
V e r i f i c a t i o n B a s e d o n L o c a l S t a t e s *

Michaela Huhn 1 and Peter Niebert 1 and Frank Wallner 2

1 Institut fiir Informatik, Universit~it Hildesheim,
Postfach 101363, D-31113 Hildesheim, Germany,

{huhn,niebert } ~informatik.uni-hildesheim.de

2 Institut ffir Informatik, Technische Universit~t Miinchen
D-80290 Miinchen, Germany

wallnerf~informatik.tu-muenchen.de

A b s t r a c t . Net unfoldings are a well-known partial order semantics for
Petri nets. Here we show that they are well suited to act as models
for branching-time logics interpreted on local states. Such local logics
(in particular a distributed p-calculus) can be used to express properties
from the point of view of one component in a distributed system. Local
logics often allow for more efficient verification procedures because - in
contrast to interleaving branching-time logics - they do not refer to the
entire space of global states. We reduce verification of local properties to
standard model checking algorithms known for interleaving branching-
time logics. The key is to extract a finite (usually small), local transition
system bisimilar to the complete unfolding. The construction is based on
the finite prefix of a net unfolding defined by McMillan.

1 I n t r o d u c t i o n

Model checking is one of the most successful approaches to formal, au tomated
verification of distributed systems. Model checking algorithms decide whether
a finite s tate system meets its specification given in terms of a temporal logic
formula. One of the causes of the s tate explosion problem limiting this approach
is the representation of concurrency as interleaving. Recently proposed part ial
order methods [Pe193, GW91, Val91] avoid the exploration of the entire state
space for model checking by reductions according to the partial order semantics
of the system, where certain interleaving properties are preserved.

Instead of reducing the interleaving model, verification can also be done di-
rectly on the partially ordered object: Net unfoldings a [NPW80, Eng91] provide
a part ial order branching t ime semantics for Petri nets. McMillan [McM92] has
shown how to use net unfoldings for eJ~cient deadlock detection and reachability
analysis of finite-state Petri nets. He described the construction of a "finite pre-
fix" of the (usually infinite) unfolding containing every reachable global state.

* This work was partially supported by: the SFB 342, Teilprojekt A3 of the DFG; and
by the Human Capital and Mobility Cooperation Network "EXPRESS" (Expressiv-
ity of Languages for Concurrency).

a Also known as (branching) non-sequential processes.

37

It was already observed by Esparza in [Esp94] that the McMillan prefix can be
used for model checking $4 (the modal logic based on the reachability relation
of the global state space without next-modalities).

We show in this paper that a slight modification of McMillan's construction
is a very adequate basis for more expressive branching time logics interpreted on
local states and that for model checking such logics algorithms known from cor-
responding interleaving logics can be used. Here we understand a local (prime)
configuration as the representation of the view of a single component onto the
system, taking into account that the individual components have only partial
information on a system's global state. Local logics allow to express partial or-
der properties of distributed systems in a natural way, while the expression of
properties, that refer to a certain interleaving of concurrent events, is neither
impossible nor desired. For the linear time case, such logics have been inves-
tigated by Thiagarajan in [Thi94, Thi95] and Niebert [Nie95], local branching
time logics were introduced in [LT87, LRT92].

We consider systems - described in terms of Petri nets - composed of sequen-
tial, nondeterministic subsystems, which synchronously communicate by means
of common actions. As a logic we propose a distributed p-calculus, interpreted
solely at the local states of the contributing components. The basic operator
is an indexed modality (a)j meaning "next a for the components i E J" . Us-
ing fixpoints, local CTL-operators (cf. Sec.3) or the knowledge operator [:]i from
[LRT92] can be encoded. Thus, the distributed It-calculus serves as a powerful
low-level logic, in which other local branching time logics can be expressed.

Besides considerations of its practical use for specification, the proposed logic
is designed (i.e. restricted) in order to stay feasible for automatic verification.
For good reasons we do not address the theoretical question of the overall ex-
pressiveness of the logic: the reference logics for the comparison with It-calculi
are monadic second order logics, but the monadic second order logic of net un-
foldings (or prime event structures) can be shown to have a highly undecidable
model-checking problem even for 1-safe Petri nets.

The distributed It-calculus corresponds directly to the sequential It-calculus
[Koz83] interpreted on the local configurations of the system's unfolding. Since
the (local) state space of the unfolding is in general infinite, our aim is to extract
a bisimilar, finite-state representation of the unfolding. Such a representation
can be immediately used by proved interleaving model checkers [CS93, CES86],
yielding efficient automated verification.

We show that for any local configuration of the system's unfolding we find
a bisimilar local configuration in the finite prefix - no matter whether we take
McMillan's original definition or the improved prefix construction given in [ERV96].
Thus the local configurations within the finite prefix can serve as the state space
for the desired finite representation. But the proof does not indicate how to
determine the transitions needed for the finite bisimilar representation without
exploring the complete unfolding. The major problem to solve is to determine
those transitions (leading to the direct local successors) that are not already
present in the finite prefix but which must exist because the local states of the

38

prefix serve as representatives also for local states in the unfolding far beyond the
finite prefix. We show how to find all direct local successors without extending
the prefix any further. 4

Since the resulting local transition system does not contain more states than
the prefix contains events, the input for model checkers can be dramatical ly
smaller than the transit ion system of the global s tate space. Nevertheless, during
the construction of the local transition system we sometimes have to inspect
global configurations contained in the prefix. Complexity considerations show
tha t the representation of the algorithm given in Sec. 5 can be improved such
tha t it never exceeds the costs of building the global s tate space times the number
of transit ions of the original net - which is at the same t ime the worst case bound
of the size of the resulting transit ion system.

