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A b s t r a c t .  In this paper, we report on an application of the validation 
and verification tool kit UPPAAL in the design and analysis of a proto- 
type gear controller, carried out in a joint project between industry and 
academia. We give a detailed description of the formal model of the gear 
controller and its surrounding environment, and its correctness formal- 
ized according to the informal requirements delivered by our industrial 
partner of the project. The second contribution of this paper is a solution 
to the problem we met in this case study, namely how to use a tool like 
UPPAAL, which only provides reachability analysis to verify bounded re- 
sponse time properties. The advantage of our solution is that we need no 
additional implementation work to extend the existing model-checker, 
but simple manual syntactical manipulation on the system description. 

1 I n t r o d u c t i o n  

Over the past  few years, a number of modeling and verification tools for real-t ime 
systems [5, 4, 3] have been developed based on the theory of t imed au toma ta  [1]. 
They have been successfully applied in various case-studies [2, 6,8]. However, 
the tools have been mainly used in the academic community, namely by the tool 
developers. It  has been a challenge to apply these tools to real-sized industrial 
case-studies. In this paper  we report  on an application of the verification tool-kit 
UPPAAL 1 to a prototype gear controller developed in a joint project  between in- 
dustry and academia. The project  has been carried out in collaboration between 
Mecel AB and Uppsala  University. 

The  gear controller is a component  in the real-time embedded system tha t  
operates in a modern vehicle. The gear-requests from the driver are delivered 
over a communication network to the gear controller. The controller implements 
the actual  gear change by actuat ing the lower level components of the system, 
such as the clutch, the engine and the gearbox. Obviously, the behavior of the 

* This work has been supported by ASTEC (Advanced Software TEChnology), 
NUTEK (Swedish Board for Technical Development) and TFR (Swedish Technical 
Research Council). 

1 Installation and documentation is available at the UPPAAL home page 
http: / /www'd~ / d~ /uppaal/" 
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gear controller is critical to the safety of the vehicle. Simulation and testing have 
been the traditional ways to ensure that the behavior of the controller satisfies 
certain safety requirements. However these methods are by no means complete 
in finding errors though they are useful and practical. As a complement, formal 
techniques have been a promising approach to ensuring the correctness of em- 
bedded systems. The project is to use formal modeling techniques in the early 
design stages to describe design sketches, and to use symbolic simulators and 
model checkers as debugging and verification tools to ensure that the predicted 
behavior of the designed controller at each design phase, satisfies certain require- 
ments under given assumptions on the environment where the gear controller is 
supposed to operate. The requirements on the controller and assumptions on the 
environment have been described by Mecel AB in an informal document, and 
then formalized in the UPPAAL model and a simple linear-time logic based on 
the UPPAAL logic to deduce the design of the gear controller. 

We shall give a detailed description of the formal model of the gear controller 
and its surrounding environment in the UPPAAL model and its correctness in 
the UPPAAL logic according to the informal requirements delivered by Mecel 
AB. Another contribution of this paper is a lesson we learnt in this case study, 
namely how to use a tool like UPPAAL, which only provides reachability analysis 
to verify bounded response time properties e.g. /f fl (a request) becomes true 
at a certain t ime point, f2 (a response) mus t  be guaranteed to be true within 
a t ime bound. We present a logic and a method to characterize and model- 
check response time properties. The advantage of this approach is that we need 
no additional implementation work to extend the existing model-checker, but 
simple manual syntactical manipulation on the system description. 

The paper is organised as follows: In section 2, we present a simple logic to 
characterize safety and response time properties. Section 3 develops a method 
to model-check such properties. In Section 4 and 5 the gear controller system 
and its requirements are informally and formally described. In Section 6 the 
formal description of the system and its requirements are transformed using 
the technique developed in section 2 for verification by reachability analysis. 
Section 7 concludes the paper. Finally, we enclose the formal description of the 
surrounding environment of the gear controller in the appendix. 

2 A Logic for Safety and Bounded Response Time 
P r o p e r t i e s  

At the start of the project, we found that it was not so obvious how to formalize 
(in the UPPAAL logic) the pages of informal requirements delivered by the design 
engineers. One of the reasons was that our logic is too simple, which can express 
essentially only invariant properties. After a while, it became obvious that these 
requirements could be described in a simple logic, which can be model-checked 
by reachability analysis in combination with a certain syntactical manipulation 
on the model of the system to be verified. We also noticed that though the logic 
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is so simple, it characterizes the class of logical properties verified in all previous 
case studies where UPPAAL is applied (see e.g. [2, 6, 8]). 

