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A b s t r a c t .  Multi-receiver authentication is an extension of traditional 
point-to-point message authentication in which a sender broadcasts a sin- 
gle authenticated message such that all the receivers can independently 
verify the authenticity of the message, and malicious groups of up to a 
given size of receivers can not successfully impersonate the transmitter, 
or substitute a transmitted message. This paper presents some new re- 
salts on unconditionally secure multi-receiver authentication codes. First 
we generalize a polynomial construction due to Desmedt, Frankel and 
Yung, to allow multiple messages be authenticated with each key. Sec- 
ond, we propose a new flexible construction for multi-receiver A-code 
by combining an A-code and an (n, m, k)-cover-free family. Finally, we 
introduce the model of malti-receiver A-code with dynamic sender and 
present an efficient construction for that. 

K e y w o r d s :  Authent ica t ion  code, Multi-receiver authent ica t ion  code. 

1 I n t r o d u c t i o n  

Convent ional  au thent ica t ion  systems deal with point-to-point message authen-  
t ication.  In S immons '  model  of  uncondi t ional ly  secure au thent ica t ion  there are 
three par t ic ipants :  a transmitter (sender), a receiver, and an opponent. The  trans-  
mi t te r  and the receiver share a secret key and are bo th  assumed honest.  The  
message is sent over a public channel  which is subject  to  active at tack.  Trans- 
mi t t e r  and receiver use an authentication code which is a set of  au thent ica t ion  
funct ions f ,  indexed by keys belonging to  a set E.  To authent ica te  a message, 
called a source state and denoted by s E S, t ransmi t te r  forms a codeword f(e, s) 
and sends it to  the receiver who can verify its authent ic i ty  using his knowledge 
of  the  key. We are only concerned with sys$ernatic Cartesian A-codes in which 
the codeword constructed for s using e E E is the concatenat ion  of  s and f(e, s), 
t ha t  is (s, f(e, s)), and f(e, s) is called authentication tag, or s imply tag. The  
receiver will detect a fraudulent  codeword (s, t) if t r f(e, s) E 7", where 2r 
denotes the set of  all tags. 
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The opponent can perform an impersonation attack, or a snbstitntion attack, by 
constructing a fraudulent codeword that  would be acceptable by the receiver. In 
impersonation the attacker has not seen any previous communication while in 
substitution he has seen one transmitted codeword. A code provides perfect pro- 
tection against impersonation if enemy's best strategy is randomly guessing the 
tag and in the case of Cartesian A-codes, his probability of success is P0 = i 1-~" 
Perfect protection for substitution is defined in a similar way and for Cartesian 
A-code the probability of success of the intruder is P1 = i 1-r 
An extension of this model, proposed by Desmedt, ~anke l  and Yung (DFY) 
[5], is when there are multiple receivers who can not all be trusted. Transmit ter  
broadcasts a message to all the receivers who can individually verify authenticity 
of the message using their secret key information. There are malicious groups 
of receivers who use their secret keys and all the previous communications in 
the system to construct fraudulent messages. They succeed in their attack even 
if a single receiver accepts the message as being authentic. In an (k, n) multi- 
receiver authentication system there are n receivers such that  in any group of 
k receivers, there is at least one honest receiver. In other words the largest 
coalition of cheating receivers can have k - 1 members. The system provides 
perfect protection against impersonation, or substitution, if the best chance of 
success in the corresponding attacks is l /q ,  where q is the common size of tag 
space for all the receivers. 
A multi-receiver authentication code can be constructed from a traditional A- 
code by allowing transmitter  to use n authentication keys for the n receivers and 
broadcast a codeword that is simply a concatenation of the codewords for each 
receiver. The length of the combined tag is n times the length of the individual 
receiver tags, and the transmitter 's  key is n times the size of a receiver's key. This 
is a very uneconomical method of authenticating a message as such a system can 
prevent attacks by even n - 1 colluding receivers, while the assumption is that  
in every group of k receivers there is at least one honest receiver. The question 
is whether it is possible to have more efficient systems with shorter tags and 
shorter transmitter 's  key. Desmedt, Frankel and Yung [5] gave a positive answer 
to this question by constructing a (k, n) multi-receiver A-code in which the size 
of the tag and the size of the transmitter 's  key are significantly less than that  of 
the naive solution. Kurosawa and Obana [10] showed that ,  these are the smallest 
sizes of the transmitted tag, and the transmitter 's  and the receiver's key for the 
given deception probabilities. 
In this paper we present a number of new results on multi-receiver A-codes. 

- We extend DFY polynomial construction to authenticate w messages. The 
construction reduces the key storage of the transmitter  by a factor of 2, 
compared to the repeated use of the DFY system. 