The paper is s t ructured as follows. In Section 2 we introduce basic definitions
of our models. In Section 3 we introduce the distributed #-calculus and its formal
semantics, and illustrate its use in specification with examples. In Sections 4 and
5 we show how to use the finite prefix for constructing a finite local transit ion
system on which conventional model checkers apply.

2 Distr ibuted nets and their unfoldings

We begin with the indispensable basic definitions and the class of Petr i nets tha t
serve as our system models. For further details on nets, cf. [Rei85].

Petr i nets . Let P and T be disjoint, finite sets of places and transitions,
generically called nodes. A net is a triple N = (P, T, F) with a flow relation
F C (P x T) U (T x P) , which we identify with its characteristic function on the
set (PxT) U(TxP) . The preset ~ and the postset x ~ of the node x are defined
as ~ { y E P U T I F(y ,x)= l} and x" := { y e P U T i F(x ,y)= l}. The preset
(postset) of a set X of nodes is given by the union of the presets (postsets) of
all nodes in X. We assume *x U x ~ ~ 0 for every node x.

A marking of a net is a mapping P - + ~ . We call E =- (N, M0) a net system
with initial marking M0 if N is a net and Mo a marking of N. A marking M
enables the transit ion t if M(p) >_ 1 for each pE ~ In this case the transit ion can
occur, leading to the new marking M ' , given by M'(p) = M (p) + F(t,p) - F(p, t)

for every place p. We denote this occurrence by M - ~ M ~. If there exists a chain

M0 ~1) M1 ~2~ . . . _ ~ Mn then the sequence a = t i t2 . . , tn is called occurrence
sequence and we write M0 ~ ~ Mn. M is called a reachable marking o] E if there
exists an occurrence sequence a, such tha t M0 ~ ~ M. Two transitions t l , t2 are
concurrently enabled in M if M enables t l , and t2 is enabled in M ~, where
M~(p) = M(p) - F(p, t l) for each p. A system is called sequential if no reachable
marking concurrently enables two transitions.

4 Since a direct local successor in one component may require an enormous number of
causal predecessors in another component, it is not clear in advance when a further
extension is sufficient to decide on the existence of a local successor.

39

We will exclusively regard 1-sale systems, in which every reachable marking
map each place to 0 or 1, and thus can be identified with the set of places it
maps to 1, i.e., M C P for every reachable marking M. Safe net systems can
be seen as a synchronization of several finite automata. In the following we will
exploit this compositional view by introducing the notion of locations.

D i s t r i b u t e d n e t s y s t e m s . Let {Zi = (Pi, Ti, Fi, M ~ I i �9 I} be a family of
1-safe, sequential net systems with pairwise disjoint sets Pi of places, indexed
by a finite set I of locations. The distributed net system JYI = (NI, Mo) is the
union of the subsystems Zi:

:r=Ur,, Mo=UM,~
iEI iEI iEI iEI

Clearly, Ex is again 1-safe. The intended interpretation of such a system is a
collection of sequential, non-deterministic processes with communication capa-
bilities, namely the common transitions. We understand the common execution
of a joint transition as a communication event. The location 1oc(x) of a node x
is defined by 1oc(x) := {i �9 I Ix �9 P / u T/}. A simple distributed net system
consisting of two subsystems is depicted in Fig. 1.

Fig. 1. Distributed net Fig. 2. Branching process

Net unfo ld ings . In order to define a partial order semantics of the behaviour
of a distributed net system, we consider net un]oldings, also known as branching
processes. They contain information about both concurrency and conflict.

Two nodes Xl,X2 of a net (P,T ,F) are in conflict, denoted x l#x2 , if there
exist two distinct transitions tl , t2 such that *tl M *t2 ~ @, and (t l ,x l) , (t2,x2)
belong to the reflexive and transitive closure of F. If x # x , we say x is in self-
conflict. An occurrence net [NPW80] is a net N : (B, E, F) such that (1) for
every b E B, I*b] _< 1, (2) the irreflexive transitive closure -4 of F is well-
founded and acyclic, i.e., for every node x E B U E, the set (y E B O Ely ~ x}
is finite and does not contain x, and (3) no element e E E is in self-conflict.
The reflexive closure _ of -4 determines a partial order, called causal relation.
In occurrence nets we speak of conditions and events instead of places and

40

transitions, respectively. Min(N) denotes the minimal elements of N w.r.t. -4,
and MaxiX) the causally maximal elements of the set X of nodes.

Given two nets N1, N2, the mapping h : P1 U T1 ~ /'2 U T2 is called a
homomorphism if h(P1) C P2, h(T1) C/'2, and for every t �9 Ts the restriction of h
to ~ denoted hl.~ , is a bijection between " t and "h(t), and similar for hl~..

A branching process [Eng91] of a net system E = (N, Mo) is a pair ;3 = (N ' , ~r)
where N ' = (B, E , F) is an occurrence net and = : N ' -~ N is a homomorphism,
such that the restriction of = to Min(N') is a bijection between Min(N') and Mo
and additionally for all es,e2�9 if r (e l) = =(e2) and ~ = *e2 then el = e2.
Loosely speaking, we unfold the net N to an occurrence net N ' , obeying the rules
determined by the conditions for ~r, and labelling each node x of N ' with the
corresponding node ~r(x) of N. Referring to distributed net systems, the location
loc(x) of a node x of N ' is given by loc(x) = loc(=(x)). By E j we denote the
set of J-events, i.e., Ej := {e �9 E I J C locie)}. For singleton locations J = {i}
we abbreviate E{~} by E~.