2.1 T imed  Transition Systems and Timed Traces 

A timed transition system is a labeled transition system with two types of labels: 
atomic actions and delay actions (i.e. positive reals), representing discrete and 
continuous changes of real-time systems. 

Let Act be a finite set of actions and P be a set of atomic propositions. We 
use 1% to stand for the set of non-negative real numbers, D for the set of delay 
actions {e(d) I d E R},  and ~ for the union Act U D ranged over by ~, a l ,  a2 etc. 

Definit ion 1. A timed transition system over Act  and 7 9 is a tuple ~q = (S, So, ) 
, V), where S is a set of states, So is the initial state, ~ C_ S x ~ x S is a tran- 
sition relation, and V : S -~ 2 p is a proposition assignment function. [] 

A trace a of a timed transition system is an infinite sequence of transitions 
in the form: 

ff : 80 C~o} 81 al) 82 a2) . . . 8 n  ~ 8 n + l ' ' "  

where ai  6 ~.  
A position i of a is a natural number. We use a[i] to stand for the i th state 

of a,  and a(i) for the i th transition of a, i.e. a[i]= si and ~r(i) = si ~'> si+t. 
We use 6(s ~ s') to denote the duration of the transition, defined by 

5(s ~ > s') = 0 if a E Act or d if a = e(d). Given positions i, k with i < k, we 
use A(a ,  i, k) to stand for the accumulated delay of a between the positions i, k, 
defined by A(a,  i, k) = ~i<j<k 6(a(j)) .  We shall only consider non-zeno traces. 

Definit ion 2. A trace a is non-zeno i f  for all natural number T there exists a 
position k such that D(a,  O, k) > T.  For a timed transition system 8,  we denote 
by T r (S )  all non-zeno traces o r s  starting from the initial state  so orS .  [] 

Note that  the timed transition system defined above can also be represented 
finitely as a network of timed automata  For the definition of such networks, we 
refer to [7]. Let A be a network of timed automata  with components A1 . . -  An. 
We denote by Tr (A)  all non-zeno traces of the timed transition system $ i.e. 
Tr(-A) = Tr (S ) .  

2.2 The Logic: Syntax and Semantics  

The logic may be seen as a timed variant of a fragement of the linear temporal  
logic LTL, which does not allow nested applications of modal operators. It  is to 
express invariant and bounded response time properties. 

Definit ion 3. Assume that ~]; ranged over by g is a set of clock constraints as 
defined in [7] and P is a finite set of propositions ranged over by p, q etc. Let  
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(t, ~) ~ g igg(u)  
(1,,~) ~ p i g p  E v ( 0  

(1, ,~) ~ -~f ~g (l, ,~) g= f 
(/, u) ~ t:1 A f2 if/(l, u) ~ f~ and (1, u) ~ f2 

~ / n v ( f )  i g W :  ~[~] ~ f 
a ~ fi "~<T f2 iffV/: (a[i] ~ fi =} 3k _> i: (a[k] ~ f2 and D(a, i, k) < T)) 

Table 1. Definition of satisfiability. 

~8 denote the set of boolean expressions over ~V U P ranged over by f, fl, f2 etc, 
defined as fo110ws: 

f : : = g  [ p [  ~f  [ l i a r 2  

where g E G]2 is a constraint, and p E P is an atomic proposition. We call ~s 
state-formulas, meaning that they will be true of states. [] 

As usual, we use fl V f2 to stand for -~(-~fl A ~f2), and t t  and ff for -~f V f and 
-~f A f respectively. Further, we use t:1 ~ f2 to denote -~fl V f2. 

Definit ion 4. The set Yt ranged over by f, fl, f2 of trace-formulas over Ys is 
defined as fo110ws: 

7~ ::= Inv(f)  [ h  ~'Z<T f2 

where T is a natural number. 
I f f l  and f2 are boolean combinations of atomic propositions, we call fl "Z<T 

f2 a bounded response time formula. [] 

Inv(f)  states that  f is an invariant property; a system satisfies Inv(f)  if all its 
reachable states satisfy f. It is useful to express safety properties, tha t  is, bad 
things (e.g. deadlocks) should never happen, in other words, the system should 
always behave safely, fl  "X~<T [:2 is similar to the strong Until-operator in LTL, 
but  with an explict time bound. In addition to the time bound, it is also an 
invariant formula. It means that  as soon as fl is true of a state, f2 must be true 
within T time units. However it is not necessary that  fl must be true continously 
before f2 becomes true as required by the traditional Until-operator. 

