
Formal Design and Analysis of a
Gear Controller*

Magnus Lindahl 1 Paul Pettersson 2 Wang Yi 2

1 Mecel AB, GSteborg, Sweden. E-mail: magnus, lindahlSmecel, s e

2 Department of Computer Systems, Uppsala University, Sweden.
E-mail: {pauper ,yi}@docs. uu. se

A b s t r a c t . In this paper, we report on an application of the validation
and verification tool kit UPPAAL in the design and analysis of a proto-
type gear controller, carried out in a joint project between industry and
academia. We give a detailed description of the formal model of the gear
controller and its surrounding environment, and its correctness formal-
ized according to the informal requirements delivered by our industrial
partner of the project. The second contribution of this paper is a solution
to the problem we met in this case study, namely how to use a tool like
UPPAAL, which only provides reachability analysis to verify bounded re-
sponse time properties. The advantage of our solution is that we need no
additional implementation work to extend the existing model-checker,
but simple manual syntactical manipulation on the system description.

1 I n t r o d u c t i o n

Over the past few years, a number of modeling and verification tools for real-t ime
systems [5, 4, 3] have been developed based on the theory of t imed au toma ta [1].
They have been successfully applied in various case-studies [2, 6,8]. However,
the tools have been mainly used in the academic community, namely by the tool
developers. It has been a challenge to apply these tools to real-sized industrial
case-studies. In this paper we report on an application of the verification tool-kit
UPPAAL 1 to a prototype gear controller developed in a joint project between in-
dustry and academia. The project has been carried out in collaboration between
Mecel AB and Uppsala University.

The gear controller is a component in the real-time embedded system tha t
operates in a modern vehicle. The gear-requests from the driver are delivered
over a communication network to the gear controller. The controller implements
the actual gear change by actuat ing the lower level components of the system,
such as the clutch, the engine and the gearbox. Obviously, the behavior of the

* This work has been supported by ASTEC (Advanced Software TEChnology),
NUTEK (Swedish Board for Technical Development) and TFR (Swedish Technical
Research Council).

1 Installation and documentation is available at the UPPAAL home page
http: / /www'd~ / d~ /uppaal/"

282

gear controller is critical to the safety of the vehicle. Simulation and testing have
been the traditional ways to ensure that the behavior of the controller satisfies
certain safety requirements. However these methods are by no means complete
in finding errors though they are useful and practical. As a complement, formal
techniques have been a promising approach to ensuring the correctness of em-
bedded systems. The project is to use formal modeling techniques in the early
design stages to describe design sketches, and to use symbolic simulators and
model checkers as debugging and verification tools to ensure that the predicted
behavior of the designed controller at each design phase, satisfies certain require-
ments under given assumptions on the environment where the gear controller is
supposed to operate. The requirements on the controller and assumptions on the
environment have been described by Mecel AB in an informal document, and
then formalized in the UPPAAL model and a simple linear-time logic based on
the UPPAAL logic to deduce the design of the gear controller.

We shall give a detailed description of the formal model of the gear controller
and its surrounding environment in the UPPAAL model and its correctness in
the UPPAAL logic according to the informal requirements delivered by Mecel
AB. Another contribution of this paper is a lesson we learnt in this case study,
namely how to use a tool like UPPAAL, which only provides reachability analysis
to verify bounded response time properties e.g. /f fl (a request) becomes true
at a certain t ime point, f2 (a response) mus t be guaranteed to be true within
a t ime bound. We present a logic and a method to characterize and model-
check response time properties. The advantage of this approach is that we need
no additional implementation work to extend the existing model-checker, but
simple manual syntactical manipulation on the system description.

The paper is organised as follows: In section 2, we present a simple logic to
characterize safety and response time properties. Section 3 develops a method
to model-check such properties. In Section 4 and 5 the gear controller system
and its requirements are informally and formally described. In Section 6 the
formal description of the system and its requirements are transformed using
the technique developed in section 2 for verification by reachability analysis.
Section 7 concludes the paper. Finally, we enclose the formal description of the
surrounding environment of the gear controller in the appendix.

2 A Logic for Safety and Bounded Response Time
P r o p e r t i e s

At the start of the project, we found that it was not so obvious how to formalize
(in the UPPAAL logic) the pages of informal requirements delivered by the design
engineers. One of the reasons was that our logic is too simple, which can express
essentially only invariant properties. After a while, it became obvious that these
requirements could be described in a simple logic, which can be model-checked
by reachability analysis in combination with a certain syntactical manipulation
on the model of the system to be verified. We also noticed that though the logic

283

is so simple, it characterizes the class of logical properties verified in all previous
case studies where UPPAAL is applied (see e.g. [2, 6, 8]).