Given two distinct branching processes ;31, ;32 of ~ , we say that ;31 and ;32 are
isomorphic if there exists a bijective homomorphism h : N1 -~ N2, such that the
composition ~r2 o h equals ~h- If h is injective, such that hlMin(N1) is a bijection
between Min(N1) and Min(N2), and furtheron B1 C_B2 and E1 C_E2, we call ;31
a prefix of ;32. Notice that a prefix is uniquely determined by its set of events
or its set of conditions. In [Eng91] it is shown that a net system has a unique
maximal branching process up to isomorphism, which we call the unfolding of
Z , and denote by Unf. Fig. 2 shows a prefix of the infinite unfolding of the net
system drawn in Fig. 1.

C o n f i g u r a t i o n s a n d C u t s . A configuration C of an occurrence net is a causally
downward-closed, conflict-free set of events, i.e., for each e 6 C: if e' _ e then
e' 6 C, and for all e, e' �9 C : "~(e#e').

If Max(C) is a singleton, say {e}, we speak of the local configuration of e
and denote it by Se. It is given by the set of all the preceding events, i.e.,
Se -- {e' �9 E I e' -< e}. As usual, we identify each finite configuration C with the
state of the system that is reached after all the events in C have occurred. A
local configuration then defines a local state. The set of local configurations of
a branching process ;3 is denoted by Cloc (;3). In order to simplify the handling,
we introduce a virtual event symbol _l_ that can be seen as initial event with an
empty preset and Min(N) as postset. ~_l_ then denotes the empty configuration.
We extend the set of events of Un] to E . := E U {_L} and set 10c(_L) = I.

In distributed systems, we define the i-view SiC of a configuration C as

r : = {eeC l 3e' e (C nE~) : e '< e'}

T h e / - v i e w is a configuration: the empty configuration if C N E~ = O, and the
local configuration of the (unique) maximal/-event in C, otherwise. This follows
from the sequentiality of the subsystems. Thus, $~C can be understood as the
most recent local state of the subsystem i 6 I that the whole system is aware of
in the global state C. The / -v iew of the local configuration Se is written as $~e.

41

Two nodes of an occurrence net are concurrent if they are neither in conflict
nor causally related. A set B ' of conditions of an occurrence net is called a co-
set if any two elements of B' are concurrent. A co-set is called a cut if it is a
maximal co-set w.r.t, set inclusion. There is a tight interrelation between finite
configurations and cuts: the set of conditions

Cut(C) = (Min(N) U C') \ "C

where C is a finite configuration, is a cut. The corresponding set of places
7r(Cut(C)) is a reachable marking, denoted by Az[(C) and called final state
of C. Notice that for every reachable marking M of the system there exist
a (not necessarily unique) finite configuration with final state M. Configura-
tions are called .A4-equivalent, denoted by C = ~ C ~, if their final state is
equal. Two M-equivalent configurations C, C ~ have a similar "future", i.e., there
exists an isomorphism between the part of Unf that lies behind C and that
one behind C ~. Formally, if C - - ~ C ~ then f~(C) is isomorphic to ~(C~), where
~(C) := (x E B U E I 3 b E C u t (C) . b ~ x A V y E C . - ~ (x # y) } .

Assume two ~4-equivalent local configurations Se, Se' with]$e] < [$e' I. The
branching process j3($e) can be seen as j3($e') "shifted backward". Any con-
figuration C' containing e' thus can be shifted backward to an A4-equivalent
configuration C containing e.

In [Esp94] this idea was formalized as follows: let Z~' denote the isomorphism
from ~($e') to ~($e), and C be a configuration of Unf. The (e', e)-shift o] C,
denoted shift(e, e) (C), is defined by

C if e' ~ C
shfft(e,,e) (C) :-- Se U Z~' (C \ Se') if e' e C

L o c a l s u c c e s s o r r e l a t i o n . Let Act be a distributed alphabet of actions, i.e.,
Act = U~ei Act~ where the Acti are not necessarily disjoint. We speak of the
location of an action, defined as loc(a) := {i I a E Act~}. Assume a mapping
I from the transitions (and, via ~r, also from the events) to the actions that
respects the distribution of the alphabet: l(t) = a implies 1oc(t) = loc(a).

Given two configurations C, C' we call C ' an a-successor of C, written as
C a ~ C', if C' = C t~ {e} for some event e mapped to the action a.

This relation works fine for global configurations, but when considering local
configurations it turns out to be too restrictive. Intuitively, we want to speak of
the local a-successor of the local state Se, if for some locations that participated
in e the next possible action is an a, ignoring the fact that some other locations
possibly have to do some preparing steps until a is enabled. By parameterizing
the successor relation with sets of locations, we will determine which of the
locations may do those preparing steps, and for which locations the a is the
immediate next action.

Let C1, C2 be configurations, a an action, and J a non-empty set of locations
such that Ioc(a) N J ~ 0. We call C2 a J-local a-successor of C1, written as

42

C1 --%j C2, if there exists a configuration C~ _D C1 such that $iC1 = $iC~ for
all i E J, and C~ a> C2.

If J -- {i} is a singleton, we write ~i. Note that ~i captures the
local transition relation in an adequate way, i.e., ---+i in the unfolding of ~7,
corresponds to the) relation in the unfolding of ~i.

3 The distributed #-calculus

In this section we define the syntax and semantics of a version of the #-calculus
[Koz83] that is adequate to describe local properties of the components of a
distributed system. More precisely, the formulae of the logic are interpreted over
the local configurations of the unfolding of a distributed net system. The logic is
adapted from a similar linear time logic for Ma~urkiewicz traces [Nie95]. We will
indicate how the local approach can be used for the specification and verification
of distributed systems, and show that our logic naturally can be transferred to
the conventional framework of global states.

