
Set-Based Analysis of Reactive Infinite-State Systems

Witold Charatonik* Andreas Podelski

Max-Planck-Institut fiir Informatik
Im Stadtwald, D-66123 Saarbr/icken, Germany

{witold; podelski}~mpi-sb, mpg. de

A b s t r a c t . We present an automated abstract verification method for
infinite-state systems specified by logic programs (which are a uniform
and intermediate layer to which diverse formalisms such as transition sys-
tems, pushdown processes and while programs can be mapped).
We establish connections between: logic program semantics and CTL
properties, set-based program analysis and pushdown processes, and also
between model checking and constraint solving, viz. theorem proving.
We show that set-based analysis can be used to compute supersets of
the values of program variables in the states that satisfy a given CTL
property.

1 Introduction

Testing runtime properties of systems with infinite state spaces is generally unde-
cidable. Therefore, the best one can hope for are semi-algorithms implementing
a test, or always terminating algorithms implementing a semi-test (which either
yields yes /don ' t know answers or, dually, no /don ' t know answers). Based on the
idea that any automated method that sometimes detects programming errors is
useful, we investigate semi-tests in this paper.

One way to obtain a semi-test is to apply a test to a finite approximation
of the infinite system of interest. An essential part of an automated semi-test
computes the approximation from a finite representation of the original system,
viz. a program. We will study representations of infinite-state systems by logic
programs. Logic programs are a uniform and intermediate layer to which diverse
formalisms such as finite-state transition systems, pushdown processes and while
programs can be mapped. The connection between transition systems and logic
via logic programs allows us to establish the correspondence between:

- program semantics and temporal logic properties,
- abstraction and logical implication,
- the Cartesian abstraction of set-based analysis and pushdown processes,
- model-checking and first-order, resolution-based theorem proving.

Specifically, we consider the temporal logic CTL [14] (which allows one to express
safety, inevitability and other important behavioral properties excluding fairness

* On leave from Wroclaw University. Part ia l ly supported by Polish KBN grant 8TllG02913.

359

conditions). For a (possibly infinite-state) transition system represented by a
logic program, the set of states satisfying a CTL property can be characterized
through the semantics of logic programs; see Theorem 2, Section 5.

Now, static program analysis based on abstract interpretation (see, e.g., [10])
may be used to compute a conservative approximation of a CTL property by
computing an abstraction of the logic program semantics. The soundness of
the abstract-verification method thus obtained holds by the soundness of the
abstraction. This is in contrast with the work in, e.g., [22,11, 23], where the test
of a CTL property is applied to an abstraction of the original system.

We use one particular form of static analysis called set-based analysis. Here,
the abstraction consists of mapping a set of tuples to the smallest Cartesian
product of sets containing it (e.g., ((a, 1), (b, 2)} ~-~ (a, b} x (1, 2}). The abstract
semantics computed by this analysis defines a Cartesian product of sets; each set
describes runtime values of a variable at a program point. This set is sometimes
called the type of the program variable. Now, if the concrete program semantics
is used to characterize the set of correct input states, the type of an input
variable denotes a conservative approximation of the set of all its values in correct
input states (where 'correct' refers to states for which a given CTL property is
satisfied); see Theorem 3, Section 6.

Logically, the set-based abstraction amounts to replacing a formula, say,
~[x,y] with the free variables x and y, by the conjunction (3y ~)[x] A (3x ~o)[y]
(which is logically implied by ~). Applying this replacement systematically to
a program 7) yields a new program 7)~. This program defines the degree of ab-
straction of CTL properties in set-based analysis: the full test for the system
defined by P~ is the semi-test for the system defined by P.

The system obtained by the set-based abstraction of a program 7) (defined
by the program 7)~) is not finite-state. Instead, it is a kind of pushdown process.
Pushdown processes have raised interest as a class of infinite-state systems for
which temporal properties are decidable. The systems considered here extend
this class by adding parallel composition, tree-like stacks and non-deterministic
guesses of stack contents. The latter extension introduces a non-determinism of
infinite branching degree. Since set-based analysis here adds no extra approxi-
mation, it yields a full test of CTL properties of pushdown processes even with
this extension; see Theorem 1, Section 4.

When we use set-based analysis as a verification method, the constraint-
solving algorithms which form its computational heart (e.g., [17,16,8, 12]) re-
place the traditional fixpoint iteration of model checking. The constraints used
here can be represented by logic programs (see Section 6). Then, constraint-
solving (more precisely, testing emptiness of the solution of interest) amounts
to first-order theorem proving based on resolution. We are currently working on
making the algorithm [7] for computing the greatest solution practical. One algo-
rithm for computing the least solution is already implemented in the saturation-
based theorem prover SPASS [29]; due to specific theorem-proving techniques
like powerful redundancy criteria, one obtains an efficient decision procedure for
the emptiness test, viz. model checking.

360

R e l a t e d work. In [25] we present a direct application of the set-based analysis
of logic programs to error diagnosis in concurrent constraint programs. The error
can be defined as a special case of a CTL property for a transition system that
consists of non-ground derivations of logic programs.

Our direct inspiration for investigating transition systems specified by ground
derivations of logic programs was the work on pushdown processes in [2, 5, 28].
Here, we extend the result in [2] about CTL model-checking in DEXPTIME to
a more general notion of pushdown processes.

