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Abs t r ac t .  Provable security is a very nice property for cryptographic 
protocols. Unfortunately, in many cases, this is at the cost of a consider- 
able loss in terms of efficiency. More recently, a new approach to achieve 
some kind of provable security was explored using the so-called "random 
oracle model". 
Last year, Stern and the author studied the security of blind signatures 
in this model. We first defined appropriate notions of security for elec- 
tronic cash purpose, then, we proposed the first efficient and provably 
secure schemes. Unfortunately, even if our proof prevents a user from 
spending more coins than he had withdrawn, this is only if the number 
of withdrawn coins is poly-logarithmically bounded. 
In this paper, we propose a generic transformation of those schemes 
which extends the security even after polynomially many withdrawals. 
Moreover, this transformation keeps the scheme efficient and so can be 
used in a secure and efficient anonymous off-line electronic cash system. 

Introduct ion 

Since the beginning of modern cryptography with the Diffie-Hellman paper  [9], 
many  new schemes have been proposed and many  have been broken. Thus,  the 
simple fact tha t  a cryptographic algorithm withstands cryptanalyt ic  at tacks for 
several years is often considered as a kind of validation procedure. 

A completely different paradigm is provided by the concept of "provable" 
security. A significant line of research has tried to provide proofs in the asymp- 
totic framework of complexity theory. Stated in a more accurate way, this ap- 
proach proposes computat ional  reductions to well established problems, such 
as factorization, RSA [26], the discrete logarithm problem or any AlP-complete  
problem [12]. Unfortunately, in many  cases, provable security is at the cost of a 
loss in efficiency. 

Recently, the scope of these methods has been considerably widened by using 
a model where concrete cryptographic objects, such as hash functions, are iden- 
tified with ideal random objects, the so-called "random oracle model" formalized 
by Bellare and Rogaway [2]. In this model, DES [18] is viewed as a random per- 
muta t ion  and SHA [19] as a random function with the appropriate  range. This 
seems to provide a good compromise between security and efficiency. 
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Using this model, we follow the study we made [23, 25] with the proposition 
of several provably secure blind signature schemes. Those protocols are essential 
ingredients for (revokable) anonymous electronic cash. Our natural notion of 
security (no "one-more" forgery) was to prevent a user from spending more coins 
than he had withdrawn. Unfortunately, the proposed schemes [23, 25] provably 
prevent such a fraud only if the number of withdrawn coins is bounded by a 
constant, or at least [22] poly-logarithmically bounded. 

In this paper, we present a generic transformation one can apply to all our 
previous schemes and maybe to other ones. The resulting scheme is then provably 
secure even after polynomially many interactions with the signer. 

We now briefly describe the organization of this paper. We first define the 
so-called "random oracle model" and explain why such a theoretical model can 
help proving the validity of the design of a cryptographic scheme. We then review 
the definition of blind signatures and present related results. 

In a second part, we propose the idea of the generic transformation with the 
specific application to the Okamoto-Schnorr blind signature scheme [20, 23]. We 
then present the proof of the claimed security: if an attacker exists against the 
resulting scheme, after polynomially many interactions with the signer, then we 
can construct an attacker against the basic Okamoto-Schnorr blind signature 
scheme, after logarithmically many interactions with the signer. This latter at- 
tack has already been proven impossible unless the discrete logarithm problem 
is easy to solve. 

1 Def ini t ions  

1.1 T h e  R a n d o m  O r a c l e  M o d e l  

Many cryptographic schemes use a hash function f.  This use of hash functions 
has originally been motivated by the wish to sign long messages with a single 
short signature. It was recently realized that hash functions were an essential 
ingredient for the security of the signature schemes. In order to actually obtain 
security arguments, while keeping the efficiency of the designs that use hash 
functions, several authors (e.g. [10], [2, 3] and [24, 23, 25]) have suggested to use 
the hypothesis that f is actually a random function. We follow this suggestion by 
using the corresponding model, called the "random oracle model". In this model, 
the hash function can be seen as an oracle which produces a truly random value 
for each new query. Of course, if the same query is asked twice, identical answers 
are obtained. This is precisely the context of relativized complexity theory with 
"oracles", hence the name. It is argued that proofs in this model ensure security 
of the overall design of a scheme provided that the hash function has no weakness. 