2.1 T imed Transition Systems and Timed Traces

A timed transition system is a labeled transition system with two types of labels:
atomic actions and delay actions (i.e. positive reals), representing discrete and
continuous changes of real-time systems.

Let Act be a finite set of actions and P be a set of atomic propositions. We
use 1% to stand for the set of non-negative real numbers, D for the set of delay
actions {e(d) I d E R}, and ~ for the union Act U D ranged over by ~, a l , a2 etc.

Definit ion 1. A timed transition system over Act and 7 9 is a tuple ~q = (S, So,)
, V), where S is a set of states, So is the initial state, ~ C_ S x ~ x S is a tran-
sition relation, and V : S -~ 2 p is a proposition assignment function. []

A trace a of a timed transition system is an infinite sequence of transitions
in the form:

ff : 80 C~o} 81 al) 82 a2) . . . 8 n ~ 8 n + l ' ' "

where ai 6 ~.
A position i of a is a natural number. We use a[i] to stand for the i th state

of a, and a(i) for the i th transition of a, i.e. a[i]= si and ~r(i) = si ~'> si+t.
We use 6(s ~ s') to denote the duration of the transition, defined by

5(s ~ > s') = 0 if a E Act or d if a = e(d). Given positions i, k with i < k, we
use A(a , i, k) to stand for the accumulated delay of a between the positions i, k,
defined by A(a, i, k) = ~i<j<k 6(a(j)) . We shall only consider non-zeno traces.

Definit ion 2. A trace a is non-zeno i f for all natural number T there exists a
position k such that D(a, O, k) > T. For a timed transition system 8, we denote
by T r (S) all non-zeno traces o r s starting from the initial state so orS . []

Note that the timed transition system defined above can also be represented
finitely as a network of timed automata For the definition of such networks, we
refer to [7]. Let A be a network of timed automata with components A1 . . - An.
We denote by Tr (A) all non-zeno traces of the timed transition system $ i.e.
Tr(-A) = Tr (S) .

2.2 The Logic: Syntax and Semantics

The logic may be seen as a timed variant of a fragement of the linear temporal
logic LTL, which does not allow nested applications of modal operators. It is to
express invariant and bounded response time properties.

Definit ion 3. Assume that ~]; ranged over by g is a set of clock constraints as
defined in [7] and P is a finite set of propositions ranged over by p, q etc. Let

284

(t, ~) ~ g igg(u)
(1,,~) ~ p i g p E v (0

(1, ,~) ~ -~f ~g (l, ,~) g= f
(/, u) ~ t:1 A f2 if/(l, u) ~ f~ and (1, u) ~ f2

~ / n v (f) i g W : ~[~] ~ f
a ~ fi "~<T f2 iffV/: (a[i] ~ fi =} 3k _> i: (a[k] ~ f2 and D(a, i, k) < T))

Table 1. Definition of satisfiability.

~8 denote the set of boolean expressions over ~V U P ranged over by f, fl, f2 etc,
defined as fo110ws:

f : : = g [p [~f [l i a r 2

where g E G]2 is a constraint, and p E P is an atomic proposition. We call ~s
state-formulas, meaning that they will be true of states. []

As usual, we use fl V f2 to stand for -~(-~fl A ~f2), and t t and ff for -~f V f and
-~f A f respectively. Further, we use t:1 ~ f2 to denote -~fl V f2.

Definit ion 4. The set Yt ranged over by f, fl, f2 of trace-formulas over Ys is
defined as fo110ws:

7~ ::= Inv(f) [h ~'Z<T f2

where T is a natural number.
I f f l and f2 are boolean combinations of atomic propositions, we call fl "Z<T

f2 a bounded response time formula. []

Inv(f) states that f is an invariant property; a system satisfies Inv(f) if all its
reachable states satisfy f. It is useful to express safety properties, tha t is, bad
things (e.g. deadlocks) should never happen, in other words, the system should
always behave safely, fl "X~<T [:2 is similar to the strong Until-operator in LTL,
but with an explict time bound. In addition to the time bound, it is also an
invariant formula. It means that as soon as fl is true of a state, f2 must be true
within T time units. However it is not necessary that fl must be true continously
before f2 becomes true as required by the traditional Until-operator.

We shall call formulas of the form fl ~'Z<T f2 a bounded response time for-
mula. Intuitively, fl may be considered as a request and f2 as a response; thus
h "~<_T f2 specifies the bound for the response time to be T.

We interpret ~'s and ~'t in terms of states and (infinite and non-zeno) traces
of t imed automata. We write (/, u) ~ f to denote that the state (/, u) satisfies the
s tate-formula f and ~ ~ ~ to denote that the trace a satisfies the t race-formula
~. The interpretation is defined on the structure of f and ~, given in Table 1.
Naturally, if all the traces of a timed automaton satisfy a trace-formula, we say
that the automaton satisfies the formula.