S y n t a x . Let (NI, Mo) be a distributed net system, Un] = (N', ~r) its unfolding,
and l : T --~ Act a labelling of the transitions of NI with actions taken from
the alphabet Act. We identify the corresponding labelling of events with l, i.e.,
l(e) = l(~r(e)) for e in Unf. The abstract syntax of the logic is given by

where the atomic propositions p range over the set P of places of the distributed
net, x over a set 1; of propositional variables, a over Act, and J over 2* \ ~.
For the modal operators [a]j and (a)s , we assume JO1oc(a) ~ 0. The intended
meaning of {a)j ~ is that there exists a next local state Se such that l(e) = a and
no event of any of the locations in J will happen before e. The operators # and
v bind the variables. A formula that does not contain any free variable is closed.
We use the basic propositions true and false as abbreviations for vy.y and #y.y,
respectively, and define (-)j ~ : = VaeAct(a)g ~o and [-]j ~ :~--- AaGAct[a]j ~.

We only allow negation of atomic propositions. However, the logic is closed
under negation, because every operator has its dual, and negations can be drawn
inside down to the atomic propositions.

S e m a n t i c s . The semantics of a formula ~ of our logic is a set of local config-
urations (satisfying it), and is written as [~o]v v"l C_ C+oc(Unf), where Unf is the
unfolding under consideration and v : V ~ 2 c~~176 is a valuation function for
the variables. Since Un] is clear from the context, we omit this superscript, and
if also v is understood, we simply write [~]. For Se E [~] we also write ~e ~ ~.
We inductively define the semantics according to the following rules:

[p]+ = {+e I p e M ($ e) }

[+ ^ r = [+]+ a [r
[~, v r = 1~]~ u [r

[vx.~,],, = U{A I A C [r
[~..~]~ = 0{A I [~'],+,t+:=A+ c_ A}

[(a) j ~]~ = {$e I 9 e ' e E . $e - ~ j 4e' and $e'E [~]~}

43

where v[y := A](y) = A, and for z ~ y we have v[y := A](z) = v(z). We say that
system 27 satisfies the formula ~o, denoted by Z ~ ~, if the empty configuration
~_L belongs to [~o].

Note that a local state Se may satisfy an atomic proposition p that does not
belong to the location of e. Thus, the proposed logic allows to express properties
corresponding to the local view that one component has onto other components.

We briefly comment on the assertions expressible by the proposed language.
Single-located formulae are simply formulae of the standard #-calculus, inter-
preted on the corresponding subsystem. For instance, ~ = ux.~ A [-]i x means
that on every path of the/-component ~ holds at every local state - '~o always
holds in i'. If we substitute [-]i x by ([-]i x A (-)i true) in ~, we additionally ex-
press tha t the mentioned path is of infinite length since for every local state of i
there must exist a successor. '~ holds in i infinitely often' can be formalized as
vy.#x.(~o V [-]i x) A [-]i y A (-)i true. Notice, however, that this formula may hold
even if there exist global runs in which the/-component only executes a finite
number of events. It actually states that if i executes infinitely many events in
the future then it will satisfy ~ infinitely often.

It is useful to translate a local logic reminding of CTL [CES86] to our logic.
Localised variants of the two next operators, EXj and AXj are already part
of the syntax, namely (-)a and [-]j. The set of locations specifies, for which
components this event is a next step. Similarly we now define the until-operators
of CTL with locations:

E(~Uj ~b) := #y.r V (~ A (-)j y)
A(~Uj r := #y.r V (~ A [-]ay A (-)j true).

Other CTL-like operators, such as AGj, AFj, EGg, EFj can in turn be defined
using the until-operators in the standard way. E(~Uj r specifies a J-local chain
of events along which ~o holds until r is satisfied.

The more interesting properties, of course, are expressed by formulae referring
to distinct subsystems. If J = { i, j, k} then uy.[-]i y A (p --+ (a) j true) describes
that whenever p holds in i then i's next a-action may be a synchronization with
j and k, which is also for j and k the next step. Another example referring to
several components can be found in the appendix.

It is also possible to refer to conflicts in the causal future of local configu-
rations: ViEi((-)ip A (-)i-~P) states that there are two next events in conflict
which can be distinguished by p. Nevertheless, it is not possible to express that
there are two identically labelled, but conflicting events if their future cannot be
distinguished with the distributed #-calculus.

As a further example we specify properties of the echo-algorithm as defined
in [Wal95] in the distributed #-calculus. Assume a (strongly connected) network
consisting of a set of agents Ag including initiator Ao. Each agent Ai communi-
cates exclusively with her direct neighbours, and each agent (but the initiator)
behaves identically. At any time the initiator wants to flood the whole network
with a wake-up signal, each agent - after receiving a wake-up - executes a local
computation and sends back an accept signal afterwards. Whenever the initiator

44

reaches state terminated, she wants to be sure that every agent in the network
has executed her local computation: Z ~ AGo(terminated-+ Ai>_1 acceptedi).

Furthermore, no agent shall have finished her local computation, when any
of her neighbours is still sleeping: 5: ~ Ai_>l AGi(acceptedi --~ AjeN~ -~sleepingj).

4 Transition systems semantics

Now we want to show that the unfolding can be understood as a local transition
system Tun/ with transitions labelled by indexed actions a j, J C_ I , and with
the local configurations of Un] as set of states. It will be immediate tha t on
7"wI the distributed #-calculus corresponds to the standard #-calculus over the

modified action alphabet Act = (a j I a E Act, J C_ I}.