1 .2  B l i n d  S i g n a t u r e s  

After this presentation of the random oracle model, we review an important 
cryptographic primitive: blind signatures. We first motivate their use and give 
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some well-known examples. We then recall specific security properties of blind 
signatures related to the setting of electronic cash and the previous results. 

1.2.1 Mot ivat ion:  Electronic  Cash 

As early as 1982, David Chaum's [6] pioneering work aimed at creating an elec- 
tronic version of money. To achieve this goal, he introduced the notions of "coins" 
and "blind signatures". He claimed that  this was the only way to ensure the re- 
quired a n o n y m i t y :  in real life, a coin cannot be easily traced from the bank to 
the shop, furthermore, two spendings of a same user cannot be linked together. 
These are two privacy properties of real coins that  Chaum wanted to mimic: 
untraceabi l i ty  and unlinkabil i ty .  

He proposed an electronic coin to be a number with a certificate (a signature) 
blindly produced by the Bank; it is withdrawn from the Bank, spent by the user 
and deposited by the shop. Therefore, all the security of the system relies on the 
security of the blind signature that  we use. 

In all the proposed electronic cash schemes, two main blind signature schemes 
have been used. The first was introduced by Chaum and is a transformation of 
the RSA signature scheme [26]. And more recently, Brands [4] presented a new 
scheme derived from the Schnorr signature scheme [27, 28]. 

The  B l i n d  R S A  S i g n a t u r e :  The generation algorithm produces a large com- 
posite number N = pq,  as well as a pair of related public key e and secret key 
d. A hash function H is publicly distributed. In order to get the signature of 
a random number p, the user "blinds" it with a random value r e mod N,  and 
sends m -- H ( p ) r  e mod N to the signer. The latter returns a signature a '  of m 
such that  a,e = m = t e l l ( p )  mod N. A coin is any pair (p, a) which satisfies 
a ~ = H ( p )  mod N.  

T h e  B l i n d  S c h n o r r  S i g n a t u r e :  The generation algorithm produces two large 
prime integers p and q, such that  q [ p -  1, as well as an element g of Z~ of 
order q. It also creates a pair of keys, ( x , y ) ,  where x E Z~ is the secret one, 
and y = g - ,  mod p, the public one. The signer publishes y. In order to get the 
signature of a secret message m, the user asks the signer to initiate a communi- 
cation. This latter chooses a random K E Z~, computes and sends the "commit- 
ment" r = g g  mod p. The user then blinds this value with two random elements 
a, fl E Zq into r ~ = r g - ~ y  - ~  mod p, computes the value e ~ = H ( m ,  r ~) mod q 
and sends the "challenge" e = e t +/~ mod q to the signer who returns the value 
s such that  gSye = r mod p. Finally, the user computes s ~ = s - a mod q. This 
way, the pair (d,  #)  is a valid Schnorr signature o f m  since it satisfies the required 
relation, e ~ = H ( m ,  gS'ye' rood p). 

R e v o k a b l e  A n o n y m i t y  A few years ago [29], an undesirable feature of total 
anonymity in transactions was considered: perfect crimes (anonymous crimes 
without leaving any traces and consequently without any risk to be suspected 
later). Accordingly, a new line of research in electronic cash has investigated 
"revokable anonymity" [5, 11, 15] which proposes anonymity unless a t rusted 
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third party partially revokes it for some established reasons or in view of an 
obvious fraud (e.g. in case of double-spending). Again, those new schemes rely 
on the security of blind signature schemes. 

1.2.2 Secur i ty  

A fundamental property for electronic cash systems is the guarantee that a user 
cannot forge more coins than the Bank gives him. In other words, with g blind 
signatures of the Bank, the user must not be able to create more than ~ coins. 
This form of security was formalized by Stern and the author [23]: 

Definition 1 (The (e, g + 1)-forgery). For any integer l, an (g, g + 1)-forgery 
comes from an attacker that produces ~ + 1 signatures after ~ interactions with 
the signer ~. 