We shall call formulas of the form fl ~'Z<T f2 a bounded response time for- 
mula. Intuitively, fl may be considered as a request and f2 as a response; thus 
h "~<_T f2 specifies the bound for the response time to be T. 

We interpret ~'s and ~'t in terms of states and (infinite and non-zeno) traces 
of t imed automata.  We write (/, u) ~ f to denote that  the state (/, u) satisfies the 
s tate-formula f and ~ ~ ~ to denote that  the trace a satisfies the t race-formula 
~. The interpretation is defined on the structure of f and ~, given in Table 1. 
Naturally, if all the traces of a timed automaton satisfy a trace-formula,  we say 
that  the automaton satisfies the formula. 

Definit ion 5. Assume a network of automata A and a trace-formula ~0. We 
write -A ~ ~o i f  and only i ra  ~ ~o for all a E Tr('A). [] 
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Fig. 1. Illustration of a timed automaton A. 

3 Verifying Bounded Response Time Properties by 
Reachability Analysis 

The current version of UPPAAL can only model-check invariant properties by 
reachability analysis. The question is how to use a tool like UPPAAL to check 
for bounded response time properties i.e. how to transform the model-checking 
problem A ~ fl "Z_<T f2 to a reachability problem. The traditional solution is 
to translate the formula to a testing automaton t (see e.g. [6]) and then check 
whether the parallel system A[ [t can reach a designated state of t. 

We take a different approach. We modify (or rather decorate) the automaton 
A according to the state-formulas fl and f2, and the time bound T and then 
construct a s tate-formula f such that  

A4(A)  ~ Inv ( f )  iff A ~ fl ~'-*___T f2 

where .~4 (A) is the modified version of A. 
We study an example. First assume that  each node of an automaton is as- 

signed implicitly a proposition at(/) meaning that  the current control node is l. 
Consider an automaton A illustrated in Figure 1 and a formula at(/l) ~-*<3 at(12) 
(i.e. it should always reach 12 from ll within 3 time units). To check whether A 
satisfies the formula, we introduce an extra clock c E C and a boolean variable 
2 vl into the automaton A, that  should be initiated with ft. Assume that  the 
node 11 has no local loops, i.e. containing no edges leaving and entering 11. We 
modify the automaton A as follows: 

1. Duplicate all edges entering node 11. 
2. Add -~Vl as a guard to the original edges entering ll. 
3. Add Vl := t t  and c := 0 as reset-operations to the original edges entering ll. 
4. Add Vl as a guard to the auxiliary copies of the edges entering 11. 
5. Add vl := ff as a reset-operation to all the edges entering 12. 

2 Note that a boolean variable may be represented by an integer variable in UPPAAL. 
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Fig. 2. Illustration of a modified timed automaton .hal(A) of A. 

The modified (decorated) automaton AJ(A) is illustrated in Figure 2. Now 
we claim that  

A4(A) ~ InV(Vl =~ c _< 3) iff A ~ at(/z) -,z<3 at(/2) 

The invariant property vl =~ c _< 3 states that  either -~vl or if Vl then c <_ 3. 
There is only one situation that  violates the invariant: Vl and c > 3. Due to 
the progress property of time (or non-zenoness), the value of c should always 
increase. It will sooner or later pass 3. But if 12 is reached before c reaches 3, 
Vl will become ft. Therefore, the only way to keep the invariant property true is 
tha t  12 is reached within 3 time units whenever lz is reached. 

The above method may be generalized to efficiently model-check response 
time formulas for networks of automata.  Let .A(f) denote the set of atomic propo- 
sitions occuring in a state--formula f. Assume a network A and a response time 
formula fl "Z<T f2 For simplicity, we consider the case when only atomic propo- 
sitions occur in fl and f2. Note that  this is not a restriction, the result can be 
easily extended to the generl case. We introduce to A: 

1. an auxiliary clock c E C and an boolean variable Yl (to denote the t ru th  
value of fl) and 

2. an auxiliary boolean variable vp for all p E A(fl)  U A(f2). 