/~-calculus a n d b i s i m u l a t i o n . The syntax of the #-calculus [Koz83] is given by

~o ::= P I -~P [x] ~ A ~] ~ Y ~ I (a)~ I [a]~o] #x .~] vx.~o

where p E P , x E];, and a E ActT. The semantics of the ~-calculus is defined
over transition systems T = (S, So, -+, ActT, P, I) where S is a set of states, ActT
an action alphabet, So E S the initial state, -~ C_ S • ActT • S the transition rela-
tion, and I : S -+ 2 P an interpretation mapping the states onto the propositions.
As usual, we write s a > s' if (s, a, s') E -+.

The semantics of a #-calculus formula ~ over a given transition system 7" is
denoted by [~]~ C S, where v is the valuation function for the variables. We
write s ~ T ~o if s E [~]. . The semantics is defined inductively by:

[p]~ = {s I P e I(s)} [uz.V]~ = UIA I A _C [~].[x:=A]}
['-p]~ = {s [p ~ I(s)} [px.~]. = A{A I [~]~[~:=A] C A}

[~ ^ x] . = [~] . n I x] . [(.)~]~ = {s I s s ' e s . s - % s ' and s'E[~]v}
[v V x I , =[v]~U[x]~ [[a]v], = {s I Vs'ES. i f s -~slthens'E[V],}

It is well-known that the distinguishing power of the #-calculus is limited to
s tandard bisimulation: A relation T~ C_ S x S is called a bisimulation iff for any
s T~ s t it holds tha t I(s) = I(s I) and for all a E ActT

- if s a > sl , then there exists s~ with s t a ~ s~ and st T~ s~, and dually

- i f s ~ a > s ~ , t h e n t h e r e e x i s t s s l w i t h s a>s l and s tT~s~.

Two states s and s I are called bisimilar, denoted s ,~ s t, iff there exists a bisim-
ulation T~ with s T~ s'. We also write T ~ T t if for the initial states So ~ s~. It
was shown by Milner [Mil89] (see also [Sti92]) tha t s .~ s t implies s ~ T ~a r
s t ~ T ~ for all closed #-calculus formulae ~.

T h e loca l t r a n s i t i o n s y s t e m Tun/. Let Un] be the unfolding of a distributed
net system Z. Then the local transition system extracted from Un] is given
by Tun/= (CZoc(Unf),$-l-,--~,Ac~t,P,I) where Se aJ~$e' i f fSe ~>s Se', and the
interpretation of propositions I($e) = .s for all Se.
Two events el, e2 are M-10c-equivalent iff Sel = ~ $e2 and 10c(el) = I0c(e2).

45

P r o p o s i t i o n l . Let Sel,$e2 E Twf . If el and e2 are .~4-1oc-equivalent then
Sel ~ 4e2.

Proof. Let 17 be the isomorphism from ~($el) to j3($ez), induced by M-equivalence
of $el and $e2. Clearly, loc(f) = loc(Z(f)), and f ~ g iff I (f) ~ Z(g) for all
events f ,g e ~($el) . If furtheron el -~ f and e2 -~ 27(f), the events f and Z(f)
again are M-equivalent, and thus = ~ would be a bisimulation. However, it does
not necessarily hold that el -~ f iff e2 -< 27(f).

The additional loc-condition now preserves the desired causality: Let us call
e' a direct successor of e, iff e*A "e' r ~. For all el, e~ it holds that if e~ is a direct
successor of el then Ioc(el) A 10c(e~) ~ 0. Consequently, if e~ is a direct successor
of et then 27(e~) e ~(Jee2) is a direct successor of e2 iff loc(e2) f3 loc(I(e~)) ~ 0.
Thus the set of direct successors is preserved under Jl/l-10c-equivalence. Since
every J-local successor of an event el is a direct successor of el or the J-local
successor of a direct successor of et , and since every direct successor of el is
~/[-loc-equivalent to the corresponding direct successor of e2, indeed]vl-loc-
equivalence is a bisimulation. []

Let ~ be a formula of the distributed/z-calculus. Then 95 denotes the formula
where each occurrence of (a)j is substituted by (ag), and similarly [a]j by [aj].

P r o p o s i t i o n 2 . Se ~ qo iff Se ~T ~ for any Se E Ctoc(Unf).

5 Model checking

In this section we develop the technical tools required to achieve efficient verifica-
tion techniques for the logic. In fact we will not give an algorithm for the model
checking procedure itself. Rather we give a construction, which reduces the model
checking problem for the distributed/z-calculus to a suitable input for well un-
derstood algorithms known from sequential model checking like [CES86, CS93].

As a first step, we will show that there exists a finite transition system 7-fin
bisimilar to the usually infinite system Tunf. This finite system TEn can be
defined over the set of local configurations of the complete finite prefix introduced
by McMillan [McM92]. Secondly, we give an algorithm for constructing TFi,.

The finite pre f ix . In [McM92], McMillan showed how to construct a finite
prefix of the unfolding of a finite-state net system in which every reachable
marking is represented by some cut. We will use a slight modification of this
prefix to obtain a finite transition system with local states, bisimilar to Tunf.

Let Un] = (N', 7r) be the unfolding of a net system. A cut-off event is an
event e E E• whose local configuration's final state coincides with the final state
of a smaller local configuration with the same location, formally:

3 e'GE• : ISe'l < ISel and e ,e ' are A/l-loc-equivalent.