Historically, our work started with the abstract debugging scheme of [4]. The
invariant and intermittent assertions used there correspond to two special cases
of CTL properties. Here, we consider trees instead of numbers for the data
domain, an abstract domain of regular sets of trees instead of intervals, and
Cartesian instead of convex-hull approximation. Our characterization of CTL
properties can be extended to while programs over numeric data by using con-
stralnt logic programs (over numbers instead of trees) as an intermediate layer.

In [26], Ramakrishna et al. present an implementation of a model checker
for the verification of finite-state systems specified by DATALOG programs (i.e.,
logic programs without function symbols). The correctness of their implemen-
tation (in a logic programming language with tabling called XSB) relies implic-
itly on the characterization of CTL properties that we formally prove for logic
programs with function symbols. In contrast to the work in [26] which applies
programming techniques that that are proper to logic programming languages,
we view logic programs rather as an automata-theoretic formalism.

S t r u c t u r e o f t h e p a p e r . The first three sections are to give a flavor of our
method, which we present in technical terms in the subsequent three sections.
Section 2 explains our view of logic programs as an intermediate layer for while
programs. For every while program with data structures modeled as trees (e.g.,
lists), we can find a logic program that represents the same transition system.
The purpose of Section 3 is to give the intuition of our characterization of CTL
properties (also to readers who are not so familiar with logic programs, to which
we do not refer in this section). We show how one can translate a finite transition
system to a simple logical formula; the formula belongs to a logic program whose
operational semantics is that transition system. We then show how the logical
formula must be modified so that a particular solution characterizes a given CTL
property; this is the formula that belongs to a program with oracles. Section 4
explains our view of logic programs as automata at hand of pushdown processes.
Section 5 formally introduces the concepts that we used informally in the pre-
vious three sections, and it presents the characterization of CTL properties for
monolithic transition systems. Section 6 gives a self-contained account of set-
based analysis and presents the results about the conservative approximation of
CTL properties that lead to an abstract-verification method. Section 7 gives an
extension of these results to multi-processor transition systems defined by logic
programs with conjunction (which corresponds to parallel composition); Basic
Parallel Processes (see, e.g., [15]) are here a special case. Finally, in conclusion,
we mention possible directions for future work.

361

2 While Programs

We consider an imperative programming language with the two data construc-
tors cons and nil (integers etc. play the role of constant data constructors).
For convenience, cons(x, y) is written as [xly], cons(x1, cons(. . . , x,~, n i l) . . .) as
Ix1, . . . ,x ,] and nil as []. We also have the data destructors hd and tl, where
hd([xly]) = x and tl([xly]) -- y. We will neither formally define the language
nor present the translation of its programs to monolithic total logic programs.
Instead, we present two example programs which will illustrate that such a trans-
lation is possible in principle.

The first program consists of one instruction, a while loop, with the program
labels p and q before and after the instruction.

while x =/= nil do
i := i+l

[-q-] x := tl(x)

The program manipulates the two variables x and i. States are thus pairs (p, e)
formed by the program location p and the environment e which assigns values v=
and vi to the variables x and i. We write such a state as an atom p(v=,vi). The
program induces an infinite-state transition system; possible transitions are, for
example,

p([a,b],0) p([b], 1),
p([b], 1) p([],2),
p([], 2) ~ q([], 2).

Since the transition function must be total, we assume that there exist transitions
modeling an explicit exception handling; for example,

p(3,i) ~ exception,
exception) exception.

We translate the while loop above to the logic program below. Each program
location corresponds to a predicate whose arguments correspond to the variables
that are visible at that location. We express conditionals through the heads of
the clauses. Since our framework requires that the program is total, we add
clauses in order to model an exhaustive case statement (in a practical setting,
such clauses could be presented implicitly). The transition systems induced by
the while program and the logic program coincide.

P([xlY], i) ~- p(y, i + 1)

p([],i) ~-- q(H,i)

p(a, i) +- exception (for each other data constructor a)

exception +- exception

The CTL property EF({q(v~, v~) I true}) specifies the set of all states at loca-
tion p from which the location q can be reached. The values v= for the variable x

362

in such states are exactly the finite lists. The set of these values can thus be
presented as the least solution of the equation list = cons(Tz, list) U nil over
sets of trees, or of the program below (and this is also the result of the method
presented in this paper).

list(cons(x, y)) +-- list(y)
list(nil)

That is, if the while loop is executed with an initial value other than a finite list
for x, then it will not reach the program point q (a fact which may be useful for
debugging purposes).

The property EG({p(v~, i~) I true}) holds for the states p(v=, ix) where v=
is an infinite list (which models a circular list). The set of all infinite lists is the
greatest solution of the equation list = cons(Tz, list) over sets of infinite trees,
or of the program below interpreted over the domain of infinite trees (again, this
is also the result of the method outlined in this paper).

list(cons(x, y)) +-- list(y)

That is, if the while loop is executed with an initial value other than an infinite
list for x, then a program location other than p will be reached or an exception
will be raised.

The next example is a program fragment (whose task is to reverse the list x)
containing a typographical error ("[tl(L)]" instead of "tl(L)"). Again, we note
p and q the program points before and after the while loop.

[]

[]
[]

y := C]
while x =]= nil do

x := [t l (x)]

y := [hd(L) ly]
x:=y

We construct the corresponding logic program.

init(x) +-- p(x, [])

p([=l='],) +- p([='], [*ly])

p([],y) +- q([],y)

q(=, y) +- r(y, y)

p(a, i) +-- exception (for each other data constructor a)

exception +- exception

Our method will derive that for any other initial value than the empty list for
the variable x the program location q can never be reached.