- We give a new construction for multi-receiver A-codes by combining an arbi- 
t rary A-code and a special combinatorial structure called (n, m, k)-cover-free 
family. The construction is particularly useful when the number of receivers, 
or the size of the source is large. In DFY construction the numbers of bits 
needed for the tag and the keys for the transmitter  and receivers are both 
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at least logq (in this paper, all logs are in base 2), where q is a prime power 
that  is not less the number of receivers and the size of the source states. This 
is an unnecessary constraint which is removed in our construction. 

- Finally we extend the model of multi-receiver A-code to the case where the 
transmit ter  is not determined beforehand. This model is useful for authen- 
ticated conference communication. An interesting property of this model is 
separating message authentication and entity authentication. Again it is pos- 
sible to have a trivial construction by giving each participant the required 
key information for the transmitter  in a multi-receiver system, but  the result 
will be a very inefficient system. We give a construction which is much more 
efficient than this elementary construction. 

In section 2 after recalling DFY construction, we give the extension to multiple 
messages. In section 3 we give the new construction for multi-receiver A-codes 
and finally in section 4 we give the model and construction of multi-receiver 
A-code with dynamic receiver. Section 5 concludes the paper. 

2 G e n e r a l i z a t i o n  o f  D F Y  S c h e m e  t o  M u l t i p l e  M e s s a g e s  

In a multi-receiver A-code, there is a trusted Key Distribution Centre (KDC) 
that  generates and distributes the required keys. The system has three phases: 

1. K e y  d i s t r i b u t i o n :  The KDC privately sends to the sender, and each re- 
ceiver, their individual keys. 

2. B r o a d c a s t :  For a source state s, the sender generates an authenticated 
message using his/her key and broadcasts the authenticated message. 

3. Ver i f i ca t ion :  Each user can verify the authenticity of the authenticated 
message. 

First, we briefly review DFY scheme for multi-receiver authentication. Assume 
there is a sender T and n receivers R 1 , . . . ,  P~. The key for T consists of two 
random polynomials Po(z) and Pl (z ) ,  of degree at most k -  1, with coefficients in 
GF(q). The key for P~ consists of Po(i) and Pl(i). For a source state s E GF(q), 
T broadcasts (s, A(z)) where A(z) = Po(z) + sP~(z). Ra accepts (s, A(x)) as 
authentic if A(i) = Po(i) + sPa(i). It is proved in [5] that  in this scheme no 
group of k - 1 receivers can perform,an impersonation or substitution attacks 

1 against a single receiver, with a probability greater than ~. 

E x t e n d i n g  D F Y  t o  m u l t i p l e  m e s s a g e s  a u t h e n t i c a t i o n  
Assume q is larger than, or equal to, the number of possible messages and q > n. 
The scheme has the following steps: 

1. K e y  d i s t r i b u t i o n :  The KDC randomly generates w +  1 polynomials Po(z), 
P~(z),. . . ,  P,~(z) of degree at most k - 1 and chooses n distinct elements 
z l ,  z 2 , " ' ,  zn of GF(q). KDC makes x~s public and sends privately (P0(z), 
Pl(Z),.. .  ,P~(z)) to the sender T, and (Po(zi),P~(z~),... ,P,~(z~)) to the 
receiver P~. 
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2. B r o a d c a s t :  For a source state s, T computes As(x )  = Po(x) + sP l ( x )  + 
�9 .. + swPw(x)  and broadcasts (s, As(x) ) .  

3. Ver i f i ca t ion :  R~ accepts ( s, A ,  ( x ) ) as authentic if As ( xi ) = 19o ( xi )+ s P1 ( x, )Jr 
. . . + s w p w ( x i ) .  

The above scheme is a multi-receiver authentication code in which each key can 
be used to authenticate up to w messages. To prove the security of the scheme, we 
consider the scenario where for a given key ( P o ( z ) , P l ( z ) , " ' ,  P,~(x)), w source 
states sl ,  s ~ , . . . ,  sw have been authenticated and there are k -  1 receivers who 
want to construct a fraudulent codeword that  is acceptable by one of the other 
receivers. Without  loss of generality, we may assume that  the malicious receivers 
are Rx, R2, -. �9 R~- 1. 
Let Pi(x) = aio + a i lx  + . . . , + a i k - l x  k - l ,  0 < i < w. Since s l , s 2 , . . . , s ~  have 
been sent, A,1 (x),  A , ~ ( x ) , . . . ,  A',~(x) are publicly known where, 

A , j ( x )  = bjo + bj tx '+ . . .  + bjk_lx  k - l ,  for all 1 < j < w. 

and the k - 1 receivers R1, R 2 , . . . ,  Rk-1 know their keys 

( P o ( X l ) , P l ( x l ) , ' . . , P w ( X l ) ) ,  . . . ,  ( P o ( x k _ I ) , P I ( X k _ I ) , ' ' ' , P w ( x k - 1 ) ) ,  