Definit ion 5. Assume a network of automata A and a trace-formula ~0. We
write -A ~ ~o i f and only i ra ~ ~o for all a E Tr('A). []

285

g a r

. . , . . , -
- . - . , . . , . . " " .

. . .- ' " , .

:l " 12""i. ~
g, r l

a t art /

r t .. ." g ,]

Fig. 1. Illustration of a timed automaton A.

3 Verifying Bounded Response Time Properties by
Reachability Analysis

The current version of UPPAAL can only model-check invariant properties by
reachability analysis. The question is how to use a tool like UPPAAL to check
for bounded response time properties i.e. how to transform the model-checking
problem A ~ fl "Z_<T f2 to a reachability problem. The traditional solution is
to translate the formula to a testing automaton t (see e.g. [6]) and then check
whether the parallel system A[[t can reach a designated state of t.

We take a different approach. We modify (or rather decorate) the automaton
A according to the state-formulas fl and f2, and the time bound T and then
construct a s tate-formula f such that

A4(A) ~ Inv (f) iff A ~ fl ~'-*___T f2

where .~4 (A) is the modified version of A.
We study an example. First assume that each node of an automaton is as-

signed implicitly a proposition at(/) meaning that the current control node is l.
Consider an automaton A illustrated in Figure 1 and a formula at(/l) ~-*<3 at(12)
(i.e. it should always reach 12 from ll within 3 time units). To check whether A
satisfies the formula, we introduce an extra clock c E C and a boolean variable
2 vl into the automaton A, that should be initiated with ft. Assume that the
node 11 has no local loops, i.e. containing no edges leaving and entering 11. We
modify the automaton A as follows:

1. Duplicate all edges entering node 11.
2. Add -~Vl as a guard to the original edges entering ll.
3. Add Vl := t t and c := 0 as reset-operations to the original edges entering ll.
4. Add Vl as a guard to the auxiliary copies of the edges entering 11.
5. Add vl := ff as a reset-operation to all the edges entering 12.

2 Note that a boolean variable may be represented by an integer variable in UPPAAL.

286

; A v I a r

g A "-IV 1 a
r U {C : = O, Yl : : t t }

�9

g! " '

r /

. ~ " " - .

�9 . ' . .

r" u {Vl ; - i f }
.." all

:" gt!

Fig. 2. Illustration of a modified timed automaton .hal(A) of A.

The modified (decorated) automaton AJ(A) is illustrated in Figure 2. Now
we claim that

A4(A) ~ InV(Vl =~ c _< 3) iff A ~ at(/z) -,z<3 at(/2)

The invariant property vl =~ c _< 3 states that either -~vl or if Vl then c <_ 3.
There is only one situation that violates the invariant: Vl and c > 3. Due to
the progress property of time (or non-zenoness), the value of c should always
increase. It will sooner or later pass 3. But if 12 is reached before c reaches 3,
Vl will become ft. Therefore, the only way to keep the invariant property true is
tha t 12 is reached within 3 time units whenever lz is reached.

The above method may be generalized to efficiently model-check response
time formulas for networks of automata. Let .A(f) denote the set of atomic propo-
sitions occuring in a state--formula f. Assume a network A and a response time
formula fl "Z<T f2 For simplicity, we consider the case when only atomic propo-
sitions occur in fl and f2. Note that this is not a restriction, the result can be
easily extended to the generl case. We introduce to A:

1. an auxiliary clock c E C and an boolean variable Yl (to denote the t ru th
value of fl) and

2. an auxiliary boolean variable vp for all p E A(fl) U A(f2).

Assume that all the booleans of A(fl), A(f2) and vl are initiated to ft.
Let E(f) denote the boolean expression by replacing all p E A(f) with their

corresponding boolean variable vp. As usual, E(f)[tt/Vp] denotes a substitution
that replaces vp with tt in E(f). This can be extended in the usual way to set
of substitutions. For instance, the t ru th value of f at a given state s may be
calculated by E(f)[tt/vplp e V(s)][ff /Vp[p • Y(s)].

Now we are ready to construct a decorated version ~4 (A) for the network A.
We modify all the components Ai of A as follows:

1. For all edges of Ai, entering a node ll such that V(/1) n A(fl) ~ 0:

- Make two copies of each such edge.
- To the original edge, add Vl as a guard.

287

- To the first copy, add -~E(fl) A E(fl)[tt/vp]p E V(ll)] as a guard and
c := 0,vl := t t and Vp := t t for all p E V(l l) as reset-operations.

