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A b s t r a c t .  We present an automated abstract verification method for 
infinite-state systems specified by logic programs (which are a uniform 
and intermediate layer to which diverse formalisms such as transition sys- 
tems, pushdown processes and while programs can be mapped). 
We establish connections between: logic program semantics and CTL 
properties, set-based program analysis and pushdown processes, and also 
between model checking and constraint solving, viz. theorem proving. 
We show that set-based analysis can be used to compute supersets of 
the values of program variables in the states that satisfy a given CTL 
property. 

1 Introduction 

Testing runtime properties of systems with infinite state spaces is generally unde- 
cidable. Therefore, the best one can hope for are semi-algorithms implementing 
a test, or always terminating algorithms implementing a semi-test (which either 
yields yes /don ' t  know answers or, dually, no /don ' t  know answers). Based on the 
idea that  any automated method that  sometimes detects programming errors is 
useful, we investigate semi-tests in this paper. 

One way to obtain a semi-test is to apply a test to a finite approximation 
of the infinite system of interest. An essential part  of an automated semi-test 
computes the approximation from a finite representation of the original system, 
viz. a program. We will study representations of infinite-state systems by logic 
programs. Logic programs are a uniform and intermediate layer to which diverse 
formalisms such as finite-state transition systems, pushdown processes and while 
programs can be mapped. The connection between transition systems and logic 
via logic programs allows us to establish the correspondence between: 

- program semantics and temporal logic properties, 
- abstraction and logical implication, 
- the Cartesian abstraction of set-based analysis and pushdown processes, 
- model-checking and first-order, resolution-based theorem proving. 

Specifically, we consider the temporal  logic CTL [14] (which allows one to express 
safety, inevitability and other important  behavioral properties excluding fairness 
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conditions). For a (possibly infinite-state) transition system represented by a 
logic program, the set of states satisfying a CTL property can be characterized 
through the semantics of logic programs; see Theorem 2, Section 5. 

Now, static program analysis based on abstract interpretation (see, e.g., [10]) 
may be used to compute a conservative approximation of a CTL property by 
computing an abstraction of the logic program semantics. The soundness of 
the abstract-verification method thus obtained holds by the soundness of the 
abstraction. This is in contrast with the work in, e.g., [22,11, 23], where the test 
of a CTL property is applied to an abstraction of the original system. 

We use one particular form of static analysis called set-based analysis. Here, 
the abstraction consists of mapping a set of tuples to the smallest Cartesian 
product of sets containing it (e.g., ((a, 1), (b, 2)} ~-~ (a, b} x (1, 2}). The abstract 
semantics computed by this analysis defines a Cartesian product of sets; each set 
describes runtime values of a variable at a program point. This set is sometimes 
called the type of the program variable. Now, if the concrete program semantics 
is used to characterize the set of correct input states, the type of an input 
variable denotes a conservative approximation of the set of all its values in correct 
input states (where 'correct' refers to states for which a given CTL property is 
satisfied); see Theorem 3, Section 6. 

Logically, the set-based abstraction amounts to replacing a formula, say, 
~[x,y] with the free variables x and y, by the conjunction (3y ~)[x] A (3x ~o)[y] 
(which is logically implied by ~). Applying this replacement systematically to 
a program 7) yields a new program 7)~. This program defines the degree of ab- 
straction of CTL properties in set-based analysis: the full test for the system 
defined by P~ is the semi-test for the system defined by P.  

The system obtained by the set-based abstraction of a program 7 ) (defined 
by the program 7)~) is not finite-state. Instead, it is a kind of pushdown process. 
Pushdown processes have raised interest as a class of infinite-state systems for 
which temporal properties are decidable. The systems considered here extend 
this class by adding parallel composition, tree-like stacks and non-deterministic 
guesses of stack contents. The latter extension introduces a non-determinism of 
infinite branching degree. Since set-based analysis here adds no extra approxi- 
mation, it yields a full test of CTL properties of pushdown processes even with 
this extension; see Theorem 1, Section 4. 