It follows that  the malicious receivers know the following two matr ix  equations 

ao0 al0 . . '  aw0 
a o l  a l l  " ' "  a w l  

a 0 k - 1  a l k - 1  " ' '  a w k - 1  

1 1 . .-  1 ] [ blo bll "'" blk-1 
]b20 b21 " "  b2k-1 8 . 1 . . 8 2 . ; ; ; $ w . [  -'- . . . . . . . . . . . .  

s~ s~ . . .  s~ J Lbwo bwl "'" bwk-1 

and 

1 Xl ...z~-ll 

1 k-1 Zk-1 "'" z k _ l J  

a00  a l o  �9 �9 �9 a w o  

a01 a l l  " ' -  a w l  

a o k - 1  a l k - 1  " ' "  a w k - 1  

[ P0(~l )  "'" Pw(~l)  

kPo(z~_x) Pw(Xk-1) 

The above two equations can be rewritten as 

AM, ,  = B (1) 

X k _ l A  = C (~) 

where A, Mw, B , X k - 1  and C denote the corresponding matrices in an obvious 
manner.  
We first give a lemma, which says that  knowing Mw, Xk-1,  B and C cannot 
determine A. In other words, the matr ix satisfying (1) and (2) is not unique. 

L e m m a  1. There exists q different matrices D such that DMw = B and X k - l D  = 
C. 
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Proof. See Appendix 

T h e o r e m  1. The above scheme is a (k, n) unconditionally secure multi-receiver 
authentication code in which every key can be used to authenticate up to w mes- 
sages. 

Proof. We only consider the substitution attack, the proof for the impersonation 
is similar. The malicious receivers P1, . . . ,  Pk-1, want to generate a valid code- 
word (sw+l,bo + blz + - - .  b~-lZ k-l)  such that it is accepted by Rk. What they 
try to do is to guess the value of Po(xk) + s~+lPl(Xk) + ' "  + s~+lP~o(xk) and 
construct a polynomial A(x) = bo + blX + ... + bk-lX k-1 such that 

bo + blxk + ' "  + bk-lX~ -1 = Po(xk ) + Sw+l Vl(Xk) + " "  + s~o+l Pto(xk ). 

In the following we will show that the information held by the colluders al- 
lows them to calculate q equally likely different tags for sw+l and hence their 
probability of success is 1/q. 
From Lemma 1 we know that there are q different matrices D such that DMw = 
B and X k - I D  = C. This implies that there are q different(w + 1)-tuples of 
polynomials (Q0 (x), Q1 (x) , . . . ,  Q~o+l(Z)) such that each of them is equally likely 
to be the key of the sender. Now we note that (1) the q different (w + 1)-tuples 
of polynomials give rise to q different possible keys for Rk. Indeed, suppose that 
Q[x] = (Qo(x), QI(X), . . . ,  Qw-l(X)) and Q'[x] = (Q~(x), QIl(x),... , Qtw_l(X)) 
are two different keys of T, and their corresponding matrices are D and D'. 
Then 

Ck = (Qo(xk),Ql(zk), . . .  ,Q~+l(Xk)) = (1,xk,-. .  xk- l~n ' k / ' 

and 
t ~ x ~ x xk-l~D t C'k = (Qo(xk),Ql( k) , . - - ,Q~+l (k ) )  = (1 ,xk , . . . ,  k J , 

are their corresponding keys for Rk. By Lemma 1, we know that X k - I D  = 

( C )  a n d X ,  D' = ( C )  . X k  i s a  Xk_ID ~ = C. It follows that XkD = Ck Ck 

Vandermonde matrix and so is invertible. Using the assumption that D r D', 
implies that Ck r C~. 
Next, (2) weprove thatCk(1, sw+l, " ' " ,  SwT1)w T r C~(1,Sw+l,"" , SWwTlj~T, where 
G T denotes the transpose of the matrix G. Again, by Lemma 2.1, we have 
CkM~o = C~Mto. Now if Ck(1, s,o+l, .. .,sw+l)T,o r C~(1, sw+l, . . - ,  s~o+l)~O T then 
CkM~+I I = CkM~+I. But M~+I is an invertible matrix too, it follows that 
Ck = C~ which is a contradiction. 
Combining (1) and (2) above we have that for a given st~+l, there are q different 
values Ck(1, s,~+l,..., s~+l) T that all are equally likely to be acceptable by Rk. 
So the probability of the k - 1 receivers correctly guessing A(x) is 1/q. 