- To the second copy, add -~vl A -~E(fl)[tt/Vp]p E V(ll)] as a guard and
v v := t t for all p E V(l l) as reset-operations.

2. For all edges of Ai leaving a node 11 such that V(l~)N A(f~) # @: add vp := ff
for all p E V(l l) as reset-operations.

3. For all edges of Ai entering a node 12 such that V(12) N A(f2) # 0: add
-~E(f2) A E(f2)[tt/Vqlq e Y(/2)] as a guard and vt := ff as a reset-operation.

4. Finally, remove vp := t t and Vp := ff whenever they occur at the same edge
3

Thus, we have a decorated version 2~4(Ai) for each A~ of A. We shall take
• (A 1)]] . . . [],~4(An) to be the decorated version of A, i.e. Ad(A) _= .~4(A1)

[I.-.]l ~r
Note that we could have constructed the product automaton of A first. Then

the construction of A~I (A) from the product automaton would be much simpler.
But the size of Ad(A) will be much larger; it will be exponential in the size of the
component automata. Our construction here is purely syntactical based on the
syntactical structure of each component automaton. The size of .A4 (A) is in fact
linear in the size of the component automata. It is particularly appropriate for a
tool like UPPAAL, that is based on on-the-fly generation of the state-space of a
network. For each component automaton A, the size of .~r can be calculated
precisely as follows: In addition to one auxiliary clock c and]P(fl) U P(f2)[
boolean variables in M(A) , the number of edges of M(A) is 3 x IEAI where]EAI
is the number of edges of A (note that no extra nodes introduced in M(A)) .

Note also that in the above construction, we have the restriction that fl and
f2 contain no constraints, but only atomic propositions. The construction can
be easily generalized to allow constraints by considering each constraint as a
proposition and decorating each location (that is, the incomming edges) where
the constraint could become true when the location is reached. In fact, this is
what we did above on the boolean expressions (constraints) Eft1) and E(f2).
Finally, we have the main theoretical result of this paper.

m

T h e o r e m 1. ~ / (A) ~ Inv(vl ~ c <_ T) Jff A ~ fl "X~<T f2 for a n e t w o r k Of
timed automata A and a bounded response time formula fl ~'Z<T f2. [3

4 T h e G e a r C o n t r o l l e r

In this section we informally describe the functionality and the requirements of
the gear controller proposed by Mecel AB, as well as the abstract behavior of
the environment where the controller is supposed to operate.

3 This means that a proposition p is assigned to both the source and the target nodes
of the eadge; vp must have been assigned tt on all the edges entering the source node.

288

F u n c t i o n a l i t y . The gear controller changes gears by requesting services pro-
vided by the components in its environment. The interaction with these com-
ponents is over the vehicles communication network. A description of the gear
controller and its interface is as follows.

Interface: The interface receives service requests and keeps information about
the current status of the gear controller, which is either changing gear or
idling. The user of this service is either the driver using the gear stick or a
dedicated component implementing a gear change algorithm. The interface
is assumed to respond when the service is completed.

G e a r C o n t r o l l e r : The only user of the gear controller is its interface. The
controller performs a gear change in five steps beginning when a gear change
request is received from the interface. The first step is to accomplish a zero
torque transmission, making it possible to release the currently set gear.
Secondly the gear is released. The controller then achieves synchronous speed
over the transmission and sets the new gear. Once the gear is set the engine
torque is increased so that the same wheel torque level as before the gear
change is achieved.
Under difficult driving conditions the engine may not be able to accomplish
zero torque or synchronous speed over the transmission. It is then possible
to change gear using the clutch. By opening the clutch, and consequently the
transmission, the connection between the engine and the wheels is broken.
The gearbox is at this state able to release and set the new gear, as zero
torque and synchronous speed is no longer required. When the clutch closes
it safely bridges the speed and torque differences between the engine and the
wheels. We refer to these exceptional cases as recoverable errors.

E n v i r o n m e n t . The environment of the gear controller consists of the following
three components:

G e a r b o x : It is an electrically controlled gearbox with control electronics. It
provides services to set a gear in 100 to 300 ms and to re/ease a gear in
100 to 200 ms. If a setting or releasing-operation of a gear takes more than
300 ms or 200 ms respectively, the gearbox will indicate this and stop in a
specific error state.

Clutch: It is an electrically controlled clutch that has the same sort of basic
services as the gearbox. The clutch can open or close within 100 to 150 ms.
If a opening or closing is not accomplish within the time bounds, the clutch
will indicate this and reach a specific error state.

