. The algorithm is as follows: 

1. Let C = Co.O...cn, where Co = f (xo) ,  and ci = f (ci-I  + xi). 
2. Let Y = YoYl...Yn, where Yo = g(xo), Yi = g(Yi-1 + xi),  and yn = cn. 

3. Replace Yn-1 with ~k=0  Yk. 

4. Let s = Yn-l.Yn- 

5. Replace Y.-1-Yn with h(s). 

6. Let Z = G(s) @ YO.Yl...Yn-2 denote the result of encrypting Y with the 
pseudorandom sequence G(s). Here @ denotes bitwise exclusive OR of two 
quantities of equal length in binary. 

We refer to the string s as the M A C  of the message. The next two lemmas 
estimate the probability of collisions. Owing to space considerations, we omit 
the proofs. 

L e m m a  8. The mapping X ~-~ Yn defined above is an almost 2-universal hash 
function. That is, for  arbitrary ~ and ~ ,  Pr[yn = k~] = 2 - t ,  and there exists 
a 1 - 4m2/2 2t fraction of coin flips (for the choice of the key K )  for which 
Pr[yn  - y'~ = Y21yn = ~P] = P r [ y ,  - y" = Y21. 

Let ,4 = Yn-1 and ,4' = i Yn-l" 

L e m m a  9. When a is good, P r ( A  = A'ly  n = y~) = P r [A  = /1'] = 1~IF I. 
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5 Conclus ion 

We have presented a new cryptographic primitive, chain & sum, with which 
we can efficiently add integrity to s t ream ciphers, as well as compute  very fast 
MACs. The primitive can be used to design new encryption and authenticat ion 
algorithms with provable security properties, and to create algorithms custom- 
tailored to run fast on machines with specific characteristics. When the opera- 
tions of chain & sum are implemented in finite fields, the resulting scheme yields 
one of the fastest known MACs. 
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