Assume that  all the booleans of A(fl),  A(f2) and vl are initiated to ft. 
Let E(f) denote the boolean expression by replacing all p E A(f) with their 

corresponding boolean variable vp. As usual, E(f)[tt/Vp] denotes a substitution 
that  replaces vp with tt  in E(f). This can be extended in the usual way to set 
of substitutions. For instance, the t ru th  value of f at a given state s may be 
calculated by E(f)[tt/vplp e V(s)][ff /Vp[p • Y(s)]. 

Now we are ready to construct a decorated version ~4 (A) for the network A. 
We modify all the components Ai of A as follows: 

1. For all edges of Ai, entering a node ll such that  V(/1) n A(fl)  ~ 0: 

- Make two copies of each such edge. 
- To the original edge, add Vl as a guard. 
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- To the first copy, add -~E(fl) A E(fl)[tt/vp]p E V(ll)] as a guard and 
c := 0,vl := t t  and Vp := t t  for all p E V(l l )  as reset-operations. 

- To the second copy, add -~vl A -~E(fl)[tt/Vp]p E V(ll)] as a guard and 
v v := t t  for all p E V(l l )  as reset-operations. 

2. For all edges of Ai leaving a node 11 such that  V(l~)N A(f~) # @: add vp := ff 
for all p E V( l l )  as reset-operations. 

3. For all edges of Ai entering a node 12 such that  V(12) N A(f2) # 0: add 
-~E(f2) A E(f2)[tt/Vqlq e Y(/2)] as a guard and vt := ff as a reset-operation. 

4. Finally, remove vp := t t  and Vp := ff whenever they occur at the same edge 
3 

Thus, we have a decorated version 2~4(Ai) for each A~ of A. We shall take 
• ( A 1 )  ]] . . .  [],~4(An) to be the decorated version of A, i.e. Ad(A) _= .~4(A1) 

[I.-. ]l ~r 
Note that  we could have constructed the product automaton of A first. Then 

the construction of A~I (A) from the product automaton would be much simpler. 
But the size of Ad(A) will be much larger; it will be exponential in the size of the 
component automata.  Our construction here is purely syntactical based on the 
syntactical structure of each component automaton. The size of .A4 (A) is in fact 
linear in the size of the component automata.  It is particularly appropriate for a 
tool like UPPAAL, that  is based on on-the-fly generation of the state-space of a 
network. For each component automaton A, the size of .~r can be calculated 
precisely as follows: In addition to one auxiliary clock c and ]P(fl)  U P(f2)[ 
boolean variables in M(A) ,  the number of edges of M(A)  is 3 x IEAI where ]EAI 
is the number of edges of A (note that  no extra nodes introduced in M(A)) .  

Note also that  in the above construction, we have the restriction that  fl and 
f2 contain no constraints, but  only atomic propositions. The construction can 
be easily generalized to allow constraints by considering each constraint as a 
proposition and decorating each location (that is, the incomming edges) where 
the constraint could become true when the location is reached. In fact, this is 
what we did above on the boolean expressions (constraints) Eft1) and E(f2). 
Finally, we have the main theoretical result of this paper. 

m 

T h e o r e m  1. ~ / (A)  ~ Inv(vl  ~ c <_ T)  Jff A ~ fl "X~<T f2 for a n e t w o r k  Of 
timed automata A and a bounded response time formula fl ~'Z<T f2. [3 

4 T h e  G e a r  C o n t r o l l e r  

In this section we informally describe the functionality and the requirements of 
the gear controller proposed by Mecel AB, as well as the abstract behavior of 
the environment where the controller is supposed to operate. 

3 This means that a proposition p is assigned to both the source and the target nodes 
of the eadge; vp must have been assigned tt  on all the edges entering the source node. 
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F u n c t i o n a l i t y .  The gear controller changes gears by requesting services pro- 
vided by the components in its environment. The interaction with these com- 
ponents is over the vehicles communication network. A description of the gear 
controller and its interface is as follows. 

Interface: The interface receives service requests and keeps information about 
the current status of the gear controller, which is either changing gear or 
idling. The user of this service is either the driver using the gear stick or a 
dedicated component implementing a gear change algorithm. The interface 
is assumed to respond when the service is completed. 