Defini t ion 2 (The "one-more"  forgery).  For some integer e, polynomial in 
the security parameter k, an attacker can obtain g + 1 valid signatures after less 
than e interactions with the signer. In other words, a "one-more"/orgery is an 
(e, g + 1)-forgery for some polynomially bounded integer L 

We also envisioned several scenarios depending how the multiple withdrawals 
are performed: the sequential attack and the the parallel attack. We now define 
an intermediate attack: 

Def in i t ion3  (The synchronized parallel  a t tack) .  The attacker can initi- 
ate a new interaction whenever he wants, but for each round of the protocol, 
the interactions indices must be in the same order: the second round of the first 
interaction must be ended before the second round of the second interaction 
begins, and so on. 

Clearly, this attack is stronger than the sequential attack, but a little less gen- 
eral than the parallel one. Actually, withdrawals can be easily managed this way 
with a single Bank. In the case of multiple Banks, they have to be synchronized, 
hence the name. 

2 Secure Blind Signature Schemes 

We first recall one of our previous schemes with its security results [23]. Then, 
we present our generic transformation and apply it to this scheme with the proof 
of security. We only focus on the Okamoto-Schnorr blind signature scheme, but 
it also works with the Okamoto-Guillou-Quisquater blind signature [20, 23] and 
our other schemes based on factorization [25]. 

2.1 The Okamoto-Schnorr Blind Signature Scheme 

For a given security parameter k, the initialization algorithm produces two large 
primes p and q such that q I (P - 1) and 2 k-1 < q < 2 k together with two elements 
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g, h E Z~ of order q. We assume that  the hash function f outputs elements in 
Zq. The signer ~ chooses a secret key (r, s) E (Zq) 2 and publishes the public key, 
y = g-rh-8  rood p. The protocol by which the user obtains a blind signature of 
the message m is as follows. 

(Z*~2 
- ~ chooses ( t ,u)  E ~ tJ , computes and sends a = gthU mod p; 

- the user chooses fl,'y, 5 E Zq to blind a into a = ag~h'ry a mod p. He com- 
putes the challenge r = f ( m ,  a) and sends e = r - 5 mod q to ~; 

- the ~ computes R = t + er mod q and S = u + es mod q, and sends a pair 
(R, S) which satisfies a = gRhSye mod p; 

- the user computes p = R + fl mod q and a = S + 7 mod q. 

Straightforward computations show that  a = gPhay e mod p, with r = f ( m ,  a). 
We provided the following security result [23]: 

L e m m a  4. Consider the Okamoto-Schnorr blind signature scheme in the ran- 
dom oracle model. Let A be a probabilistic polynomial time Turing machine whose 
input only consists of public data. Let us denote by Q and g respectively the 
number of queries that .4 can ask to the random oracle and the number of inter- 
action that A can ask to the authority. Assume that, within the time bound T, 
A produces, with probability r >_ 4Qt+l/q, an (~,~+ 1)-forgery. Then, the dis- 
crete logarithm problem can be solved within time T ~ <_ 2T and with probability 
r > 1/4g x (r 3. 

In order to get r non-negligible for any polynomial Q, t has to be bounded 
by a constant. Using the improvement presented in [22] and extending it to an 
(~, g + 1)-forgery after R initiated interactions with the signer (but only g ended 
ones), we obtain the following theorem: 

The or e m  5. Consider the Okamoto-Schnorr blind signature scheme in the ran- 
dom oracle model. Let A be a probabilistic polynomial time Turing machine whose 
input only consists of public data. Let us denote by Q, R and e respectively the 
number of queries that .4 can ask to the random oracle, the number of interac- 
tions initiated with the authority and the number of interactions completed. As- 
sume that, within the time bound T, ,4 produces, with probability e >_ 4Q ( Q R )t / q, 
an (s + 1)-forgery. Then, the discrete logarithm problem can be solved within 
time T'  <_ 33QgT/~ and with probability c' > 1/72e 2. 

Asymptotically, if Q and R can be any polynomials then the number e of inter- 
actions has to be poly-logarithmically bounded. 