363

3 Transition Systems

Abstracting away from the fine structure of states and of transitions, we may
present a reactive system with finitely many states as a transition system 3 =
(S, T) with the finite set S of states and the non-deterministic transition function
T : S -+ 2 S. The state q is a successor state of the state p if q E ~'(p). We
translate S into a formula 7)s of propositional logic. Here, for each state p, we
have a symbol p standing for a nullary predicate (or, a Boolean variable).

= A e, V q) (1)
pES qEr(p)

An interpretation of 7)s is presented as a set I C_ S of states; I specifies the set
of all atoms p tha t are valued true. A model (or, solution) of 7)s is an interpreta-
tion under which the formula 7)8 holds. Models are partially ordered by subset
inclusion. If we require, as usual, that r is total (i.e., T(S) ~ ~ for all s E S;
thus,every state has at least one successor), then the least model of 7)s is the
empty set 0 and its greatest model is the set S of all atoms.

We now consider the safety property "P will never happen", written: A G (S -
P) , or: S - E F (P) in CTL notation, for some property P C_ S. The set E F (P)
of all states from which a state in P is reachable, is exactly the set of atoms in
the least model of the following formula.

7) ^P = A V q) ^ A p (2)
pEP qer(p) pEP

The following explanation may help to understand this characterization of E F (P) .
The formula 7)8 ̂ P entails p iff there exists a sequence of implications p e- Pl +-
�9 .. +- Pn in 7)8 and an implication p,~ +- true, which is, Pn is an element of P.
The least model of 7>8 A P is the set of all entailed atoms ("all atoms that must
be true in any model").

Now consider the inevitability property "P will always finally happen", writ-
ten A F (P) , or S - E G (S - P)) . The set E G (S - P) is the set of atoms in the
greatest model of the following formula. (The notation P A-1 P must not be
confused with 7) A (S - P) .)

7) s A - ' P = A (P~ V q) A A "~p (3)
PEP qEv(p) pEP

This may be explained as follows. The formula above entails -~p (i.e., it can
be valid only if the model does not contain p) iff every maximal sequence of
implications of the form p -~ Pl -~ P2 -~ . . . in /)8 is finite and terminates
with Pn --+ false. Thus, an atom p is in the greatest model of 7)s A-- P iff there
exists an infinite sequence of implications avoiding false, which is, there exists
an infinite sequence of transitions that starts in the state p and avoids the states
in P .

The formulas (1), (2) and (3) are the Clark completion of logic programs
that we formally introduce in Section 5. They are used to define the semantics
of program logically.

364

4 P u s h d o w n Processes

We can model a system consisting of finite-state processes, one of which uses
a pushdown stack as a da ta structure, by a pushdown automaton. In order
to describe the ongoing behavior of such a system, we will consider input-less
pushdown au toma ta without an acceptance condition. Formally, a pushdown
process is a tuple

, 4 = (Q,2Y,5,q ~

consisting of a finite set of control states Q, the stack alphabet ~ , the non-
deterministic transit ion function

5 C_ (Q x ~') x (Q x {e})
u (Q x x (Q x z)

and the initial control s tate q0. The states in the corresponding transit ion system

S`4 = (Q x r`4)

are pairs (q, w) consisting of the control s tate q E Q and the stack contents
w E ~ * (where w = ~ if the stack is empty). The transitions either read one
symbol and remove it from the stack or add one.

rA((q ,w)) = {(ql, w~) I w = a.w I where a E ~ , ((q,a),(q~,E)) E 5 or

w' = a.w where a E Z , ((q, c), (q', a)) E 6}

Given a pushdown process ,4, we define the program 7),4 below. We now view ~U
as a set of unary function symbols and e as a constant symbol, and we consider
terms over the signature ~ U {~}.

7)`4 = {q(a(x)) 6- q'(x) l ((q,a) ,(q ' ,~)) E 6}

U {q(x) 6- q ' (a (x)) l ((q ,~) , (q',a)) E 6}

A program with the first kind of clauses only corresponds to a word automaton.
A clause of the form q(a(x)) +- q~(x) can be read as the instruction: "in s ta te q,
reading the word w = a(x) with the first letter a and remaining suffix x, go
to s ta te q' and read the suffix x"; q is a final s tate iff the program contains
a clause of the form q(~). Here, a word a l a 2 . . . a n is represented as a unary

tree al (a2(. . . an (e) . . .)) .
The second kind of clause q(x) 6- q~(a(x)) can be read as the "push" instruc-

tion: "in s tate q with stack contents w, go to s tate p~ with stack contents a(w)."
The next remark is a consequence of the formal definition of the transit ion

system S~ induced by a program 7), which we defer to the next section.

R e m a r k . The transit ion system 3`4 of the pushdown process ,4 and the t ran-
sition system S ~ induced by the program 7)`4 tha t corresponds to ,4 coincide.

[]

365

The assumption that the transitions modify the size of the stack by exactly one
symbol is not a proper restriction as long as acceptance is considered. If, how-
ever, we t ry to simulate the non-deterministic guessing of a new stack contents
via a sequence of transitions that each guess one symbol to be added, then the
necessary modification of the transition relation of the pushdown process would
not leave the temporal properties invariant (because the guessing sequence can
be infinite). Thus, the following generalization seems to be a proper one.