To authenticate w consecutive messages using DFY scheme, 2w polynomials are 
required while in our scheme we only need w+ 1 polynomials. So the key storages 
for the sender ((w + 1)k log q) and receivers ((w + 1)log q) are reduced to ~+~ 

2w 
times of that of DFY scheme, while the lengths of the authentication tag for 
both constructions are the same (k log q). 
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3 A C o n s t r u c t i o n  B a s e d  o n  ( n ,  m ,  k ) - C o v e r - F r e e  F a m i l y  

In this section we present a general construction for multi-receiver authentication 
by combining an A-code and a (n, m, k )- cover-free Family. 
As noted before, a trivial solution for multi-receiver authentication is to give each 
receiver a shared secret key with the sender, and to transmit a concatenation of 
the individual authenticated messages to all the receivers. The disadvantage of 
this solution is that it requires the sender to store many key bits and requires 
a long tag for the authenticated message. DFY scheme significantly reduces 
the size of the key storage and the length of the authentication tag. However 
in this scheme the order of the field GF(q) must be bigger than the size of 
the source and the number of the receivers. Moreover success probabilities of 
impersonation and substitution attacks, the size of the key storage and the length 
of the authentication tag are all determined by q. Although it is acceptable 
to have the key storage, and length of the tag, a function of the probability 
of success, having the number of receivers and the size of the source bound 
by this probability is not reasonable. In this case when the size of the source 
or the number of the receivers are very large, the key storage of the sender 
and the receivers, as well as the length of authentication tag will become too 
large. In practice, we may deal with the scenarios that we are satisfied with 
deception probabilities higher than l/q, but have limitation on the key storage 
or communication bandwidth. So it is desirable to look at construction methods 
that meet such trade-offs. 

Defini t ion 1. Let X = { X l , . . . , x m }  and ~" = {B1, . . . ,Bet} be a family of 
subsets of X.  We call (X, 3:) an (n, m, k) Cover-Free Family (CFF) if Bo 
B1 O. . .U  Bk-1 for all Bo,B1, . . . ,Bk_l  E yr, where Bi r Bj if i ~s j. 

We note that a (n, w, 2) CFF is exactly a Sperner family. CFF has been exten- 
sively studied by ErdSs et al in [8] and [9]. A trivial CFF is the family consisting 
of single element subsets, in which n = m. Non-trivial CFFs are those with 
n > m. A good CFF is the one that for given m and k, n is as large as possible. 
Finding good CFFs is believed to be a hard combinatorial problem. Construc- 
tion of good CFFs employs various areas of mathematics such as finite geometry, 
design theory and probability theory, and is beyond the scope of this paper. 
Assume that (X, ~)  is a (n, m, k) CFF and (S, T, E, f )  is an A-code without 
secrecy. We construct a (k, n) multi-receiver A-code as follows 

1. Key  Dis t r ibu t ion  The KDC randomly chooses an m-tuple of keys ( e l , . . . ,  
ern) E Era, then privately sends (e l , . . . ,  ern) to the sender T and ei to every 
receiver Rj for all j with zi E Bj, 1 < i < m. 

2. Broadcas t  For a source state s E S, the sender calculates ai = f(s, el) for 
all 1 < i < m and broadcast (s, a l , . . . ,  am). 

3. Verif icat ion Since the receiver/~ holds the keys {ej [ for all j with xj E 
Bi}, Ri accepts (s, a l , . . . ,  am) as authentic if for all j satisfying xj E Bi, aj - 

/(s, ej). 
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Assume that  the probabilities of impersonation and substitution attacks of the 
underlying code C are PI and Ps, respectively, and let a -- min{IB0\B1 O- . .  U 
Bk- 1 I; for all B 0 , . . . ,  Bk- 1 E ~'}. 

T h e o r e m  2. The above scheme is a (k, n) multi-receiver A-code and the prob- 
abilities of impersonation and substitution attacks are (Pz) ~ and (Ps) ~, respec- 
tively. 

The proof of the theorem is straightforward. In this scheme the sender is required 
to store m[loglEI] bits, and the receiver /?4 to store [Bil[loglE N bits. The 
authentication tag is of size of m flog ITH. 
The following example compares this construction with that  of DFY polynomial 
scheme. Assume that  the size of source states is only one bit (for example, 
yes and no) and we need a (2,70) multi-receiver authentication code with the 
probabilities of impersonation and substitution attacks not greater than 1/2. 
Using DFY polynomial scheme we need a finite field GF(q) with q ~ 70; it follows 
that  [log q] _> 7, and so the sender must store at least 28 bits and each receiver 
must store at least 14 bits. The length of the authentication tag is at least 14 bits, 
and the probabilities of impersonation and substitution attack are (�89 Now we 
use our construction. It is easy to see that  the Sperner family consisting of all 
4-subsets of a set of 8 elements gives a (70, 8, 2) CFF. We define the underlying 
A-code C = (S, T,  E, f )  as follows. Let S = T = GF(2),  E = GE(2) 2, and 
f : S x E ~ T be given by f (s ,  (e, el)) = e + se'. Then C is an A-code with 
PI = Ps = �89 Applying our scheme, the sender and each receiver need to store 
only 16 bits and 8 bits, respectively. The length of authentication tag is of 8 bits 
and the probabilities of impersonation and substitution attack are both 1/2. 
Next, we assume that  the size of the source state is very large, for example 22o 
bits (i.e. ISI = 222~ A direct computation shows that  the DFY polynomial 
scheme for (2, 70)-multi-receiver authentication requires that  the sender and 
each receiver to store 222 and 221 bits, respectively. The length of authentication 
tag is 221 bits while the probability of impersonation and substitution attacks is 
not greater that 1/2220 . However, in many applications the deception probability 
of about 1/22o might yield an acceptable security level. To this end, we choose 
an A-code that  is constructed from universal hashing family (see [13]) with the 
following parameter: 220 bits of source state, 445 bits of authentication keys, 20 
bits of authentication tag and the probability of impersonation and substitution 
attacks is not greater than 1/22~ Combining with the (70, 8, 2) CFF, our con- 
struction results in a (2, 70)-multi-receiver A-code in which the key storages 
for the sender and each receiver are of 3560 bits and 1780 bits, respectively. 
The length of the authentication tag is 160 bits and the deception probability is 
bounded by 1/220 . 
We note that  this construction is only suitable for the case when the number 
of malicious users is not very large compared to the total number of the users. 
This is due to the following result. 