G e a r  C o n t r o l l e r :  The only user of the gear controller is its interface. The 
controller performs a gear change in five steps beginning when a gear change 
request is received from the interface. The first step is to accomplish a zero 
torque transmission, making it possible to release the currently set gear. 
Secondly the gear is released. The controller then achieves synchronous speed 
over the transmission and sets the new gear. Once the gear is set the engine 
torque is increased so that  the same wheel torque level as before the gear 
change is achieved. 
Under difficult driving conditions the engine may not be able to accomplish 
zero torque or synchronous speed over the transmission. It is then possible 
to change gear using the clutch. By opening the clutch, and consequently the 
transmission, the connection between the engine and the wheels is broken. 
The gearbox is at this state able to release and set the new gear, as zero 
torque and synchronous speed is no longer required. When the clutch closes 
it safely bridges the speed and torque differences between the engine and the 
wheels. We refer to these exceptional cases as recoverable errors. 

E n v i r o n m e n t .  The environment of the gear controller consists of the following 
three components: 

G e a r b o x :  It is an electrically controlled gearbox with control electronics. It 
provides services to set a gear in 100 to 300 ms and to re/ease a gear in 
100 to 200 ms. If a setting or releasing-operation of a gear takes more than 
300 ms or 200 ms respectively, the gearbox will indicate this and stop in a 
specific error state. 

Clutch:  It is an electrically controlled clutch that  has the same sort of basic 
services as the gearbox. The clutch can open or close within 100 to 150 ms. 
If a opening or closing is not accomplish within the time bounds, the clutch 
will indicate this and reach a specific error state. 

E n g i n e :  The engine offers three modes of operation: normal torque, zero torque, 
and synchronous speed. The normal mode is nor ton/ torque where the engine 
gives the requested engine torque. In zero torque mode the engine will t ry  to 
find a zero torque difference over the transmission. Similarly, in synchronous 
speed mode the engine searches zero speed difference between the engine and 
the wheels 4. The maximum time bound searching for zero torque is limited 

4 Synchronous speed mode is used only when the clutch is open or no gear is set. 
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to 400 ms within which a safe state is entered. Furthermore, the maximum 
time bound for synchronous speed control is limited to 500 ms. If 500 ms 
elapse the engine enters an error state. 

We will refer the error states in the environment as unrecoverable errors since it 
is impossible for the gear controller alone to recover from these errors. 

4.1 Requirements. 

In this section we list the informal requirements and desired functionality on the 
gear controller, provided by Mecel AB. The requirements are to ensure the cor- 
rectness of the gear controller. A few operations, such as gear changes and error 
detections, are crucial to the correctness and must be guaranteed within certain 
time bounds. In addition, there are also requirements on the controller to ensure 
desired qualities of the vehicle, such as: good comfort, low fuel consumption, and 
low emission. 

1. P e r f o r m a n c e .  These requirements limit the maximum time to perform a 
gear change when no unrecoverable errors occur. 

(a) A gear change should be completed within 1.5 seconds. 
(b) A gear change, under normal operation conditions, should be performed 

within 1 second. 

2. P r e d i c t a b i l i t y .  The predictability requirements are to ensure strict syn- 
chronization and control between components. 

(a) There should not be dead-locks or live-locks in the system. 
(b) When the engine is regulating torque, the clutch should be closed. 
(c) The gear has to be set in the gearbox when the engine is regulating 

torque. 

3. F u n c t i o n a l i t y .  The following requirements are to ensure the desired func- 
tionality of the gear controller. 

(a) It is able to use all gears. 
(b) It uses the engine to enhance zero torque and synchronous speed over 

the transmission. 
(c) It uses the gearbox to set and release gears. 
(d) It is allowed to use the clutch in difficult conditions. 
(e) It does not request zero torque when changing from neutral gear. 
(f) The gear controller does not request synchronous speed when changing 

to neutral gear. 

4. E r r o r  D e t e c t i o n .  The gear controller detects and indicates error only when: 

(a) the clutch is not opened in time, 
(b) the clutch is not closed in time, 
(c) the gearbox is not able to set a gear in time, 
(d) the gearbox is not able to release a gear in time. 
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Fig. 3. A Flow-Graph of the Gearbox System. 

5 F o r m a l  D e s c r i p t i o n  o f  t h e  S y s t e m  

To design and analyze the gear controller we model the controller and its envi- 
ronment in the UPPAAL model [7]. The modeling phase has been separated in 
two steps. First a model of the environment is created, as its behavior is spec- 
ified in advance as assumptions (see Section 4). Secondly, the controller itself 
and its interface are designed to be functionally correct in the given environ- 
ment. Figure 3 shows a flow-graph of the resulting model where nodes represent 
automata  and edges represent synchronization channels or shared variables (en- 
closed within parenthesis). The gear controller and its interface are modeled by 
the automata  GearControl (GC) and Interface (I). The environment is modeled 
by the three automata: Clutch (C), Engine (E), and GearBox (GB). 