46

In McMillan's s tandard definition M-equivalence suffices. 5 Notice that in general
for each cut-off event e there may be several corresponding fl4-1oc-equivalent
events e ~. In the sequel, we fix one of them and refer to it as corr(e). The prefix
Fin is then defined as the unique prefix of Un] with EFin C_ E• as set of events,
where EFin is characterised by

e E EFin if[no event e ~ -~ e is a cut-off event.

It is easy to prove that Fin is finite for net systems with finitely many reachable
markings. Usually, the prefix Fin is much smaller than the state space of the
system. However, it can also be larger. In [ERV96] it is shown how to improve
McMillan's construction such that the finite prefix never exceeds the size of the
full state space (up to a constant). The main idea is to determine cut-off events
not by comparing the size of the local configurations of events (which does not
produce any cut-off event when the sizes are equal), but other well-founded
partial orders instead. In the prefix generated by the refined algorithm, if e and
e ~ are two different non-cut-off events, then they are not J~4-1oc-equivalent.

The number of location sets occurring at events can grossly be bounded by
the number of transitions in the original net. Therefore, the number of non-cut-
off events never exceeds the number of reachable states times the number of
transitions of the original net, and so the prefix can never be substantially larger
than the state space.

T h e f in i te , loca l t r a n s i t i o n s y s t e m ")'Fin. Now we show that there exists a
finite transition system TFin ~ Tunf, such that the states of TFin are at most
the local configurations of the finite prefix.

Observe that the modified McMillan construction in fact guarantees tha t for
each local configuration Se in Unf there exists an A4-1oc-equivalent correspond-
ing configuration Se ~ in Fin, i.e., Se ~ Se ~ in Tvnf, and e ~ E EFin. The only reason
for e ~ EF,n can be that e supersedes a cut-off belonging to Fin and therefore
itself is a cut-off. By induction it is possible to find a corresponding event for e
within EFin.

For the following, we select for each equivalence class of bisimilar config-
urations Se in Unf a unique representative $corr(e) in Fin which is minimal
w.r.t, the size of I$ corr(e) l. (in case of using the improved prefix [ERV96], corr(e)
is selected from the non-cut-off events in EFin and thus uniquely determined.)

If we have two bisimilar states $el ,~ ~e2 in Tun/we can replace each tran-

sition S e a j> $el by Se _5~ $e2 for any source state Se and obtain a transition
system Tbn / bisimilar with Tunf on all states and with the same state space.

Since we have selected for all local configurations Se, Se' bisimilar repre-
sentatives $corr(e) and $corr(e') in Fin, we can (imaginarily) "bend" all the
transitions Se ~s> Se' in Tun/to transitions $corr(e) -~+ $corr(e ') in Fin (pos-
sibly merging infinitely many transitions into one). Since corr(e) is unique and

5 The cut-off events from the unfolding of the distributed net system of Fig. 1 axe
tagged by "o" in Fig. 2 whereas the cut-offs due to McMillan's original definition axe
tagged by "*".

47

minimal, afterwards all local states Se reachable from $• via transitions are non-
cut-offs. Now we discard all cut-off events (whether contained in Fin or not). We
call the resulting transition system URn. Observe that TFin is even smaller than
Fin itself, since cut-offs are discarded. We obtain:

P r o p o s i t i o n 3 . TF~ "~ Tunf.

T h e o r e m 4. For any closed formula ~ of the distributed lz-ealculus it holds that

Theorem 4 is an immediate consequence of Proposition 2 and Proposition 3.
Thus we can reduce the model checking prob-
lem of the distributed #-calculus for some
distributed net system to the model-checking
problem of the standard #-calculus over TFin.
Observe that TFin is not bigger than the global
state space (i.e. the product of the local state
spaces) times the number of transitions of
the distributed net system - and often much
smaller.
The figure depicts TFin of the prefix drawn in

C2 e

Fig. 2.

A n a l g o r i t h m t o c o m p u t e 7"pi,. By now we know that TFin exists, the
question remains, how we can compute it. We propose an algorithm that takes
Fin as input and moreover uses the structural information, which the algorithm
computing Fin has built up:

- a function corr mapping all •-1oc-equivalent events onto a unique represen-
tative non-cut-off event. The codomain of corr is called ERep C EFi,, the
set of representative events. The state space of TFin is formed by the local
configurations of these representatives.

- a function shift*, which maps any configuration C = C1 of Unf contain-
ing some cut-off to a configuration shift* (C) = C ~ = Cn not containing a
cut-off, hence being present in Fin. This function works by repeatedly ap-
plying Ci+t := shift(e,corr(e,))(Ci) with ei being a cut-off in Fin contained
in Ci. shift* terminates, because the sequence C1, C2,.. decreases in the un-
derlying (well-founded) order (e.g. contains less and less events in the case
of the McMillan order). Obviously this function implies the existence of an
isomorphism Z between fl(C) and ~(shift*(C)), which is the composition
of the isomorphisms Zceorr(e0 induced by the chosen cut-off events. More-
over, shift* ($e) is strictly smaller than Se (in the underlying order) for any
e E fl(C), and hence for any e, for which C a) j Se.