2 . 2  T h e  G e n e r i c  T r a n s f o r m a t i o n  

The idea of the transformation is to impose the user to play honestly, using a 
kind of "cut-and-choose" technique. 
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2 . 2 . 1  D e s c r i p t i o n  

The particular application of the transformation to the Okamoto-Schnorr blind 
signature scheme is presented on figure 1. But more generally, we introduce a 
checker C between the signer ~ and the user A. It will try to detect the cheaters. 
In fact, on the one hand, we want to verify if the user plays fairly, randomly 
choosing blinding factors and using them normally: to do so, we ask him to reveal 
them in order to check the computation of the challenge. But on the other hand, 
the blinding factors have to remain unknown for the signer, otherwise it is no 
longer a "blind" signature. Using the notations of the Okamoto-Schnorr scheme, 
the checker C works as follows: 

[ ~' [ 

I I 
p a n d  q a re  p r i m e  in tegers  such  t h a t  ql(P - 1) 

g a n d  h a re  some  e l emen t s  of Z~ of  o r d e r  q 
H is a pub l i c  h a s h  f u n c t i o n  wh ich  o u t p u t s  e l emen t s  in Zq 

a o , a l  

CocCi 

e l - i  

R , S  

eo, el 

I 6 {0, I}  I ; 
5x, 

Ver i f ica t ion  of  ~x,  7x,  
#x 

cx a n d  el  

) R , S  ~,, 

for  i = O, 1, 
/ ~ i , 7 . , ~ i  6 Zq 

~ ,  r a n d o m ,  
.. = H ( m ,  ~,) 

c, = H031,%,$,,pl ) 

for  i---- 0 , 1 ,  
c~i = a , g ~ i h T i y  6i m o d  p 

e, = H ( # , , a i )  
e. = e i - - 6 t  m o d  q 

S ~ e l _  I a l - - I  = g R h  rood  p 
p = R + / ~ x - z  m o d  q 
a - - - - S + 7 1 - x  m o d q  

T h e n  a = gPhay  e rood  p,  /~ = H ( m ,  ~)  a n d  e = H(/~, c~) 
w h e r e  a = ~ 1 - I  a n d  ~ = ~ 1 - I  

F i g .  1.  The  Transformed Scheme 

- ,4 commits two tuples of blinding factors (fii, 7/, 6i, #i) for i = 0, 1 and sends 
the commitments co and cx to C; 

- C initiates two parallel interactions with ~ and receives ao and al ,  that  it 
forwards to A; 

- A blinds them respectively in a0 and a t ,  using the blinding factors (~i, 7i, 5i) 
for i = 0, 1, computes the challenges ~0 and ~1 and the queries eo and el 
that  it asks to C; 
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- At this step, C checks one of them: it randomly chooses I E {0, 1} and asks 
to verify ex; 

- A opens cx, revealing (]~l,TI,5l,lAI); 
- C checks the construction of e1 and asks e l - I  to E which answers (R, S). C 

forwards this pair to A; 

- A can then compute p and a such that  a l - i  = gPhay  el-* mod p. 

R e m a r k .  The random values ~oi are used to perfectly commit the message m 
into #i. The  user finally gets a signature of #x. 

2 . 2 . 2  G e n e r a l  T e c h n i q u e  

Prom the point of view of A, the collusion of E and C represents the new signer E' 
(see figure 1). Let us assume that  A is an attacker which can perform an (~,~+l)-  
forgery against E',  where l is any polynomial, with probability ~. We can remark 
that  during such an attack, C initiates 2g interactions with E but  completes only 

of them (polynomially many). We will prove that  if ~ is non-negligible then 
there exists a machine S which simulates C, in an indistinguishable way w.r.t. 
.A, with 2~ initiated interactions with E but  only A completed ones where )~ 
is logarithmically bounded. Furthermore, among the ~ + 1 "apparently" valid 
signatures output  by A, there are at least ~ + 1 really valid ones. Then, the 
collusion of A and ,.q, denoted by A', can perform a (~, ~ + 1)-forgery against E 
with ~ logarithmically bounded. 