The system uses six variables. Four are timers that  measure 1/1000 of seconds 
(ms): GCTimer, GBTimer, CTimer and ETimer. The two other variables, named 
FromGear and ToGear, are used at gear change requests 5. In the following we 
describe the five automata  of the system. 

E n v i r o n m e n t .  The three automata  of the environment model the basic func- 
tionality and time behavior of the components in the environment. The compo- 
nents have two channels associated with each service: one for requests and one 
to respond when service have been performed. 

G e a r b o x :  In automaton GearBox, shown in Figure 8, inputs on channel ReqSet 
request a gear set and the corresponding response on GearSet  is output  if the 
gear is successfully set. Similarly, the channel ReqNeu requests the neutral 

5 The domains of FromGear and ToGeax are bounded to {0, ..., 6}, where 1 to 5 represent 
gear 1 to gear 5, 0 represents gear N, and 6 is the reverse gear. 
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gear and the response GearNeu signals if the gear is successfully released. If 
the gearbox fails to set or release a gear the locations named ErrorSet and 
ErrorNeu are entered respectively. 

C l u t c h :  The automaton Clutch is shown in Figure 5. Inputs on channels Open- 
Clutch and C loseClu tch  instruct the clutch to open and close respectively. 
The corresponding response channels are Clut chls0pen and ClutchlsClosed. 
If the clutch fails to open or close it enters the location ErrorOpen and Er- 
rorClose respectively. 

Engine: The automaton Engine, shown in Figure 6, accepts incoming requests 
for synchronous speed, a specified torque level or zero torque on the channels 
ReqSpeed, ReqTorque and ReqZeroTorque respectively. The actual torque 
level or requested speed is not modeled since it does not affect the design 
of the gear controller 6. The engine responds on the channels TorqueZero 
and SpeedSet when the services have been completed. Requests for specific 
torque levels (i.e. signal ReqTorque) are not answered, instead torque is as- 
sumed to increase immediately after the request. If the engine fails to deliver 
zero torque or synchronous speed in time, it enters location CluthOpen with- 
out responding to the request. Similarly, the location ErrorSpeed is entered 
if the engine regulates on synchronous speed in too long time. 

F u n c t i o n a l i t y .  Given the formal model of the environment, the gear controller 
has been designed to satisfy both the functionality requirements given in Sec- 
tion 4, and the correctness requirements in Section 4.1 

G e a r  C o n t r o l l e r :  The GearControl automaton is shown in Figure 4. Each main 
loop implements a gear change by interacting with the components of the 
environment. The designed controller measures response times from the com- 
ponents to detect errors (as failures are not signaled). The reaction of the 
controller depends on how serious the occurred error is. It either recovers 
the system from the error, or terminates in a pre-specified location that  
points out the (unrecoverable) error: COpenError, CCloseError, GNeuError or 
GSetError. Recoverable errors are detected in the locations CheckTorque and 
CheckSyncSpeed. 

I n t e r f a c e :  The automaton Interface requests gears R, N, 1, ..., 5 from the gear 
controller. A change from gear 1 to gear 2 is shown in Figure 7. Requests 
and responses are sent through channel ReqNewGear and channel NewGear 
respectively. When a request is sent, the shared variables FromGear and 
ToGear are assigned values corresponding to the current and the requested 
new gear respectively. 

6 Hence, the time bound for finding zero torque (i.e. 400 ms) should hold when de- 
creasing from an arbitrary torque level. 
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GearControl 

ic,hifia~ 
Re ZeroTorque ~ 
GC~Imer. =0 

enClutch! 
G~Timer>=250 
GCTimer:=0 ~ ClutchIsOpen? 

Re Neu[ 
GC~lmer:=0 

Re Speed! 
3C~imer:=0 

GCTimer<lS0 
SpeedSet? 

COpcaE.~r i 

GCTimer>150 

GCTimer>200 

enClutch! ~ c.ReqSr 
~Tlmer>=lS0 
GCTimer:=0 ClutchXsOpen? 

Re Neu} 
GC@imer.=0 

......... GCTimer>300 GCTimer>300 
GCTimer<=350 GCTimer<=350 

GearSet? I GearSet ? 

Clo~eClutch! 
Closed? 

RegTorque ! 

c:ClutchClo~ 

CC~or 1 ToGear==0 CloseClut ch * 
_ GCTimer: z0 

Fig. 4. The Gear Box Controller Automaton. 