The most important part of the algorithm is the recursive procedure successors
which, when called from the top level with a triple ($e, J, a), returns the a j-
successors for Se in TFi,. More generally, successors performs depth-first search
through triples (C, J, a), where C is an arbitrary, not necessarily local configu-
ration not containing a cut-off, J is a non-empty subset of locations, and a is

48

t y p e Vertex = { C: Configuration; J: LocationSet; a: ActionLabel;
pathmark: boo l ; (* for depth first search *) }

prefix_successors(C, J, a) = {Scott(e) I e e EVen A C - ~ j Se}

inheritable_extension(C, e, J, a) = (Vi E J. ($e \ C) A Ei = 0)
(* predicate ensuring, that joining Se to C adds no i-events for i E J *)

compatible_cutoffs(C) = {e [e is cut-off and ~e U C is a configuration in Fin}

p r o c successors(C, J, a) : ConfigurationSet;
{ va t result: ConfigurationSet; (* result accumulator for the current vertex *)

Vertex v := fmdvertex(C,J,a); (* lookup in hash table, ff not found then *)
(* create new vertex with pathmark ---- false *)

i f v.pathmark t h e n r e t u r n 0; fl (* we have dosed a cycle *)
result :---- prefix_successors(C, J, a); (* directly accessible successors *)
v.pa thmark:=t rue ; (* put vertex on path *)
for ec E compatible_cutoffs(C) do

(* find successors outside the prefix behind ec *)
if inheritable_extension(C, er J, a) t h e n

result := result U successors(shift* (C U Se~) , J, a);
fi

od ;
v.pathmark:=false; (* take vertex from path *)
r e t u r n result;

p r o c ComputeTF,, ;
{ Initialize2YansitionSystem(ts,Fin) (* extract state space from Fin *)

for e E ER~p, a E Act, 0 # J _C I do
for Se t e successors(~e,J,a) do

add transition Se -?A+$e'
od

o d
}
Fig. 3. The conceptual algorithm to compute Tf, n

an action. I t determines the subset of events in ERep t ha t represent the J - local
a-successors of C. Formally, e E successors(C, J, a) iff there exists Se' in Un],

which is ~4-1oc-equivalent to Se, and C - ~ j ~e'.
The procedure works as follows. Assume there exists at least one e' anywhere

in Un]wi th C a }J Set; then there are two possibilities:
(1) One of these e' lies in the prefix. This is easy to determine. The corresponding
event corr(e') E ERep is given back by prefix_successors(C, J, a).
(2) There exist such events e', but none of t hem lies in the prefix. The reason
for e ' ~ EFin is the existence of a cut-off ec E Evin, such tha t ec -< e'. So we can

4g

do a case analysis over the compatible cut-offs. A cut-off ec is compatible with
C if it is not in conflict with C, i.e., Sec U C is a configuration in Fin. If there
is a compatible ec, such that ($ec\ C) M Ei = 0 for all i E J then for at least
one of them, we have (C U Sec) - -%j Se'. In this case we inherit the transition
C a ~g j~el"

In the second case, we loop over all compatible cut-offs ec looking at the
configuration Cc := C U Sec. If the J-local a-successors of Cc are J-local a-
successors of C (determined by inheritable_extension(C, ec, J, a)) we want to
search for the successors(Co, J, a). But if any J-local a-successor e' of Cc exists,
then there also exists a bisimilar e" for C* := shift*(Cc) (by the isomorphism),
where moreover Se" is smaller than Se*. So successors is recursively called with
(C*, J, a). Note that C* contains no cut-off.

Hence we apply depth-first search with respect to triples (C, J, a). Cycles
may occur (if we hit a triple (C, J, a) with pathmark-- true), at which we break
off to ensure termination. Note that the search space is limited by the fact tha t
C is represented in Fin and does not contain cut-offs.

It remains to show that the termination is correct: Assume a J-local a-
successor e' of C exists. Then we choose from all these suitable successors a
minimal one named emin. Whenever a configuration (C U $er is shifted with
shift* to obtain a configuration C' for the next call of successors, also emi n is

' Thus in case we hit a configuration C twice, shifted to a strictly smaller emi n.
when searching for J-local a-successors, emin is mapped by the various shift*s
to a strictly smaller event e ' i n which contradicts the minimality of emln- Thus
whenever a configuration is investigated a second time for J-local a-successors,
we know that there cannot be one.

The main procedure ComputeTFin thus only has to loop about all possible
triples ($e, J, a) with e E ERep to check for transitions Se aS~$e' in "]-Fin and to
insert the results of successors. Concluding the above discussion, we obtain:

T h e o r e m 5. The algorithm ComputeT_Fi, computes TRy,.

Note that at top level, successors is only called with local configurations
C, but the extension of C with cut-offs requires that we can also handle some
global configurations. Further note that we present the algorithm in Fig. 3 with
emphasis on understandability, not efficiency: many vertices (C, J, a) will be
explored very often, leading to an unsatisfying runtime. However it is very easy
to modify the algorithm so that every vertex is explored at most once, essentially
by storing intermediate results with the vertices in the hash-table. Then the
runtime of the algorithm is proportional to the size of the search space. Since we
have to deal with some global configurations, in principle the search space can
grow to the size of the global state space times the number of the transitions of
the original net, but no larger.

Experiments suggest that in many cases the number of visited global states
will remain small compared to the number of all global states existing.

H e u r i s t i c i m p r o v e m e n t s . Apart of the improvements mentioned above, the
algorithm also allows for several heuristic improvements to save unnecessary

50

computation. For instance, it is impossible that a state Se has any as-successor
if the J-places in a~4($e) are not contained in *t for any a-labelled transition t
of the original net, and thus successors($e, J, a) need not to be called. Moreover,
the algorithm can be combined with on-the-fly algorithms (sometimes called
local model checking), by only calling successors, when the model checker needs
to find the as-successors of some state.

6 Conclus ion

We introduced a distributed version of the p-calculus and showed its use in
describing branching time properties of distributed algorithms based on local
states. We reduced the model checking problem for the distributed/~-calculus to
the well-investigated model checking problem of sequential logics over transition
systems.