2 . 2 . 3  S i m u l a t o r  

We now present the simulator S for a given random oracle f .  When it is possible, 
/.e. when the user is honest, the simulator uses a stand-alone simulation, as for 
honest-verifier zero-knowledge simulations, choosing the expected challenge. But 
it has also to be able to answer to a cheating user. In this latter case, it needs 
the help of E. We denote by Qi and Pi respectively the Q queries asked by 
.A to the hash function H,  simulated by S, and the corresponding Q answers. 
Furthermore,  a list AH is constructed and used by S. For any query Q to H,  S 
looks if there is a pair (Q, p) E AH for some p. If there is such a pair, S answers 
p. Otherwise, it asks p = f ( Q ) ,  adds the pair ( Q , p )  to the list AH and answers 
p. This way, S knows any query that  A asks to H.  Moreover, ,.q has the ability 
to add some pairs to the list AH, which make H differ a little from f .  

1. ,.q receives the commitments {ci}i=0,1 from A. For i = 0, 1, S looks in AH 
for the query Qj, corresponding to c~. If there is none, we define j~ -- c~. 
But  in the positive case, S learns the blinding factors QA = (fl~, 7~, 5i, #i); 

2. ,S randomly chooses i E {0, 1}: 

- For  a l - i :  On the one hand, S initiates a stand-alone simulation. It 
randomly chooses u, v and w in Zq and defines a l - i  = g*'hVy w mod p. 
We can remark that  w is the expected challenge, and to be able to 
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answer, S has to make the challenge to be w, by modifying the hash 
function H. If j l-~ ~ oo, with the blinding factors, S computes the ex- 
pected query to H ,  a l - i  = a l - i g ~ l - ' h ' r l - ' y  ~1-~ mod p, and adds the pair 
((#1-i, a l - i ) ,  w + 51- i  mod q) in the list AH. Finally it defines a private 
variable E l - i  = w,  or E l - i  = oo if j l - i  = eo, in order to control the 
fairness of A; 

- For  ai: On the other hand, S is a mediator between E and A. This 
will help it to be able to answer to any query, using E, from a possibly 
cheater A. Then it asks for ai to the signer E. To make both parts 
symmetric, we have to know if ,4 is also trying to cheat. But here, we 
need not modify H since $ will be able to answer any query using E. If 
j i  ~ co, with the blinding factors, $ computes the expected query to the 
random oracle, ai  = aig  ~' h "r" y~' mod p, and then computes the expected 
challenge ei = H (#i ,  a i  ) - 5i = f (#i , a i  ) - 5i mod q. As above, it defines 
a private variable El  = el, or Ei  = c~ if j i  = co, in order to control the 
fairness of A; 

Finally, S sends ao and al to A; 

3. A sends the challenges e0 and el; 

4. If (e0, el) = (Eo, El)  then A asks the expected challenges and so had played 
honestly in both parts: S can end the stand-alone simulation and so will ask 
to verify ci, then it defines I -- i. Otherwise, A had tried to cheat, and so $ 
may not be able to end the stand-alone simulation and it will need the help 
of E. It then lets I = 1 - i. S sends I to A; 

5. A answers fl~,~/~,6~,#~; 

6. $ checks whether c~ = f(fl ' ,  7', 5', #'), or simply QJz = (/3', ~/', 5', #'). If not, 
it stops the game. Else 

- if I = i then S replies u, v; 

- otherwise, it asks ea- i  to E which answers R, S. S forwards R, S. 

After e such interactions, A outputs e +  1 valid signatures (w.r.t. H),  ms, as, 
Ps, a~, ~ i  such that  a~ = gP'h'~'y ~' mod p, #s -" H(mi,~o~)  and ~i = H ( # i , a ~ ) ,  
for i = 1 , . . .  ,g + 1. But only few signatures are really valid (w.r.t. f )  and fur- 
thermore satisfy ei = f ( # i ,  a i ) .  We will denote by A the number of completed 
interactions with E. We can remark that  the number of initiated interactions 
with E is equal to g. Now, we want to prove that  the collusion of ,4 and S per- 
forms a (A, A+l)-forgery against E with A logarithmically bounded (see figure 2). 
We require the three following properties: 

- any A cannot distinguish S from C; 

- if .4 outputs g +  1 valid signatures (w.r.t. H),  there are at least A + 1 really 
valid signatures (w.r.t f ) .  