6 F o r m a l  V a l i d a t i o n  a n d  V e r i f i c a t i o n  

In this section we formalize the informal requirements given in Section 4.1 and 
prove their correctness using the symbolic model-checker of UPPAAL. 

To enable formalization (and verification) of requirements, we decorate the 
system description with two integer variables, ErrStat  and UseCase. The vari- 
able ErrStat  is assigned values at unrecoverable errors: 1 if Clutch fails to close, 
2 if Clutch fails to open, 3 if GearBox fails to set a gear, and 4 if GearBox fails 
to release a gear. The variable UseCase is assigned values whenever a recover- 
able error occurs in Engine: 1 if it fail to deliver zero torque, and 2 if it is not 
able to find synchronous speed. The system model is also decorated to enable 
verification of bounded response time properties, as described in Section 2. 
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GearControl@lnitiate "v,< zsoo 

( ( ErrStat = 0 ) =~ GearControl@GearChanged ) (I) 
GearControl@lnitiate ~-*s looo 

( ( E r r S t a t ,  = 0 A UseCase = 0 ) =~ GearControl@GearChanged ) (2)  

Clutch@ErrorClose ~'~<2oo GearControl@CCloseError (3) 

Clutch@ErrorOpen "-*<200 GearControl@COpenError (4) 

GearBox@Errorldle ~,z<3~0 GearControl@GSetError (5) 

GearBox@ErrorNeu ~*_<2oo GearControl@GNeuError (6) 
I nv  ( GearControl@CCIoseError =~ Clutch@ErrorClose ) (7) 
Inv ( GearControl@COpenError =~ Clutch@ErrorOpen ) (8) 

I nv  ( GearControl@GSetError =~ GearBox@Errorldle ) (9) 

I nv  ( GearControl@GNeuError =~ GearBox@ErrorNeu ) (10) 

Inv ( Engine@ErrorSpeed =~ ErrStat ~ 0 ) (11) 

Inv ( Engine@Torque =~ Clutch@Closed ) (12) 

A Poss ( Gear@Geari ) (13) 
i E { R , N , 1  . . . . .  5} 

A 
iE{R,1 ..... 5} 

I nv  ( ( GearControl@Gear A Gear@Geari ) =~ Engine@Torque ) (14) 

Table 2. Requirement Specification 

Before formalizing the requirement specification of the gear controller we 
define negation and conjunction for the bounded response time operator and 
the invariant operator defined in Section 2, 

A ~ ~1 Acp 2 iffA ~ ~1 and A ~ ~2 
A ~ ~ i f f A  ~= ~o 

We also extend the (implicit) proposition at(l) to at(A,/),  meaning that  the 
control location of automaton A is currently l. Finally, we introduce Poss(f) to 
denote ~Inv(-~f), fl ~/~<T f2 to denote -~(fl "X~<T f2), and A@l to denote at(A, 1). 
We are now ready to formalize the requirements. 

6.1 Requ irement  Specif ication 

The first performance requirement la,  i.e. that  a gear change must be com- 
pleted within 1.5 seconds given that  no unrecoverable errors occur, is specified 
in property 1. It requires the location Gearfihanged in automaton Gearfiontrol 
to be reached within 1.5 seconds after location Initiate has been entered. Only 
scenarios without unrecoverable errors are considered as the value of the variable 



294 

E r r S t a t  is specified to be zero 7. To consider scenarios with normal operation 
we restrict also the value of variable UseCase to zero (i.e. no recoverable errors 
occurs). Proper ty  2 requires gear changes to be completed within one second 
given that  the system is operating normally. 

The properties 3 to 6 require the system to terminate in known error-locations 
that  point out the specific error when errors occur in the clutch or the gear (re- 
quirements 4a to 4d). Up to 350 ms is allowed to elapse between the occurrence 
of an error and that  the error is indicated in the gear controller. The proper- 
ties 7 to 10 restrict the controller design to indicate an error only when the 
corresponding error has arised in the components. Observe that  no specific loca- 
tion in the gear controller is dedicated to indicate the unrecoverable error that  
may occur when the engines speed-regulation is interrupted (i.e. when location 
Engine~ErrorSpeed is reached). Proper ty  11 requires that  no such location is 
needed since this error is always a consequence of a preceding unrecoverable 
error in the clutch or in the gear. 