D e f i n i t i o n 1 (G e n e r a l i z e d p u s h d o w n p roces se s) . A generalized pushdown
process is specified by any monolithic total program over the signature consisting
of unary function symbols and one constant symbol.

We may restrict the syntax wlog. to three kinds of Horn clauses.

q(a(x)) +-- q'(x)
q(x) +-- q'(a(x))
q(x) 6-- q'(y)

Given the clause q(x) +- q'(y), every state of the form (q',w') with any stack
contents w' can be a successor state of the state (q, w). Thus, we here have a
non-determinism of branching degree w.

We will state already here the following theorem, which was shown in [3]
for pushdown processes in the restricted sense, i.e., without non-deterministic
guesses of stack contents (and hence, with a finite degree of branching).

T h e o r e m 1. Given a generalized pushdown process and a CTL property qo with
regular atomic propositions, the set of all states satisfying ~o is again regular;
its representation in the form of a non-deterministic finite automaton can be
computed in single-exponential time (in the number of states).

P r o o f . The statement is an instance of Theorem 4. []

5 Monolithic Programs

In a multi-processor transition system, the states have a structure and the tran-
sition function is defined by referring to that structure; we will consider such
systems and their modeling through general logic programs in Section 7. In con-
trast, in a monolithic transition system, the transition function is defined directly
on the states (i.e., as monolithic items). We can model such a system by a logic
program P whose clauses' bodies contain exactly one atom. By extension, we
then say that P is a monolithic program. Thus, a monolithic program P is given
through implications of the form

p(t) s - v'(t')

where p and p' are predicates (different from true) and t and t ' are terms over a
given signature E of function symbols. When we refer to the logical semantics
of P , we use the formula below.

P =- A Vx p(x) o V 3 _ = (x = t i A p ~ (t :))
p i

366

Here, p ranges over the set Pred of all predicates defined by the program and
i ranges over a suitable index set Ip such that {p(t~) 6- p'(t~) I i E Ip} are all
clauses with the predicate p in the head. As usual, 3-x stands for the quantifi-
cation of all variables in ti and t~ but x. For technical convenience, we assume
that all predicates are unary; the results can easily be extended to the case with-
out this restriction (for example, by extending the signature of function symbols
with symbols forming tuples).

We note T~ the set of trees (i.e., ground terms) over the signature ~ . We
use the same meta variables t, t', etc. for terms and trees. Given the program 7)
defining the set of predicates Pred and the signature ~ , the Herbrand base Bp
is the set of all ground atoms pit), which are applications of predicates to trees.
(Note tha t Bp does not include the propositional constant true.)

B~ = {p(t) I P �9 Fred, t �9 T~}

A ground clause of 7) is an implication between ground atoms that is entailed
by P; thus, it is of the form p(a(t)) 6- p'(a(t')) where p(t) 6- i f (g) is a clause
of P and a : Var ~ TE is a valuation (extended from variables to terms in the
canonical way).

We will always assume that P is total, which means that for all ground
atoms p(t) there exists a ground clause of P of the form p(t) 6- p'(t').

An interpretation I , which we present as a subset of the Herbrand base,
(i.e., I C Bp), interprets a pred ica tep as the set {t �9 T~ I Pit) �9 I}. A
model of the program P is an interpretation under which the formula :P is
valid. Models are ordered by subset inclusion. The least model of 7), lm(7)), and
the greatest model of 7), grn(7)), always exist. The least [greatest] model of a
monolithic total program 7) is always the empty [universal] set, i.e., lm(7)) = O
and gm(7)) = Ts The models of the programs that we will define next turn out
to be more interesting. These programs consists of Horn clauses with additional
conjuncts (the "oracles"). Note that -~Fp(t) is equivalent to p(t) �9 (B~ - F). We
always use 7~ A F for defining least models, and P A-~ F for defining greatest
models.

De f in i t i on 2 (P r o g r a m s w i t h oracles) . Given a monolithic program P and
a subset F of the Herbrand base, we define two kinds of programs with oracles.

7) A r = 7) u {p(x) 6- Fp(z) I P �9 Fred}

7) A-- F = {p(t) 6- p'(t') A -~Fp(t) I p(t) 6- p'(t') is a clause in 7)}

The operational semantics of 7) can be described as a transition system

whose states are the ground atoms (not (!) including true), and whose transition
function T~ : Bp -~ 2 ~ is defined as follows.

~'~,(p(t)) = {p'(t') [p(t) 6- p'(t') is a ground clause of 7)}

367

Since we have assumed that 7) is total, we have that Tp(S) i~ 0 for all states s
("the transition function ~-p is total"). The fixpoint semantics of P is given
through the Tp operator on subsets of the Herbrand base.

Tp(I) = {p(t) [p(t) t - p~(t') is a ground clause of P and p'(t') E I}

We immediately note the connection with the inverse of the transition function
(as usual, T~I(P) ---- {S E Bp] 7"7~(8) C_ P} for subsets P of states).

T~ 1 = T p

In order to define the logic CTL over the transition system Sp induced by the
program P, we first need to fix the set Prop of atomic propositions. As in the
finite-state case, an atomic proposition F denotes a set of states, which we also
write as F. When dealing with algorithmic issues, we will require that F can be
finitely represented. This is possible, for example, when we require that F is a
regular atomic proposition, which means that the set

5 , = {t e TE I p(t) e r)

is a recognizable set of trees, for each predicate p.