- if e is non-negligible, S completes only logarithmically many interactions 
with E; 
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�9 Resulting scheme ~': signer A: attacker 
�9 Basic scheme ~: signer ,4t: attacker 
�9 S Simulator 
�9 f random oracle 
�9 H S-controlled hash function 

Fig.  2. Reduction 

I n d i s t i n g u i s h a b i l i t y .  The first thing we have to verify is that  the attacker 
cannot remark that  we have replaced C and f by S and H:  

- first, it is clear that  a0 and al sent by S have exactly the same distribution 
as those sent by E and so by C; 

- secondly, with very high probability, H seems to be a random oracle. In fact, 
since its answers are either the answer of f ,  the really random oracle or w + 
5 mod q, where w is randomly chosen, the outputs are random values in Zq. 
But  to be like a random oracle, H must answer the same value for identical 
queries. A collision of queries may occur when S adds a pair ((#, a) ,  w + 5) 
in AH. This query (#, a) may have already been asked to H by the attacker 
A. But  the probability of such an event is less than Q / q ,  for any pair. So 
that ,  the probability of collision of queries is less than Q~/q;  

- finally, the challenge I asked by S is equal to i @ v, where i is a really 
random bit and v is equal to 1 if and only if (e0,el) = (Eo,E1),  which is 
totally independent of i. Then I really looks like flipping a coin. 

We have assumed that  A is an attacker against ~t and performs an (e, ~ + 1)- 
forgery with probability ~: P r ~ , ~ , ~ c j , z [ A  ~ 'c ' f  succeeds] -- ~, where we denote 
by w, w~ and o3c respectively the random tapes of ,4, ~ and C, by f the 
random oracle and by Z the list of the challenges I. As said in [23], we can 
assume that ,  for any valid output  signature ( m i , c ~ , , p i , a i , ~ i )  which satisfies 
c~i = gP" h ~" y ~' rood p, #i  = H ( m i  , ~ i ) and c, = H (#i , c~i ) , the attacker has asked 
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the queries (ms, ~oi) and (#i, c~i) to the random oracle during the attack. Other- 
wise the probability of success would be less than 2(s + 1)/q. Furthermore, from 
the indistinguishability result, 

A r' 's 'f succeeds 

(V i ) (g j t , j 2 )  2(s + 1) Qs 2Qs 
Pr f Qjl = ( m i , ~ , )  "~ > e > e -  - -  

w,w~,ws,I,Z k ) Q J 2  (#i, ai) - q q - q 

and no collisions of queries 

where the Qi denote the queries asked to the random oracle. Let us denote by 
G the set of those successful tuples (w, wz ,  ws ,  f ,  Z).  

T h e  n u m b e r  of valid s ignatures  is greater than A + 1. To prove this 
statement, we can upper bound the number of invalid signatures. Assume that 
for some i, ei = H(# i ,  ai)  r f ( I z i ,a i ) .  Then ((#i, ai),gi) is a pair added by S to 
AH: ei = w + 6 and ai = ag~hTy 6 rood p, where a = g~'hVy w mod p. Then 

gp,-#h,~,- ' t  = ay-W = g~,h v mod p. 

This means that 

- either .4 received u and v from S; 

- or ~t had computed Pi and ai from ay -w.  In this case, with probability 
greater than 1 - 1/q, Pi ~ u + 8, then one has g~'h v = gP ' -#h  ~ ' -7  mod p, 
which provides the discrete logarithm of h relatively to g. 

With overwhelming probability, greater than 1 - t / q ,  in case of forgery, for any i, 
the inequality ei = H(#i, ai) r f(#i ,  ai) implies that S has completely simulated 
the signer. Then, 

=#={i I e~ = f ( /z i ,  c~i)} = s -F i - # { i  Ic~ ~ f(#i, o~i)} > s + 1 - (s - A) > )~ + 1. 