L e m m a  2. ([9]) In a non-trivial (n ,m,k)  CFF, k(k-1) < n. 
2 - -  
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However, in [7] using a probabilistic method the authors proved that  for small k, 
there exists (n, O(log n), k) CFFs. Finally, we point out that  although in general 
the construction based on CFF does not provide perfect protection, it is more 
flexible than DFY polynomial scheme, since the underlying A-code can be chosen 
according to various requirements. For example, the A-code can be replaced by 
a universal hashing family, or an A-code for multiple authentication. 

4 Multi-receiver Authentication with Dynamic Sender 

In this section we study multi-receiver A-codes with dynamic sender. We con- 
sider the scenario where there is a KDC and a group of n users. The KDC 
privately distributes some secret information (key) to each user. At a later time, 
one of the users generates an authenticated message and broadcasts it such that  
every other user can verify the origin and integrity of the message and a collu- 
sion of up to a given size of the receivers cannot succeed in impersonation or 
substitution attacks on other receivers. We assume that  in the key distribution 
phase, the KDC does not know which user is going to broadcast the authenti- 
cated message and hence each user is a potential sender or receiver. An obvious 
construction is by establishing a multi-receiver authentication system between 
each user, considered as the sender, and all the others, considered as receivers. 
For instance, for n users P1,. . . ,  P,~, using DFY (k, n -  1) multi-receiver authen- 
tication scheme, gives the following construction. During the key distribution 
phase, the KDC randomly chooses an n-tuple of polynomial pairs of degree 
less than k, ([f l(z) ,gl(z)] , . . . ,[ f , (z) ,g,(x)]) ,  and secretly gives user Pi, the 
tuples [fi(x), gi(x)] and ([fl(i), g l ( i ) ] , . . . ,  [f i- l( i) ,  gi-l(i)], [fi+l(i), gi+l(i)],..., 
[fn(i),gn(i)]), for each 1 < i < n. During broadcast, user Pi wants to generate 
an authenticated message for a source state s E GF(q), Pi calculates Mi(x) = 
fi(x) + sgi(x) and broadcasts (s, i, Mi(x)). The user Pj accepts (s, i, Mi(x)) as 
authentic being sent from Pi if Mi(j) = fi(J) + sgi(j). In this scheme the KDC 
must store 2kn[logq] bits and each user to store 2(n + k -  1)[logq 1 bits. The 
length of the authentication tag for each message is (k + 1) Flog q] bits. Since the 
lengths of keys for KDC and each user are of order O(n log q), when the number 
of users is very large, the overhead for the key storage both at the KDC and 
each user becomes very large. 
A multi-receiver A-system with dynamic sender has three phases: Key distribu- 
tion, Broadcast and Verification. 
To define PI and Ps, we note that  because every user can be a sender, when 
a message is received by a user Pi, she/he must first assume an identity for 
the sender and then verify the authenticity of the message with respect to the 
assumed identity. The enemy is a set of k -  1 malicious users, Ph , . ' . ,  Ptk_l, who 
attack a pair of other users. For example, targeting the pair {Pi, Pj}, results in 
Pj accepting a fraudulent messages as being sent from Pi. In the impersonation 
attack, Pll, - . . ,  Ptk_~ collude and try to launch an attack against a pair of users 
Pi and 'Pj, by generating a message such that P1 accepts it as authentic and 
as being sent from 19/. We denote the successful probability in this case by 
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Px[m; i, j; L], where L -- {Ph , - - - ,  Ptk_, }. Pz is the best probability of all such 
attacks and is defined by 

PI = max maxPl[m; i , j ;  L], 
(L,i,j} ,,, 

where L t.J {i, j} runs through all the (k + 1)-subsets of ( 1 , 2 , . . . ,  n} 
In substitution attack, there are two distinct cases: 