Usually, the denotation of an atomic proposition is described via the detour
of a labeling function L : S ~ 2 Pr~ where F denotes the set {s E S] F E L(s)}.
In our setting, the labeling function L is implicit by L(s) = {F E Prop I s E F}).
The finite representation of the sets Fp for the atomic propositions occurring in
the CTL formula is part of the input. (It is not clear how L could be represented
finitely otherwise.)

Given the set Prop of atomic propositions, the set of formulas of the logic
CTL and their meaning are defined as in the finite-state case.

~0 ::= F I - ~ I ~1 V ~2] EX(~p) [E(~olU~02) I A(~olU~2)

In addition, we use the following abbreviations: AX(~o) = -~EX(-~o), EF(~o) =
E(trueU~o), AF(~) = A(trueU~o), EG(~) = -,AF(-~o), AG(~) = -~Ef(-~qo).

We write S ,p ~ ~0 if the transition system $ with the initial state p satisfies
the formula ~0. Given 8, we simply write ~ for the set of all states for which the
formula ~0 is satisfied.

 -{slS, s

Theorem 2 (CTL properties and program semantics). Given the transi-
tion system 3~ corresponding to the monolithic program ~P, each set of states
denoted by a CTL formula qo can be characterized in terms of subsets of the
Herbrand base defined through the semantics of programs with oracles, via the
following correspondences.

368

E X (P) =

A X (S - P) =

E F (P) =

A F (P) =

E (S - Pz)UP2 =

A (S - P~)UP2 =

'J -

l m (P ^ P)

S - g m (P A~ P)

lm((p Pl) ^ P2)
S - (gm(7) A~ (S -- P2)) U lm ((P A-~ P2) A P1))

These correspondences hold for all subsets of states P _C BT,, which may be
defined by atomic propositions F or by CTL formulas.

P r o o f . The first two equalities hold by the definitions of E X = rs -1 and Tp. The
next two equalities follow by: (1) the definition of E F [EG] through the least
[greatest] fixpoint of E X , (2) the correspondence between the semantics of logic
programs defined by the least [greatest] fixpoint and the least [greatest] model
(which extend to programs with oracles), and (3) the following identities between
fixpoint operators over properties P C_ Bp, for any given property p0 C_ Bp.

,~p. (pO U E X (P)) = TpApo

AP. ((S - po) M E X (P)) = TpA, po

The proof of the two remaining equalities uses two basic general facts about the
operational semantics and the model-theoretic semantics of a given logic pro-
gram 7 ~. A ground atom p(t) has an execution in Sp that leads to the atom true,
i.e., p(t) E EF({ t rue}) , if and only ifp(t) E / r e (P) ; it has a non-failing execution
in 39 i.e., p(t) E EG(B~, U {true}) if and only if p(t) E gm(P) . We apply these
two facts to programs with oracles instead of 7~. 1 We note that E (S - P1)UP2 is
the set of all ground atoms p(t) which have an execution that reaches a state in P2
while avoiding states in Pz, i.e., which reaches true in the program (PA~ P1)AP2.
Similarly, a state s is not in A (S - Pz)UP2 if it either has an execution that
never reaches a state in P2, i.e., it has a non-terminating execution in the pro-
gram P A-~ (S - P2), or it has an execution that reaches a state s' in P1 while
avoiding states in P2 (in the execution up to, and including s'), i.e., it has an
execution in the program (P A ~ P2) A Pz. []

6 Set-based Analysis

In set-based analysis, an abstract semantics of a program is represented as a
particular solution of a formula with set-valued variables (often called a set-
constraint). The formula is syntactically inferred from the program. The values

1 By our assumptions on monolithic total programs ~, EF({true}) = @ because true
does not appear in the body of a clause in P, and EG(B~,) = B~, because the
transition function is total.

369

in the solution are regular sets of trees. Thus, they can be represented through
non-deterministic tree automata, which have a linear emptiness test�9 The algo-
rithmic essence of set-based analysis is the solving of the set constraint�9 This
means to compute the particular solution that represents the set-based abstract
semantics, which again means to compute 'a non-deterministic tree automaton
that represents the solution.

We will give here an introduction to the set-based analysis of logic programs
with uniform programs (as in [16]). Uniform programs subsume several classes of
set constraints used in the set-based analysis of logic and imperative languages
(e.g., in [20, 18, 13, 8]) modulo simple translations. Note that we can view any
logic program as a formula whose monadic predicate symbols stand for variables
ranging over sets of trees, and whose individual variables ranging over trees are
all quantified; thus, its free variables are set-valued. We now need to consider
general logic programs, which are sets of Horn clauses p(t) +- p l (t l) A . . . Apn (tn)
with any number n > 0 of body atoms. The definitions of the least [greatest]
model semantics and fixpoint semantics for monolithic programs in Section 5
carry over directly to the general case (with some extra notational burden). We
will discuss the operational semantics in Section 7.

A uniform program [16] consists of Horn clauses in one of the following two
forms. (In a linear term t, each variable occurs at most once.)

- p(t) t - -p l (xx) A . . . A pk(Xm), where the term t is linear.

- q(x) +--pl(tl) A . . . Apm(tm) , where t l , . . . , tm are any terms over ~ .