We will denote by G' the subset of the tuples (w, w r . , w s , f , Z ) e  G which 
provide an (A, A + 1)-forgery against E, and without having found any collision 
for f ,  in the classical sense. This latter requirement will be useful in the following. 
Let us recall that the probability to find a collision for a random function f is 
tess than Q~/2q after Q queries. Then 

P r i G ' ] = v > _  ( ~ - 2 ~ ) ( 1 - ~ ) - Q 2 / 2 q > _ _ e -  
(Q + 1)(2e + Q/2 )  

q 

This is greater than e/2 if e _> 6Q2/q,  since s < Q. 

The number of  interactions with  ~, is logarithmically bounded.  We 
have shown that the collusion of A and S provides a "one-more" attacker .A' after 
A interactions with E. We would like A to be logarithmically bounded to derive 
a contradiction. This is for this part of the proof that we need the attacker to 
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perform a synchronized parallel attack, in order to have an execution binary tree: 
we cannot let a cheater postpone an interaction for which he cannot correctly 
open the commitment c~. We first enounce a lemma about  execution binary 
trees, whose proof can be found in the appendix A. 

D e f i n i t i o n  6. An execution binary tree T of depth d is a binary tree whose 
leaves are all at depth d. 
A single node in an execution binary tree is an internal node (not a leaf) with 
exactly one son. 

s 7. For any execution binary tree T of depth d, if we denote by P(T, i) 
the number of paths (from the root to a leaf) containing exactly i single nodes, 
then 

2 i .P(T , i )  = 2 d. 
i 

By definition, PrIG ~] _> u. Let us define the set 

a = ( w , ~ z , ~ s , f , Z ) [  PF[(w,~z,~s,f,Z') ~ G'] >_ -~ , 

then Pr[•] > v/2 and Pr[f~ [ 6'] _> 1/2, as proven in appendix B. 
Let (w, wz ,ws , f ,Z)  E f~ and T = T(w, wz ,ws , f )  be the execution tree, for 

(w, wz,ws, f)  fixed, for all the possible sequences of queries Z. Then T is a 
binary execution tree of depth ~, with a number of leaves, denoted by N,  greater 
then 2lv/2. Furthermore, since we have restricted the attacker to  synchronized 
parallel attacks, for any path Z in T,  the node at depth d - 1 corresponds to 
the query I of the d th signature. Furthermore, a double node in this tree means 
that  .4 can answer both queries, I = 0 and I = 1 at the step 5. This is possible 
if either (e0,el) = (E0,E1) or A has found a collision for f ,  which has been 
excluded. Therefore, when $ asks help of E, there is a single node in the tree: A 
is less than the number of single nodes in the path. 

For any s, the number N(s) of paths with at least s + 1 single nodes can be 
upper bounded: 

i = l  i = l  *=l 

2 ~ = E P ( T ' i ) ' 2  i>_ E P(T , i ) .2  i_>2 s+l E P(T, i )=28+lg(s) .  
i=0  i = s + l  i = s + l  

Then,  we can upper bound the probability for A to be greater than s: 

Pr[A > s [~'] < N(s ) /Y  < 2-V~. 

Let us define s = [log(4/e)]. We then can evaluate the probability to obtain a 
forgery with less than s calls to E: 

P r [ 6 ' &  A_<s] _> P r [ 6 ' & ~ & A _ < s ]  

_> Pr[A _< s ] ~ '  Cla] x Pr[f l [~ ' ]  x Pr[G'] 

k (1 - 2-8/v) x v/2 k 1/2 x e /4  k e/8.  

As a consequence, in case of forgery, with probability greater than one over 8, 
the number of calls to E is less than log(8/e). 
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C h a r a c t e r i s t i c s  o f  t h e  n e w  a t tacker  A ~. We have then constructed an at- 
tacker A ~ which performs a ()~,)~ + 1)-forgery with ), _< log(8/s) with probability 
e~ greater than c/8, within time bound T and after less than e initiated interac- 
tions with E. 