1. Message substitution: After seeing a valid message m broadcasted by Pi, the 
users { P l , , . . . ,  Pt,_,} construct a new message m' ( m r  m') such that  Pj 
will accept m' as being sent from Pi. We denote the success probability in 
this case by Ps[m, ml; i , j;L], and the best probability of such an attack is 
denoted by Ps . . . . .  ,~ 

- -  ! " " L Ps . . . . .  , .  - -  max max Ps[m,m  ;*,3; ], 
{ L, i , j  } rnl Crn 

where L U {i, j} runs through all the (k + 1)-subsets of {1 ,2 , . . . ,  n} 
2. Entity substitution: After seeing a valid message m broadcasted by Pi, the 

users {Ph , - - . ,  Ptk-x } construct a new message m', not necessarily different 
from m I, such that  Pj will accept m I as being sent from Pi', where i r i'. 
We denote the success probability in this case by Ps[m,m';  i, i ' , j;L], and 
the best probability of such an attack by 

PS. . , . ,~= max maxPs[m ,m ' ; i ,  i l , j;L], 
( L,i , i ' , j  } rn' ,rn 

where L U {i, i ' , j }  runs through all the (k + 2)-subsets of {1 ,2 , . . . ,  n}. 

Now the probability of the substitution attack for the system is defined as 

Ps = max{Ps . . . . .  , . ,  Ps. . , , , ,  }. 

In the following we present a construction for such systems. Let S be the set of 
source states and assume S C GF(q) and q > IsI + n. 

1. K e y  d i s t r i b u t i o n :  The KDC chooses n distinct numbers ai in GF(q) \S ,  
and gives ai to user Pi (1 < i < n). These values are public knowledge and 
are used as identity information for users. Then the KDC randomly chooses 
3 symmetric polynomials of degree less than k with coefficients in GF(q), 

/ 1 

F t ( x , y ) = ( 1 , x , . . . , x k - 1 ) A t  / y , * = 0 , 1 , 2 ,  

yk:'- 1 \ 

where At is a k x k symmetric matrix for all 0 < t < 2. For 1 < i < n, the 
KDC computes the polynomials 

= = . , t = O , 1 , 2 ,  
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and gives the 3-tuple of polynomials, (Goi(x), Gli(Z), G2i(x)), to user Pi. 
This constitutes the secret information of Pi. 

2. Broadcas t :  For 1 < i < n, assume that the user Pi wants to generate the 
authenticated message for a source state s E S. Pi computes the polynomial 
Ml(x) = Goi(x) + aiGli(X) + a2G2i(x) and M2(z) = Goi(X) + sGli(:~) + 
s2G2i(~:) and broadcasts (s, hi, Ml(X), M2(:e)). 

3. Verification: The user PJ can verify the authenticity of the message in the 
following way. Pj accepts (s, hi, Ml(x), M2(x) as authentic being sent from 
Pi if Ml(aj) = Goj(ai) + aiGu(ai ) + a2G2j(ai) and M2(aj) = Goj(ai) + 
sGaj(ai) + s2G2j(ai). 

Theorem 3. The above scheme is a (k,n) multi-receiver authentication code 
with PI = ~ and Ps = Ps . . . . .  g, = Ps,,,,,~ = 1_. q 

The proof is given in the Appendix. Here we give some intuition behind the 
proof. Assume that after seeing an authenticated message (s, hi, Ml(x), M2(z)) 
broadcasted by the user P/, the malicious users P1, . . . ,  P~- 1 want to commit a 
message substitfition attack on the user Pj. They want to generate a polynomial 
M(x) of degree less than k and a source state s' E S, s' r s, such that M(aj) = 
Goj(ai)+s'Gu(ai)+s'2G2j(ai) = F(ai, aj)+s'Fl(ai, aj)+s'2F2(ai, hi). Using the 
idea of Blom's key distribution scheme in [1] (for the polynomiM representation 
of Blom's scheme see [2] and [14]), we know that P1, . . . ,  Pk-1, by pooling their 
secret information {(F0(z, hi), Fl(x, hi), F2(z, ai))]i = 1,. . . ,  k -  1} together can 
not obtain any information about (Fo(ai, aj), Fl(ai, aj), F2(ai, aj)), and so it is 
easy to see that even if they know M~(aj)) and M2(aj) the probability that they 
correctly guess the value of M(ai) is 1/q. The contribution of our proof is that 
it remains true even P1, . . . ,  Pk-1 know Ml(X) and Mg.(z). 
This scheme requires the KDC to store ~ flog q] bits and each user to 
store 3k [log q] bits. The length of the authentication tag for each message is 
(2k + 1) [log q] bits. Compared with the construction based on DFY scheme, we 
see that the key storages of the KDC and the receivers are both reduced. The 
length of the authentication tag in this construction is about twice of the DFY 
scheme. The system allows message substitution and entity substitution to be 
separated. It is possible to halve the size of the authentication tag at the cost of 
only being able to detect fraudulent messages but not distinguishing the type of 
fraud (message versus entity). 