Proper ty  13 holds if the system is able to use all gears (requirement 3a). 
Furthermore, for full functionality and predictability, the system is required to be 
dead-lock and live-lock free (requirement 2a). In this report,  dead-lock and live- 
lock properties are not specified due to lack of space. However, property 1 (and 
2) guarantee progress within bounded time if no unrecoverable error causes the 
system to terminate. The properties 12 and 14 specify the informal predictability 
requirements 2b and 2c. 

A number of functionality requirements specify how the gear controller should 
interact with the environment (e.g. 3a to 3f). These requirements have been used 
to design the gear controller. They have later been validated using the simulator 
in UPPAAL and have not been formally specified and verified. 

T i m e  B o u n d  D e r i v a t i o n .  Property 1 requires that  a gear change should be 
performed within one second. Even though this is an interesting property in itself 
one may ask for the lowest time bound for which a gear change is guaranteed. We 
show that  the time bound is 900 ms for error-free scenarios by proving that  the 
change is guaranteed at 900 ms (property 15), and that  the change is possibly 
not completed at 899 ms (property 16). Similarly, for scenarios when the engine 
fails to deliver zero torque we derive the bound 1055 ms, and if synchronous 
speed is not delivered in the engine the time bound is 1205 ms. 

We have shown the shortest time for which a gear change is possible in the 
three scenarios to be: 150 ms, 550 ms, and 450 ms. However, gear changes involv- 
ing neutral gear may be faster as the gear does not have to be released (when 
changing from gear neutral) or set (when changing to gear neutral). Finally we 
consider the same three scenarios but without involving neutral gear by con- 
straining the values of the variables FromGear and ToGear. The derived time 
bounds are: 400 ms, 700 ms and 750. 

Recall that the variable ErrStat  is assigned a positive value (i.e. greater than zero) 
whenever an unrecoverable error occurs. 
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GearControl~lnit iate "~<9oo 

( ( ErrS'cat : 0 A UseCase = 0 ) =~ GearControl@GearChanged ) (15) 
GearControl~lnit iate ~)/~_< s99 

( ( ~ . r rStat  ---- 0 A UseCase = 0 ) =~ GearControl~GearChanged ) (16) 

Table 3. Time Bounds 

V e r i f i c a t i o n  Resul t s .  We have verified totally 46 properties of the system s 
using UPPAAL installed on a 75 MHz Pentium PC equipped with 24 MB of 
primary memory. The verification of all the properties consumed 2.99 second. 

7 Conclus ion 

In this paper, we have reported an industrial case study in applying formal 
techniques for the design and analysis of control systems for vehicles. The main 
output of the case-study is a formally described gear controller and a set of 
formal requirements. The designed controller has been validated and verified 
using the tool UPPAAL to satisfy the safety and functionality requirements on 
the controller, provided by Mecel AB. It may be considered as one piece of 
evidence that the validation and verification tools of today are mature enough 
to be applied in industrial projects. 

We have given a detailed description of the formal model of the gear con- 
troller and its surrounding environment, and its correctness formalized in 46 log- 
ical formulas according to the informal requirements delivered by industry. The 
verification was performed in a few seconds on a Pentium PC running UPPAAL 
version 2.12.2. Another contribution of this paper is a solution to a problem we 
got in this case study, namely how to use a tool like UPPAAL, which only pro- 
vides reachability analysis to verify bounded response time properties. We have 
presented a logic and a method to characterize and model-check such properties 
by reachability analysis in combination with simple syntactical manipulation on 
the system description. 

This work concerns only one component, namely gear controller of a control 
system for vehicles. Future work, naturally include modelling and verification 
of the whole control system. The project is still in progress. We hope to report 
more in the near future on the project. 
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Appendix: The System Description 

Clutch 
~rl~<=lso ) CTim~r.=100 ClutchlsOpen ! 

imerff150tat: =2 FarorClosc >~Opcn 

Closed CTimer ,=lO0 t ~ l m e  t~~ r<=150 ClutchIsC1osed I ) 

Fig. 5. The Clutch Automaton. 
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Engine 
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Fig. 6. The Engine Automaton. 

ReqNewGear ! 
FromGear: =I 
ToGear : =2 

NewGear ? 
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Gearl chkGearl2 GeaY2 

Fig. 7. The Interface Automaton: a gear change. 

GearBox ( ' t , ~ . ; . - -  
GBT ..... I00 ~<:200 ) 
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GBTimer>2 0 0 
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Fig. 8. The Gearbox Automaton. 