E n g i n e : The engine offers three modes of operation: normal torque, zero torque,
and synchronous speed. The normal mode is nor ton/ torque where the engine
gives the requested engine torque. In zero torque mode the engine will t ry to
find a zero torque difference over the transmission. Similarly, in synchronous
speed mode the engine searches zero speed difference between the engine and
the wheels 4. The maximum time bound searching for zero torque is limited

4 Synchronous speed mode is used only when the clutch is open or no gear is set.

289

to 400 ms within which a safe state is entered. Furthermore, the maximum
time bound for synchronous speed control is limited to 500 ms. If 500 ms
elapse the engine enters an error state.

We will refer the error states in the environment as unrecoverable errors since it
is impossible for the gear controller alone to recover from these errors.

4.1 Requirements.

In this section we list the informal requirements and desired functionality on the
gear controller, provided by Mecel AB. The requirements are to ensure the cor-
rectness of the gear controller. A few operations, such as gear changes and error
detections, are crucial to the correctness and must be guaranteed within certain
time bounds. In addition, there are also requirements on the controller to ensure
desired qualities of the vehicle, such as: good comfort, low fuel consumption, and
low emission.

1. P e r f o r m a n c e . These requirements limit the maximum time to perform a
gear change when no unrecoverable errors occur.

(a) A gear change should be completed within 1.5 seconds.
(b) A gear change, under normal operation conditions, should be performed

within 1 second.

2. P r e d i c t a b i l i t y . The predictability requirements are to ensure strict syn-
chronization and control between components.

(a) There should not be dead-locks or live-locks in the system.
(b) When the engine is regulating torque, the clutch should be closed.
(c) The gear has to be set in the gearbox when the engine is regulating

torque.

3. F u n c t i o n a l i t y . The following requirements are to ensure the desired func-
tionality of the gear controller.

(a) It is able to use all gears.
(b) It uses the engine to enhance zero torque and synchronous speed over

the transmission.
(c) It uses the gearbox to set and release gears.
(d) It is allowed to use the clutch in difficult conditions.
(e) It does not request zero torque when changing from neutral gear.
(f) The gear controller does not request synchronous speed when changing

to neutral gear.

4. E r r o r D e t e c t i o n . The gear controller detects and indicates error only when:

(a) the clutch is not opened in time,
(b) the clutch is not closed in time,
(c) the gearbox is not able to set a gear in time,
(d) the gearbox is not able to release a gear in time.

290

{
ReqSet ~ , Gea.rSe~
ReqNeu I Gearneu

io+} GBT~er
(L-'rStat)

Interface]

s+q.,~;o~l I (FromGear) I NewGear
(ToGe~-) ~

GearControl }~
* GCTimer

0penClutch ' C l u t c h I s 0 p e n
C l o s e C l u t c h Clut c h l s C l o s e d

Clutch 1 CTi~er (errsr~t)

(ToGeaz+)l
aeqSpeed I ReqTorque[TorqueZero

ReqZeroTorque~ SpeedSet

{ Eng)ne }
L;'Tgier (tJ, eCas.) -

Fig. 3. A Flow-Graph of the Gearbox System.

5 F o r m a l D e s c r i p t i o n o f t h e S y s t e m

To design and analyze the gear controller we model the controller and its envi-
ronment in the UPPAAL model [7]. The modeling phase has been separated in
two steps. First a model of the environment is created, as its behavior is spec-
ified in advance as assumptions (see Section 4). Secondly, the controller itself
and its interface are designed to be functionally correct in the given environ-
ment. Figure 3 shows a flow-graph of the resulting model where nodes represent
automata and edges represent synchronization channels or shared variables (en-
closed within parenthesis). The gear controller and its interface are modeled by
the automata GearControl (GC) and Interface (I). The environment is modeled
by the three automata: Clutch (C), Engine (E), and GearBox (GB).

The system uses six variables. Four are timers that measure 1/1000 of seconds
(ms): GCTimer, GBTimer, CTimer and ETimer. The two other variables, named
FromGear and ToGear, are used at gear change requests 5. In the following we
describe the five automata of the system.

E n v i r o n m e n t . The three automata of the environment model the basic func-
tionality and time behavior of the components in the environment. The compo-
nents have two channels associated with each service: one for requests and one
to respond when service have been performed.

G e a r b o x : In automaton GearBox, shown in Figure 8, inputs on channel ReqSet
request a gear set and the corresponding response on GearSet is output if the
gear is successfully set. Similarly, the channel ReqNeu requests the neutral

5 The domains of FromGear and ToGeax are bounded to {0, ..., 6}, where 1 to 5 represent
gear 1 to gear 5, 0 represents gear N, and 6 is the reverse gear.

291

gear and the response GearNeu signals if the gear is successfully released. If
the gearbox fails to set or release a gear the locations named ErrorSet and
ErrorNeu are entered respectively.