General izat ion 
1. The above scheme can be easily generalized for multiple message transmission, 
in the following way. Instead of 3 symmetric polynomials, by choosing (w + 2) 
(w >_ 1) symmetric polynomials of degree less than k, using a construction similar 
to that of Section 2, we can generalize the scheme such that the sender (one of 
the users) can broadcast w authenticated messages. 
2. An interesting generalization of the model of multi-receiver A-code with a dy- 
namic sender is to allow more than one user to broadcast authenticated messages 
in the broadcast stage. It is easy to see that the straightforward generalization of 
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DFY scheme allows each user to broadcast one message, so a total of n messages 
can be authenticated in the system. However, if we allow only up to t(t  < n) 
users send authenticated messages, it is possible to reduce the key storage and 
the length of authentication tag. We observe that  if more than one sender is 
allowed, then for each pair of users, for example Pi and Pj, the key information 
contributing to authentication from Pi to Pj must be different from that  used 
for authentication from Pj to Pi. Otherwise after seeing a broadcast authenti- 
cated message from Pi, anyone can perform an attack on Pi by resending the 
observed message to Pi himself and claiming that  this is sent from Pj. Thus the 
construction based on symmetric polynomial will not be suitable for multiple 
senders. Rather, the KDC may use polynomials in two variables and of suitable 
degrees to produce the required key information. Details of this construction will 
be given in a future paper. 

5 Conclusion 

In this paper first we generMized DFY polynomial scheme for multi-receiver A- 
code so that  it can be used to authenticate multiple messages instead of a single 
message. Next we suggested a flexible construction for multi-receiver A-codes 
by combining an A-code and an (m, n, k) cover-free family. Finally we intro- 
duced the model of multi-receiver A-codes with dynamic sender and presented 
a construction that  is much more efficient than the naive method. 
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A P P E N D I X  

L e m m a  2.1 There exist q different matrices D such that DM~o = B and 
X k - I D  = C. 

Proof. It is sufficient to prove that  there exist q different matrices D such that  
DMw = 0 and X~- ID = 0. First, we observe that  given an n x m matrix 
Do = (dij), we can associate it a polynomial over x, y 

F(x,y) = ( 1 , x , . . - , x " - I ) D o  ( ly y ~ - I  (3) 

and conversely, every polynomial F(x, y) can be written as the form (3) for some 
n • m matrix Do. Now consider the polynomial 

F(x,y)  = (x - xl)(x - x2)"" (x - xk-1)(y - sl)(y - s2) ' "  (y - sw). 

Let F(x'Y) = ( l ' x " ' " x ~ - l ) D  ( ~~ ) ' where D is a k • (w-[- i) matrix 

D r O. Clearly, F(xl ,y)  = F(x2,y) . . . .  = F(xk- t , y )  ---- 0 for all y. It follows 

1 Xl . . .  zt  k - l ]  

.1.. z..~. : : : x ! f . 1 ]D=O"  

1 Xk-1- ' -x~ -~J  
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Indeed, we may choose (w + 1) distinct elements Yl, Y2 , " ' ,  Yw+l in GF(q), then 

F ( x l , y i )  = F(x2,yi)  -- . . . =  F(xk- l ,y~)  = O, for all 1 < i < w +  1. 

Thus we have 

1 x ~ . . - x ~ - ~ l  [ 1  1 . . .  1 ] 

. . . . . . . . . . . .  *'/ / . . . . . . . . . . . .  

D Yl Y~ ""Y~+I  / = 0  
l 

1 x ,  - . .  x ~ z l J  IIY~' Y~' " ' "  Y ~ + l J  

[, 1... 1]  
Since |Yl  y2 " " y w + l |  is a Vandermonde matrix, the desired result follows. 

/ / 
I_yl ~ y~' . . .  y~+~J 

Similarly, we have 
1 1 . . . 1  

Is' ?.:::f: =o .  

[sT s[  .. .  G 
For each r �9 GF(q), we also have (rD)Mw = 0 and X k - l ( r D )  -- O. Thus 
there are q different matrices {rD [r �9 GF(q)} with the desired property. So we 
complete the proof of the lemma 

T h e o r e m  4.1 The above scheme is a (k,n) multi-receiver authentication code 
_ _  1 with PI = ~ and Ps = Ps . . . . .  g. = Ps..,,,~ - ~. 