We derive a uniform program P~ from any logic program P in the following way.
For every Horn clause

p(t) +- body

where the term t has the n variables x l , . . . , xn, we apply renamings xij to every
occurrence of xi in t in order to obtain a linear term t. We introduce n new
predicate symbols Pi- Then, P~ contains the following n + 1 clauses for every
such Horn clause.

p(t~ +- Ain__l A jp i (x i j)

p l (x l) +-- body

pn(xn) ~ body

The program P~ expresses exactly the so-called set-based abstraction of 7 9 de-
fined in [18] in semantic terms. We can easily translate every uniform program
into one whose Horn clauses are in one of the following three forms.

- p (f (X l , . . . , X n)) ~-" pl(Xl) A . . . Apn(Xn)
where n >_ 0 and x l , . . . , xn pairwise different

- p(x) +-p l (x) A . . . Apm(X)

- p (x) p ' (t)

370

A nondeterministic tree automaton is a uniform program consisting of the first
kind of clauses only. Predicates correspond to states.

The second kind of rules introduces conjunctions of states. An alternating
tree automaton is a uniform program consisting of the first two kinds of clauses.
Note that this is a nice formalization of this concept, without the need to define
complicated acceptance conditions.

Finally, the third kind of rule introduces a kind of push operation. The rule
p(x) ~-- p '(f(x, y)) can be read as the instruction: "in state p with stack con-
tents t (where t is a tree), go to state p~ with stack contents f (t , t ~) where t ~
is any tree chosen non-deterministically" (which can be viewed as pushing the
context f(. , t') onto the stack).

The following facts hold for the interpretation of programs over finite trees
and over infinite trees. The first fact is obvious; the second and third are shown
in [16, 6] (the second statement of Fact 2 follows from the form of uniform pro-
grams). We call a model M _C B~, regular if it can be defined as the least (or,
equivalently, as the greatest) model of a tree automaton program; i.e., if all sets
Mp = {t E T~ I p(t) E M} are regular sets of trees (in the standard sense).

Facts about set-based analysis.

1. The uniform program P~ derived from the logic program P in the way de-
scribed above approximates P in the following sense.

lm(7 ~) C lm(7 ~)

gm(7 9) C gm(P ~)

2. The least [greatest] model of a uniform program P~ is regular; i.e., it can
represented by a non-deterministic tree automaton, which again can be rep-
resented as a program ~sba (which we define to be the output of the set-based
analysis).

lm(V ~) = lm(7)sba)

gm(p) = gm(V, ba)

More specifically, if the predicate p is defined by clauses with the heads
p(tk [Xl , . . . , x~ h]) with nk free variables, then there exist regular sets of trees
T p , . . . , T ~ (for each k) such that the set of all p-atoms in the least model
[greatest] is a union of Cartesian products in the following sense.

ira(v")= U
pEPred k

3. The step P~ ~ Psba can be computed in single-exponential time. This is also
a lower bound for the case of an arbitrary signature; the best known lower
bound for the word case is PSPACE.

371

T h e o r e m 3 (Conse rva t i ve a p p r o x i m a t i o n of C T L p r o p e r t i e s) . Given a
transition system specified by a monolithic program P, we can conservatively
approximate applications of CTL operators in the following sense.

E X (P) C_ TT~ (P)

A X (S - P) D_ S - TT~, (P)

E F (P) C_ lm(7)~ A P)

A F (P) D_ S - gm('P ~ A-, P)

E (S - P1)VP2 C_ lm((P~ A-~ P1) A/)2)

A (S - P1)UP2 D_ S - (gm(P~ A--, (S - P2)) LI Im((7 :) A-', P2) A P1))

Proof . We only need to put together Fact 1 and Theorem 2. []

T h e o r e m 4 (Se t -based ver i f i ca t ion o f C T L p r o p e r t i e s) . Given a mono-
lithic uniform program P and a CTL property ~ with regular atomic proposi-
tions, the set of all states satisfying ~ is again regular; its representation through
a non-deterministic tree automaton can be computed in single-exponential time
(in the number of predicates of P).

P roof . This follows by Facts 2 and 3 and Theorem 2. []

S e t - b a s e d abs trac t ver i f icat ion and t ypes . Theorem 3 suggests the following
procedure. Given any monolithic program P and a CTL property ~ built up from
regular atomic propositions and the operator E X , E F , E G and EU, we compute
a superset ~ of the set of all states satisfying ~ in single-exponential time. The
set ~ consists of all states that satisfy ~ according to the set-based abstract
semantics of p.2

By Fact 2, we know that ~ is a union of Cartesian products of regular sets of
trees.

pEPred k

We call the set T~ = Uk T/~ the type of the variable xi, for i -- 1 , . . . ,n. If the
value for xl in a ground instance s �9 Bp of the atom p(t) does not lie in Ti, then
the state s does not satisfy ~.

In summary, we obtain an abstract falsification procedure for the 3-CTL
fragment of CTL, and an abstract verification procedure for the V-CTL fragment.

Set cons t r a in t s . It is also possible to apply the two approaches in [18] and [25]
of set-based analysis of logic programs with least [greatest] models, which infer

2 The set-based abstract semantics of P is given by the transition system $7,u induced
by P~. Here, a state is a conjunction of atoms. Its successor states are obtained by the
simultaneous rewriting of all its atoms. We ignore the newly introduced predicates;
these can be eliminated easily.

372

a definite [co-definite] set constraint from a logic program and then computes
its solution in single-exponential time [17, 8]. We have preferred the formalism
of uniform programs for the presentation in this paper because it allows us to
greatly simplify the presentation; there is not much difference technically, and
no difference at all in the case of unary function symbols (which is relevant for
pushdown processes).