C l u t c h : The automaton Clutch is shown in Figure 5. Inputs on channels Open-
Clutch and C loseClu tch instruct the clutch to open and close respectively.
The corresponding response channels are Clut chls0pen and ClutchlsClosed.
If the clutch fails to open or close it enters the location ErrorOpen and Er-
rorClose respectively.

Engine: The automaton Engine, shown in Figure 6, accepts incoming requests
for synchronous speed, a specified torque level or zero torque on the channels
ReqSpeed, ReqTorque and ReqZeroTorque respectively. The actual torque
level or requested speed is not modeled since it does not affect the design
of the gear controller 6. The engine responds on the channels TorqueZero
and SpeedSet when the services have been completed. Requests for specific
torque levels (i.e. signal ReqTorque) are not answered, instead torque is as-
sumed to increase immediately after the request. If the engine fails to deliver
zero torque or synchronous speed in time, it enters location CluthOpen with-
out responding to the request. Similarly, the location ErrorSpeed is entered
if the engine regulates on synchronous speed in too long time.

F u n c t i o n a l i t y . Given the formal model of the environment, the gear controller
has been designed to satisfy both the functionality requirements given in Sec-
tion 4, and the correctness requirements in Section 4.1

G e a r C o n t r o l l e r : The GearControl automaton is shown in Figure 4. Each main
loop implements a gear change by interacting with the components of the
environment. The designed controller measures response times from the com-
ponents to detect errors (as failures are not signaled). The reaction of the
controller depends on how serious the occurred error is. It either recovers
the system from the error, or terminates in a pre-specified location that
points out the (unrecoverable) error: COpenError, CCloseError, GNeuError or
GSetError. Recoverable errors are detected in the locations CheckTorque and
CheckSyncSpeed.

I n t e r f a c e : The automaton Interface requests gears R, N, 1, ..., 5 from the gear
controller. A change from gear 1 to gear 2 is shown in Figure 7. Requests
and responses are sent through channel ReqNewGear and channel NewGear
respectively. When a request is sent, the shared variables FromGear and
ToGear are assigned values corresponding to the current and the requested
new gear respectively.

6 Hence, the time bound for finding zero torque (i.e. 400 ms) should hold when de-
creasing from an arbitrary torque level.

292

GearControl

ic,hifia~
Re ZeroTorque ~
GC~Imer. =0

enClutch!
G~Timer>=250
GCTimer:=0 ~ ClutchIsOpen?

Re Neu[
GC~lmer:=0

Re Speed!
3C~imer:=0

GCTimer<lS0
SpeedSet?

COpcaE.~r i

GCTimer>150

GCTimer>200

enClutch! ~ c.ReqSr
~Tlmer>=lS0
GCTimer:=0 ClutchXsOpen?

Re Neu}
GC@imer.=0

......... GCTimer>300 GCTimer>300
GCTimer<=350 GCTimer<=350

GearSet? I GearSet ?

Clo~eClutch!
Closed?

RegTorque !

c:ClutchClo~

CC~or 1 ToGear==0 CloseClut ch *
_ GCTimer: z0

Fig. 4. The Gear Box Controller Automaton.

6 F o r m a l V a l i d a t i o n a n d V e r i f i c a t i o n

In this section we formalize the informal requirements given in Section 4.1 and
prove their correctness using the symbolic model-checker of UPPAAL.

To enable formalization (and verification) of requirements, we decorate the
system description with two integer variables, ErrStat and UseCase. The vari-
able ErrStat is assigned values at unrecoverable errors: 1 if Clutch fails to close,
2 if Clutch fails to open, 3 if GearBox fails to set a gear, and 4 if GearBox fails
to release a gear. The variable UseCase is assigned values whenever a recover-
able error occurs in Engine: 1 if it fail to deliver zero torque, and 2 if it is not
able to find synchronous speed. The system model is also decorated to enable
verification of bounded response time properties, as described in Section 2.

293

GearControl@lnitiate "v,< zsoo

((ErrStat = 0) =~ GearControl@GearChanged) (I)
GearControl@lnitiate ~-*s looo

((E r r S t a t , = 0 A UseCase = 0) =~ GearControl@GearChanged) (2)

Clutch@ErrorClose ~'~<2oo GearControl@CCloseError (3)

Clutch@ErrorOpen "-*<200 GearControl@COpenError (4)

GearBox@Errorldle ~,z<3~0 GearControl@GSetError (5)

GearBox@ErrorNeu ~*_<2oo GearControl@GNeuError (6)
I nv (GearControl@CCIoseError =~ Clutch@ErrorClose) (7)
Inv (GearControl@COpenError =~ Clutch@ErrorOpen) (8)