Proof. Assume that after seeing an authenticated message (s, hi, M1 (x), Ms(x))  
broadcasted by the user Pi, the users P1 , . . . ,  Pk-1 want to generate a new mes- 
sage ( d , a i , M l ( x ) , M 6 ( x ) ) ,  where s' # s such that the user Pj will accepts 
it as authentic, i.e. M6(aj) = Goj(a,) + s'Glj(ai) + s'2e2j(ai). First, we ob- 
serve that  for each m �9 GF(q) each user, P, say, can calculate the polynomial (1 
ao,(~) + ma~,(=) + m2G2,(=) = O, =, ' " ,  ~k-~)(ao + mA~ + m2A~) a'. 

ack;-1 

It follows that for each m �9 GF(q), P~ , . . . ,  Pk-~ can calculated a k x (k - 1) 
matrix D[m] such that the following identity holds 

[ 1 " "  1 1 
(Ao + reAl + m2A2) al ""  ak-1 = D[m]. (4) 

/ k-1 k - l /  
Lal -.. a/:_l j 

Since (s, hi, MI(x ) ,M2(x) )  has been broadcasted, it follows that  P1 , . . . ,  Pk-1 

know the following two polynomials f (x)  = (1, x , . . . ,  xk-1)(Ao+aiAl+a~A2) al 
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ai 
and g(z)  = (1, x , . . . ,  xk-X)(A0 + sAx + s~A2) . By combining equation 

a~ x 

(4) and these two polynomials, Px , . . . ,  Pk-1 can also calculate matrices B and 
C such that the following equations hold. 

2 A AO + aiA1 .+ a i 2 = B 

Ao + sA1 q- s2A2 = C 

1 ..- 1 ] 

(Ao + rnA1 + m2A2) ax ""  ak-1 = D[m] 

/ k - X  k - X /  
Lax --. a~_l j  

(5) 
(6) 

for all m e GF(q) (7) 

We claim that in the above equations (5), (6) and (7), knowing B, C, and D[m] 
for all m E GF(q)  can not determine the 3-tuple matrices (A0, A~, A2). In fact, 
there exists q distinct 3-tuple matrices (A0, A1, A3) satisfying equations (5), (6) 
and (7). This is equivalent to the following statement There exists a 3-tuple 
matrices (Ao, A1, A2) :fi (0, O, O) such that the following equations hold 

Ao + aiA1 + a~A2 = 0 

Ao + sA1 + s2A2 = 0 

1 ...  1 } 

(Ao + m A l  + m2A2) al " .. ak-1 = 0  

/ak-1 a k - l /  
L 1 " ' "  k - l . . I  

(8) 
(9) 

for  all m E GF(q)  (10) 

Consider the symmetric polynomial over x, y 

F(x,y)  - ( z -  a l ) - . - (x  - a k - 1 ) ( y -  a l ) . . .  ( y -  ak-1) 

where A is a k • k symmetric matrix and A r 0. Let f ( z )  -- (x - ai)(z  - s) : 
x 2 - (a~ + s)x q- ais. We define Ao = aisA, A1 = - ( a i  + s )A  and A3 = A, then 
it is not difficult to verify that A0, A1, A2 satisfy the desired properties. 
We note that if (A0, A1, A3) satisfy the equations (8), (9) and (10) , so is 
(rA0, rA1, rA3) for all r E GF(q).  This implies that there are q distinct 3-tuple 
symmetric polynomials which are equally likely to be chosen by the KDC. But, of 
course, one of them is exactly chosen . Now let the 3-tuple matrices (A0, A1, A2) 
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satisfy the equations (8), (9) and (10), we claim that for each s' # s, ai in GF(q) / x ) 
(1,aj, .  k-1 ai �9 . ,aj  ) ( A o + s ' A I + s ' 2 A 2 )  a _  1 = d # 0  

Indeed, we have 

t a k - 1  l 
t ak-1 "'" k - i |  

aj ...a~-lJL. 1 

(Ao + s'A1 + s'~A2) 

1 ... 1 1 ] 

hi. : : :a.~.l  .a,. [ 

o ~ - i  a~:~ a, ~-l] 

:::a!:) 1 
-~- I 1 a k - i I  

I a k - 1 . . ,  k - l l  

t o~ . . .  o;_lj~ . 1 

[OOO] 

(his - (ai + s)s' + s'2)A 

1 - - -  1 1 ] 

al. :::a.k.~l a,. I 
a~ - i  --. a~_~ a~- iJ  

Since f (s ' )  = ( s ' - s ) ( s ' - a i )  ~ O, we have d = f ( s ' )F(a, ,  aj) ~ O. It follows that q 
distinct 3-tuple matrices give rise to q distinct possible value of d. This is equiva- 
lent to that the q distinct possible 3-tuple polynomials (F0(x, y), Fl(X, y), F2(x, y)) 
chosen by the KDC results in q distinct values of the form Fo (hi, a j)+s'F1 (ai, aj )+ 
s2F2(ai, Aj).  Therefore the probability of message substitution attack Ps . . . . .  ~. 
is 1/q. Similarly, we can prove that the probability of entity substitution attack 
Ps. . , ,~  is also l /q,  and the probability of impersonation attack PI is 1/q 2. 