7 Parallel Programs

In this section, we will consider transition systems specified by parallel programs
tha t consist of Horn clauses of the form

p(t) +- p l (t l) ^ . . . A p . (t .)

with any number n > 1 of body atoms. Operationally, the conjunction of body
atoms corresponds to parallel composition. Thus, a parallel program defines a
concurrent system, which has, however, only a restricted way of communication
(in particular, there is no synchronization between parallelly composed atoms).
The logic program P defines a fair transition system 8p = (Sp, Tp). The states
axe the ground queries, which are nonempty conjunctions of ground atoms.

Sp = {pl(tl) ^ . . . ^ p r o (t i n) I m > 1 and pl(tl),. . . ,pm(tm) E B~}

The one-step transition relation T~ is defined as usual for ground derivations of
logic programs or constraint logic programs [21,19]. We identify conjunctions
modulo commutativity and associativity of conjunction. We give the definition
of wp in a form that relies on this convention (i.e., every of the conjuncts forming
a state can be chosen to be the first in a representation of the state).

Tp (i"01 (tl) A . . . A pro(tin))

= pl(t l) A . . . APi-l(ti-1) A bodyApi+l(ti+l) A. . . ^pro(tin) [

i E {1 , . . . , m}, pi(ti) +- body is a ground clause of P}

The fairness condition of the transition system is related to the fairness of the
selection rule which is usually associated with the execution of logic programs. It
says tha t in every execution sequence containing the state Pl (tl) A . . . ^Pm (tin),
a ground clause with head pj (tj) is eventually applied to yield a successor state
(for every j = 1 , . . . , m).

We require that the program P is total (which is, there exists a ground clause
with the head p(t) for every ground atom B~), and thus obtain that r~, : S -+ 2 s
is totally defined (even if the fairness condition is taken into account).

In order to define the logic CTL over the transition system 37, induced by the
parallel program P, we will first fix a restricted set Prop of atomic propositions.
These are of the form states(F) for some subset F of the Herbrand base. It is
defined as the set of the states whose conjuncts all lie in F.

states(F) = {pl(tl) A . . . Apm(tm) I p l (t l) , - . . ,pro(tin) e F}

373

Defini t ion 3 (Res t r ic ted CTL formulas) . A restricted CTL formula (for a
given set of predicates P r e d and a signature E defining the Herbrand base Bp)
is a CTL formula such that either: the atomic propositions P are of the form
P = states(1.) where 1. C Bp and the quantifiers are only among E X , E F , E G ,
or: the atomic propositions P are of the form P = B p - states(1.) and the
quantifiers axe among A X , A F , AG.

T h e o r e m 5 (CTL proper t ies and semant ics of parallel programs) .
Given the fair transition system S p corresponding to the parallel program P,
each set of states ~ denoted by a restricted CTL formula ~a can be characterized
through the semantics of programs with oracles, via the following correspon-
dences (for all subsets of states 1. C B~,).

EF(states(1")) = s ta t e s (lm(P A 1.))

A E (S - s tates(F)) = S - s tates(gm(7) A- , 1.))

E G (states(S - 1")) = states(gin(7 9 A-~ 1.))

A G (S - states(1.)) = S - states(Ira(7) A-~ 1.))

Proof. The proof follows the lines of the proof of Theorem 2. []

We can now rephrase Theorem 3 for parallel programs and for restricted CTL
formulas with the CTL operators appearing in the statement above. Therefore,
we can apply [abstract] set-based verification (in the sense of Theorem 4) also
to this setting.

Les us note that parallel programs over nullary predicates represent Basic
Parallel Processes (see, e.g., [15]). We leave open the question of the connections
with other, infinite-state concurrent systems.

8 C o n c l u s i o n a n d F u t u r e W o r k

The use of logic programs as specifications of transition systems gives us a new
view on accurate and abstract verification of CTL properties for finite and infi-
nite systems. The use of set-based analysis as a method to define an approxima-
tion function gives a new view on pushdown processes (namely, as the target of
the approximation function) and yields a notion of descriptive types of program
variables (wrt. a given CTL property). The use of set-based analysis as an algo-
rithm to compute the conservative approximation of CTL properties gives a new
view of model checking of pushdown processes, namely as constraint-solving, viz.
theorem proving.

One obvious issue of further research is the extension of our method of ab-
stract verification via set-based analysis to other temporal logics. The extension
to the alternation-free mu-calculus seems to be possible directly. The work in [6]
is a first step for the extension to the full mu-calculus.

The applications of our method that we have presented in this paper indicate
its usefulness for the detection of "simple" programming errors, i.e., for the

374

falsification of programs with respect to behavioral properties. The method may,
however, also be useful for the verification of parameterized systems. The idea
here is to use logic programs that first non-deterministically guess a parameter
(say, the length of the token ring in the example used in [9]) and then simulate
the corresponding system.

In the finite-state case, computing the model of a program with oracles is
the fixpoint iteration in standard model checking. The programs are Boolean
formulas. This is a new view of model checking which may be interesting in
connection with BDD's. Also, we need to explore the connection with work
in [24] which shows the equivalence of solving Boolean equation systems and
model-checking in the modal p-calculus.

In the finite-state case, programs with oracles are closely related to the prod-
uct construction of [1]. It may be interesting to explore the connection with the
similar product construction of [27] in the infinite-state case.

A c k n o w l e d g m e n t s . We thank Ahmed Bouajjani, Javier Esparza, David
McAllester, Damian Niwifiski and Moshe Vardi for fruitful discussions and the
anonymous referees for useful remarks.