I nv (GearControl@GSetError =~ GearBox@Errorldle) (9)

I nv (GearControl@GNeuError =~ GearBox@ErrorNeu) (10)

Inv (Engine@ErrorSpeed =~ ErrStat ~ 0) (11)

Inv (Engine@Torque =~ Clutch@Closed) (12)

A Poss (Gear@Geari) (13)
i E { R , N , 1 5}

A
iE{R,1 5}

I nv ((GearControl@Gear A Gear@Geari) =~ Engine@Torque) (14)

Table 2. Requirement Specification

Before formalizing the requirement specification of the gear controller we
define negation and conjunction for the bounded response time operator and
the invariant operator defined in Section 2,

A ~ ~1 Acp 2 iffA ~ ~1 and A ~ ~2
A ~ ~ i f f A ~= ~o

We also extend the (implicit) proposition at(l) to at(A,/), meaning that the
control location of automaton A is currently l. Finally, we introduce Poss(f) to
denote ~Inv(-~f), fl ~/~<T f2 to denote -~(fl "X~<T f2), and A@l to denote at(A, 1).
We are now ready to formalize the requirements.

6.1 Requ irement Specif ication

The first performance requirement la, i.e. that a gear change must be com-
pleted within 1.5 seconds given that no unrecoverable errors occur, is specified
in property 1. It requires the location Gearfihanged in automaton Gearfiontrol
to be reached within 1.5 seconds after location Initiate has been entered. Only
scenarios without unrecoverable errors are considered as the value of the variable

294

E r r S t a t is specified to be zero 7. To consider scenarios with normal operation
we restrict also the value of variable UseCase to zero (i.e. no recoverable errors
occurs). Proper ty 2 requires gear changes to be completed within one second
given that the system is operating normally.

The properties 3 to 6 require the system to terminate in known error-locations
that point out the specific error when errors occur in the clutch or the gear (re-
quirements 4a to 4d). Up to 350 ms is allowed to elapse between the occurrence
of an error and that the error is indicated in the gear controller. The proper-
ties 7 to 10 restrict the controller design to indicate an error only when the
corresponding error has arised in the components. Observe that no specific loca-
tion in the gear controller is dedicated to indicate the unrecoverable error that
may occur when the engines speed-regulation is interrupted (i.e. when location
Engine~ErrorSpeed is reached). Proper ty 11 requires that no such location is
needed since this error is always a consequence of a preceding unrecoverable
error in the clutch or in the gear.

Proper ty 13 holds if the system is able to use all gears (requirement 3a).
Furthermore, for full functionality and predictability, the system is required to be
dead-lock and live-lock free (requirement 2a). In this report, dead-lock and live-
lock properties are not specified due to lack of space. However, property 1 (and
2) guarantee progress within bounded time if no unrecoverable error causes the
system to terminate. The properties 12 and 14 specify the informal predictability
requirements 2b and 2c.

A number of functionality requirements specify how the gear controller should
interact with the environment (e.g. 3a to 3f). These requirements have been used
to design the gear controller. They have later been validated using the simulator
in UPPAAL and have not been formally specified and verified.

T i m e B o u n d D e r i v a t i o n . Property 1 requires that a gear change should be
performed within one second. Even though this is an interesting property in itself
one may ask for the lowest time bound for which a gear change is guaranteed. We
show that the time bound is 900 ms for error-free scenarios by proving that the
change is guaranteed at 900 ms (property 15), and that the change is possibly
not completed at 899 ms (property 16). Similarly, for scenarios when the engine
fails to deliver zero torque we derive the bound 1055 ms, and if synchronous
speed is not delivered in the engine the time bound is 1205 ms.

We have shown the shortest time for which a gear change is possible in the
three scenarios to be: 150 ms, 550 ms, and 450 ms. However, gear changes involv-
ing neutral gear may be faster as the gear does not have to be released (when
changing from gear neutral) or set (when changing to gear neutral). Finally we
consider the same three scenarios but without involving neutral gear by con-
straining the values of the variables FromGear and ToGear. The derived time
bounds are: 400 ms, 700 ms and 750.

Recall that the variable ErrStat is assigned a positive value (i.e. greater than zero)
whenever an unrecoverable error occurs.

295

GearControl~lnit iate "~<9oo

((ErrS'cat : 0 A UseCase = 0) =~ GearControl@GearChanged) (15)
GearControl~lnit iate ~)/~_< s99

((~ . r rStat ---- 0 A UseCase = 0) =~ GearControl~GearChanged) (16)

Table 3. Time Bounds

V e r i f i c a t i o n Resul t s . We have verified totally 46 properties of the system s
using UPPAAL installed on a 75 MHz Pentium PC equipped with 24 MB of
primary memory. The verification of all the properties consumed 2.99 second.