How expensive is all this? The computation of TFin can be as costly as gen-
erating the global state space (although often it will be much cheaper), the re-
sulting system 7-Fin is typically much smaller than the global transition system.
The transformation of the formulae is for free. So the cost of computing 7-Fin
does not affect the runtime of the standard model checker in the next phase. It
is necessary to investigate really meaningful examples, to give a concise answer
on the benefits of the proposed approach. First experiments with a prototype
implementation indicate that TFin and the number of global states visited during
its computation indeed are very small.

Independently, Penczek [Pen97] suggested a model checker for a future frag-
ment of his event structure logic DESL. Instead of using net unfoldings, Penczek
relies on partial order methods in the generation of a finite representation of the
event structure. The causal future operators of DESL as considered in [Pen97]
can easily be treated by the algorithm we proposed here by changing the modal-
ities and the successor relation accordingly. At the price of the restriction to
free-choice systems, in [Pen97] also an immediate conflict operator is handled.

Acknowledgment . We thank P.S. Thiagarajan for discussions on location based
logics. Burkhard Graves has helped our understanding of the subtleties of Fin.
Special thanks to Javier Esparza, whose contribution to this work in its initial
phase was very important.

References

[CES86]

[cs931

[Eng91]

E.M. Clarke, E.A. Emerson, and A.P. Sistla, Automatic verification of finite-
state concurrent systems using temporal logic specifications, ACM Transac-
tions on Programming Languages and Systems 8 (1986), no. 2, 244-263.
Raace Cleaveland and Bernhard Steffen, A linear time model-checking algo-
rithm for the alternation-free modal mu-ealculus, Formal Methods in system
Design 2 (1993), 121- 147.
J. Engelfriet, Branching processes of Pefri nets, Acta Informatica 28 (1991),
575-591.

51

~RV9~

[Esp94]

[GW91]

[HNW96]

[Koz83]

[LRT92]

[LT87]

[McM921

[Mi189]
[MT89]

[Nie95]

[NPW80]

[Pe193]

[Pen97]

[Rei85]

[Sti92]

[Thi94]

[Thi95]

[val91]

[wal95]

J. Esparza, S. RSmer, and W. Vogler, An Improvement of McMillan's Un-
folding Algorithm, Tools and Algorithms for the Construction and Analy-
sis of Systems TACAS '96 (Passau, Germany) (T. Margaria and B. Steffen,
eds.), LNCS, vol. 1055, Springer, 1996, pp. 87-106.
J. Esparza, Model checking using net un]oldings, Science of Computer Pro-
gramming 23 (1994), 151-195.
P. Godefroid and P. Wolper, A Partial Approach to Model Checking, Pro-
ceedings of the 6th IEEE Symposium on Logic in Computer Science (Ams-
terdam), July 1991, pp. 406-415.
M. Huhn, P. Niebert, and F. Wallner, Put your model checker on diet: veri-

fication on local states, Technical Report TUM-I9642, Technische Universit~t
Miinchen, December 1996.
Dexter Kozen, Results on the propositional It-calculus, TCS 27 (1983), 333-
354.
K. Lodaya, R. Ramanujam, and P.S. Thiagarajan, Temporal logics for com-
municating sequential agents: I, Int. Journal of Foundations of Computer
Science 3 (1992), no. 2, 117-159.
K. Lodaya and P.S. Thiagarajan, A modal logic]or a subclass of event struc-
tures, Automata, Languages and Programming (T. Ottmann, ed.), LNCS,
vol. 267, Springer, 1987, pp. 290-303.
K.L. McMillan, Using unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits, Proceedings of the 4th Workshop on
Computer Aided Verification (Montreal), 1992, pp. 164-174.
R. Milner, Communication and concurrency, Prentice Hall, 1989.
M. Mukund and P.S. Thiagarajan, An axiomatization of event structures,
Foundations of Software Technology and Theoretical Computer Science
(C.E. Veni Madhavan, ed.), LNCS, vol. 405, Springer, 1989, pp. 143-160.
Peter Niebert, A v-calculus with local views for systems of sequential agents,
MFCS, LNCS, vol. 969, 1995.
M. Nielsen, G. Plotkin, and G. Winskel, Petri nets, event structures and
domains, Theoretical Computer Science 13 (1980), no. 1, 85-108.
Doron Peled, All from one, one for all: on model checking using representa-
tives, Computer Aided Verification CAV, LNCS, 1993.
W. Penczek, Model-checking for a subclass of event structures, TACAS, 97,
to appear.
W. Reisig, Petri Nets, EATCS Monographs on Theoretical Computer Sci-
ence, vol. 4, Springer, 1985.
Colin Stifling, Modal and temporal logics, Handbook of Logic in Computer
Science (S. Abramsky, D. Gabbay, and T. Maibaum, eds.), Oxford University
Press, 1992.
P.S. Thiagarajan, A Trace Based Extension of PTL, Proceedings of the 9th
IEEE Symposium on Logic in Computer Science, 1994.
P.S. Thiagarajan, A Trace Consistent Subset of PTL, Proceedings of CON-
CUR '95 (Philadelphia, P.A., USA) (I. Lee and S.A. Smolka, eds.), LNCS,
vol. 962, Springer, 1995, pp. 438-452.
A. Valmari, Stubborn Sets for Reduced State Space Generation, Advances in
Petri Nets 1990 (G.Rozenberg, ed.), LNCS, vol. 483, 1991, pp. 491-~515.
Rolf Walter, Petrinetzmodelle verteilter Algorithmen - Beweisteehnik und
Intuition, Ph.D. thesis, Humboldt-Universits zu Berlin, Institut ffir Infor-
matik, 1995, edition VERSAL, W. Reisig (Hrsg.), Dieter Bertz Verlag.