References

1. O. Bernholtz, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. In Computer Aided Verification, Proc. 6th Int.
Workshop, volume 818 of LNCS, pages 142-155, Stanford, California, June 1994.
Springer-Verlag. Full version available from authors.

2. A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown Au-
tomata: Application to Model Checking. In CONCUR'97. LNCS 1243, 1997.

3. A. Bouajjani and O. Maler. Reachability Analysis of Pushdown Automata. In
Infinity'g6. tech. rep. MIP-9614, Univ. Passau, 1996.

4. F. Bourdoncle. Abstact debugging of higher-order imperative languages. In Pro-
ceedings of the SIGPLAN'93 Conference on Programming Language Design and
Implementation (PLDI'93), LNCS, pages 46-55. ACM Press, 1993.

5. O. Burkart and B. Steffen. Composition, Decomposition and Model-Checking of
Pushdown Processes. Nordic Journal of Computing, 2, 1995.

6. W. Charatonik, D. McAllester, D. Niwhiski, A. Podelski, and I. Walukiewicz.
The Horn mu-calculus. Submitted for publication. Available under www.mpi-
sb.mpg.de/'podelski/papers/HornMuCalculus.ps, December 1997.

7. W. Charatonik, D. McAllester, and A. Podelski. Computing the greatest model of
the set-based abstraction of logic programs. Presented at the Dagstuhl Workshop
on Tree Automata, October 1997.

8. W. Charatonik and A. Podelski. Co-definite set constraints. In T. Nipkow, editor,
Proceedings of the 9th International Conference on Rewriting Techniques and Ap-
plications, LNCS, Tsukuba, Japan, March-April 1998. Springer-Verlag. To appear.

9. E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. In Pro-
ceedings of the 19th Annual Symposium on Principles of Programming Languages,
pages 343-354. ACM Press, 1992.

10. P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. In Proc. POPL 'gP, pages 83-94. ACM Press, 1992.

375

11. D. R. Dams. Abstract interpretation and partition refinement for model checking.
PhD thesis, Eindhoven University of Technology, 1996.

12. P. Devienne, J.-M. Talbot, and S. Tison. Solving classes of set constraints with tree
automata. In G. Smolka, editor, Proceedings o/the Third International Conference
on Principles and Practice of Constraint Programming - CP97, volume 1330 of
LNCS, pages 68-83. Springer-Verlag, October 1997.

13. P. Devienne, J.-M. Talbot, and S. Tison. Solving classes of set constraints with tree
automata. In G. Smolka, editor, Proceedings of the Third International Conference
on Principles and Practice of Constraint Programming - CP97, volume 1330 of
LNCS, Berlin, Germany, October 1997. Springer-Verlag.

14. E. Emerson and E. Clarke. Using branching-time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2(3):241-266, 1982.

15. J. Esparza. Decidability of model checking for infinite-state concurrent systems.
Acta Informatika, 34:85-107, 1997.

16. T. Friihwirth, E. Shapiro, M. Vardi, and E. Yardeni. Logic programs as types for
logic programs. In Sixth Annual 1EEE Symposium on Logic in Computer Science,
pages 300--309, July 1991.

17. N. Heintze and J. Jaffar. A decision procedure for a class of set constraints (ex-
tended abstract). In Fifth Annual IEEE Symposium on Logic in Computer Science,
pages 42-51, 1990.

18. N. Heintze and J. Jaffar. A finite presentation theorem for approximating logic
programs. In Seventeenth Annual A CM Symposium on Principles of Programming
Languages, pages 197-209, January 1990.

19. J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey. The Journal
of Logic Programming, 19/20:503-582, May-July 1994.

20. N. D. Jones and S. S. Muchnick. Flow analysis and optimization of lisp-like struc-
tures. In Sixth Annual ACM Symposium on Principles of Programming Languages,
pages 244-256, January 1979.

21. J. W. Lloyd. Foundations of Logic Programming. Symbolic Computation. Springer-
Verlag, Berlin, Germany, second, extended edition, 1987.

22. C. Loiseaux, S.Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6(1):11-44, 1995.

23. D. E. Long. Model Checking, Abstraction, and Compositional Verification. PhD
thesis, Carnegie Mellon University, 1993.

24. A. Mader. Verification of Modal Properties Using Boolean Equation Systems.
Phd thesis, Technische Universit~it Miinchen, 1997.

25. A. Podelski, W. Charatonik, and M. Miiller. Set-based error diagnosis of concur-
rent constraint programs. Submitted for publication. Available under www.mpi-
sb.mpg.de/-podelski/papers/diagnosis.ps, 1998.

26. Y. Ramakrishna, C. Ramakrishnan, I. Ramakrishnan, S. Smolka, T. Swift, and
D. Warren. Efficient model checking using tabled resolution. In Computer Aided
Verification (CAV'97), LNCS 1254. Springer-Verlag, June 1997.

27. M. Y. Vardi. Verification of concurrent programs: The automata-theoretic frame-
work. In Proceedings of the Second Annual IEEE Symposium on Logic in Computer
Science, pages 167-176, Ithaca, 1987. IEEE Computer Society Press.

28. I. Walukiewicz. Pushdown Processes: Games and Model Checking. In CAV'96.
LNCS 1102, 1996.

29. C. Weidenbach. Spass version 0.49. Journal of Automated Reasoning, 18(2):247-
252, 1997.