7 Conclus ion

In this paper, we have reported an industrial case study in applying formal
techniques for the design and analysis of control systems for vehicles. The main
output of the case-study is a formally described gear controller and a set of
formal requirements. The designed controller has been validated and verified
using the tool UPPAAL to satisfy the safety and functionality requirements on
the controller, provided by Mecel AB. It may be considered as one piece of
evidence that the validation and verification tools of today are mature enough
to be applied in industrial projects.

We have given a detailed description of the formal model of the gear con-
troller and its surrounding environment, and its correctness formalized in 46 log-
ical formulas according to the informal requirements delivered by industry. The
verification was performed in a few seconds on a Pentium PC running UPPAAL
version 2.12.2. Another contribution of this paper is a solution to a problem we
got in this case study, namely how to use a tool like UPPAAL, which only pro-
vides reachability analysis to verify bounded response time properties. We have
presented a logic and a method to characterize and model-check such properties
by reachability analysis in combination with simple syntactical manipulation on
the system description.

This work concerns only one component, namely gear controller of a control
system for vehicles. Future work, naturally include modelling and verification
of the whole control system. The project is still in progress. We hope to report
more in the near future on the project.

References

1. R. Alur and D. Dill. Automata for Modelling Real-Time Systems. Theoretical
Computer Science, 126(2):183-236, April 1994.

s A complete list of the verified properties can be found in the full version of this
paper.

296

2. Johan Bengtsson, David Griffioen, K~re Kristoffersen, Kim G. Larsen, Fredrik Lars-
son, Paul Pettersson, and Wang Yi. Verification of an Audio Protocol with Bus
Collision Using UPPAAL. In Rajeev Alur and Thomas A. Henzinger, editors, Proc.
of 8th Int. Conf. on Computer Aided Verit~cation, number 1102 in Lecture Notes in
Computer Science, pages 244-256. Springer-Verlag, July 1996.

3. Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
UPPAAL in 1995. In Proc. of the 2nd Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, number 1055 in Lecture Notes in Computer
Science, pages 431-434. Springer-Verlag, Mars 1996.

4. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Rajeev
Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors, Proc. of Workshop on
Verification and Control of Hybrid Systems III, Lecture Notes in Computer Science,
pages 208-219. Springer-Verlag, October 1995.

5. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH: The Next
Generation. In Proc. of the 16th IEEE Real-Time Systems Symposium, pages 56-65,
December 1995.

6. H.E. Jensen, K.G. Larsen, and A. Skou. Modelling and Analysis of a Collision Avoid-
ance Protocol Using SPIN and UPPAAL. In Proc. of 2nd International Workshop on
the SPIN Verification System, pages 1-20, August 1996.

7. Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell. To appear
in International Journal on Software Tools for Technology Transfer, 1998.

8. Thomas Stauner, Olaf Miler, and Max Fuchs. Using hytech to verify an automotive
control system. In Proc. Hybrid and Real-Time Systems, Grenoble, March 26-
28, 1997. Technische Universitiit Miinchen, Lecture Notes in Computer Science,
Springer, 1997.

Appendix: The System Description

Clutch
~rl~<=lso) CTim~r.=100 ClutchlsOpen !

imerff150tat: =2 FarorClosc >~Opcn

Closed CTimer ,=lO0 t ~ l m e t~~ r<=150 ClutchIsC1osed I)

Fig. 5. The Clutch Automaton.

297

Engine
R_e~ZeroTorque?

...... 0 ~Wl~~ e~<u~400) ET

qTorque ? UseCase : = i
ToGear>0
ET1mer : = 0 'I ~rqueZero !

ToGear==0 ~ Pimer>=150

ETimer - r=: 0

~ u ~ ToGear>0 %'Z~xo
�9 := i ReqSpee_d? ET == 5 0 0~#~[~ F i ~ ~),~-~mSl~e~

k..J~

Fig. 6. The Engine Automaton.

ReqNewGear !
FromGear: =I
ToGear : =2

NewGear ?

0 "0 "0
Gearl chkGearl2 GeaY2

Fig. 7. The Interface Automaton: a gear change.

GearBox (' t , ~ . ; . - -
GBT I00 ~<:200)

Neutral GearNeu I

GBTimer>2 0 0
R ~et? P~r|dle ErrStat : -
GBe~i 0 //~ O Req1~eu ? mer : = GBTimer. =0

GBTimer==300 F~N~J ~
ErrStat. =3

GBTimer>=10u) O I d l r
GearSet !

Fig. 8. The Gearbox Automaton.