If ~2 ~og Q+I _> 32QT/q, then ~' > 4Q(Qg)~/q and moreover ~ _> 6Q2/q. Conse- 
quently, using theorem 5, the discrete logarithm problem can be solved within a 
time bound T" _< 33 log(8/e)QT/c and with probability e" > (8.5 log(8/~)) -2, 
if A _< log(8/s). This latter condition occurs with probability at least 1/8 
when we are in ~ .  The global probability of success is therefore greater than 
(25 log(8/e)) -2, hence the theorem. 

Theorem 8. Consider the transformed scheme in the random oracle model un- 
der a synchronized parallel attack. Let Jt be a probabilistic polynomial time Tur- 
ing machine whose input only consists of public data. Let us denote respec- 
tively by Q and e the number o/ queries that ,4 can ask to the random ora- 
cle and the number o/ signatures that A can get from the signer. Assume that, 
within the time bound T, A produces, with probability ~ >_ (32Q~ /q) 1/(21~ 
an (l,e + 1)-/orgery. Then, the discrete logarithm problem can be solved within 
time T' < 331og(8/~)QT/~ and with probability e' > 1/(25 log(8/~)) 2. 

Conclus ion 

We have presented a generic slight transformation which can be applied to many 
witness-indistinguishable-based blind signature schemes [20, 23, 25]. Further- 
more, this transformation is proven to turn the exponential contribution of the 
number e of interactions with the signer into a polynomial one in the constraints 
for the reduction. Consequently, with this transformation, the schemes provably 
prevent "one-more" forgeries even after polynomially many interactions with the 
signer. 

We give a partial but practical answer to our open problem [23] about the 
possibility to provide a blind signature scheme secure after polynomially many 
interactions with the signer. Damgs [8], Pfitzmann and Waidner [21], and more 
recently Juels, Luby and Ostrovsky [16], had answered this question positively 
in a theoretical but inefficient way. Indeed, they all use provably secure signature 
schemes [1, 14, 17] together with secure two-party computation protocols [13, 7] 
in the standard security model. The originality of this paper is to present efficient 
schemes which prevent any "one-more" forgery against synchronized parallel 
attacks in the random oracle model. 
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A P r o o f  of  l e m m a 7  

We can easily prove this l emma by induct ion over the depth  d" 

- d = 0: T is the  tree with only one leaf, the root.  Then,  P(T, 0) -- 1 and for 
any i _> 1, P(T, i) = O. So, ~ i  2i" P(T,i) = 1 = 2 ~ 

Remark. We can easily prove this l emma for any full b inary  tree of  depth  d: 
for such a full tree, P(T,O) = 2 d and for any i _> 1, P(T,i) = O, so, 
~ i  2i" P(T,i) = 1. P(T,O) = 2 d. 

- T is a tree of  depth  d. Two cases can appear:  

�9 The  root  has only one son, the subtree A of depth d - 1. Then ,  for any 
i, P(T,i) = P(A, i  - 1). Therefore,  

~ i  2i" P(T, i) = ~ i  2i" P(A, i - 1) 
= 2 x ~ i  2 i ' P ( A , i )  
= 2 x 2 d-1 -- 2 d 

�9 The  root  has two sons, the subtree A and B of  depth  d - 1. Then ,  for 
any i, P(T, i) = P(A, i) + P(B, i). Therefore,  

}"~i 2i" P(T, i) = ~ i  2i" (P(A, i) + P(B, i)) 
= ~ i  2i" P(A,i) + ~ i  2i" P(B,i)  
= 2 x 2 d-1 = 2 d 

B Size of  f~ 

Let us define the set 

a = ( ~ , ~ , ~ , ~ s , f , z )  Pr[(~o,~o~,~s,y,z ' )  e ~'] > ~ . 

Let  us assume t h a t  Pr[f~] < u/2, then 

u < pr[G'] = Pr[G' I a] �9 Pr[a]  + Pr[G' I f~] �9 Pr[f~] < u /2  + u /2  = u, 

which implies a contradict ion.  Fur thermore,  using Bayes '  law 

Pr[12[~ ']  = 1 - P r [ ~ [ G ' ]  = 1 - Pr [G ' [ f~] .  Pr[ f~] /Pr[~ ' ]  _> 1 - v/2 x 1/v = 1/2. 