When we use set-based analysis as a verification method, the constraint- 
solving algorithms which form its computational heart (e.g., [17,16,8, 12]) re- 
place the traditional fixpoint iteration of model checking. The constraints used 
here can be represented by logic programs (see Section 6). Then, constraint- 
solving (more precisely, testing emptiness of the solution of interest) amounts 
to first-order theorem proving based on resolution. We are currently working on 
making the algorithm [7] for computing the greatest solution practical. One algo- 
rithm for computing the least solution is already implemented in the saturation- 
based theorem prover SPASS [29]; due to specific theorem-proving techniques 
like powerful redundancy criteria, one obtains an efficient decision procedure for 
the emptiness test, viz. model checking. 
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R e l a t e d  work.  In [25] we present a direct application of the set-based analysis 
of logic programs to error diagnosis in concurrent constraint programs. The error 
can be defined as a special case of a CTL property for a transition system that  
consists of non-ground derivations of logic programs. 

Our direct inspiration for investigating transition systems specified by ground 
derivations of logic programs was the work on pushdown processes in [2, 5, 28]. 
Here, we extend the result in [2] about CTL model-checking in DEXPTIME to 
a more general notion of pushdown processes. 

Historically, our work started with the abstract debugging scheme of [4]. The 
invariant and intermittent assertions used there correspond to two special cases 
of CTL properties. Here, we consider trees instead of numbers for the data  
domain, an abstract domain of regular sets of trees instead of intervals, and 
Cartesian instead of convex-hull approximation. Our characterization of CTL 
properties can be extended to while programs over numeric data  by using con- 
stralnt logic programs (over numbers instead of trees) as an intermediate layer. 

In [26], Ramakrishna et al. present an implementation of a model checker 
for the verification of finite-state systems specified by DATALOG programs (i.e., 
logic programs without function symbols). The correctness of their implemen- 
tation (in a logic programming language with tabling called XSB) relies implic- 
itly on the characterization of CTL properties that  we formally prove for logic 
programs with function symbols. In contrast to the work in [26] which applies 
programming techniques that  that  are proper to logic programming languages, 
we view logic programs rather as an automata-theoretic formalism. 

S t r u c t u r e  o f  t h e  p a p e r .  The first three sections are to give a flavor of our 
method, which we present in technical terms in the subsequent three sections. 
Section 2 explains our view of logic programs as an intermediate layer for while 
programs. For every while program with data  structures modeled as trees (e.g., 
lists), we can find a logic program that  represents the same transition system. 
The purpose of Section 3 is to give the intuition of our characterization of CTL 
properties (also to readers who are not so familiar with logic programs, to which 
we do not refer in this section). We show how one can translate a finite transition 
system to a simple logical formula; the formula belongs to a logic program whose 
operational semantics is that  transition system. We then show how the logical 
formula must be modified so that  a particular solution characterizes a given CTL 
property; this is the formula that  belongs to a program with oracles. Section 4 
explains our view of logic programs as automata at hand of pushdown processes. 
Section 5 formally introduces the concepts that  we used informally in the pre- 
vious three sections, and it presents the characterization of CTL properties for 
monolithic transition systems. Section 6 gives a self-contained account of set- 
based analysis and presents the results about the conservative approximation of 
CTL properties that  lead to an abstract-verification method. Section 7 gives an 
extension of these results to multi-processor transition systems defined by logic 
programs with conjunction (which corresponds to parallel composition); Basic 
Parallel Processes (see, e.g., [15]) are here a special case. Finally, in conclusion, 
we mention possible directions for future work. 
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2 While Programs 

We consider an imperative programming language with the two data  construc- 
tors cons and nil (integers etc. play the role of constant data  constructors). 
For convenience, cons(x, y) is written as [xly], cons(x1, cons( . . . ,  x,~, n i l ) . . . )  as 
Ix1, . . .  ,x , ]  and nil as []. We also have the data  destructors hd and tl, where 
hd([xly]) = x and tl([xly]) -- y. We will neither formally define the language 
nor present the translation of its programs to monolithic total logic programs. 
Instead, we present two example programs which will illustrate that  such a trans- 
lation is possible in principle. 

The first program consists of one instruction, a while loop, with the program 
labels p and q before and after the instruction. 

while x =/= nil do 
i := i+l 

[-q-] x := tl(x) 

The program manipulates the two variables x and i. States are thus pairs (p, e) 
formed by the program location p and the environment e which assigns values v= 
and vi to the variables x and i. We write such a state as an atom p(v=,vi). The 
program induces an infinite-state transition system; possible transitions are, for 
example, 

p([a,b],0) p([b], 1), 
p([b], 1) p([],2), 
p([], 2) ~ q([], 2). 

Since the transition function must be total, we assume that  there exist transitions 
modeling an explicit exception handling; for example, 

p(3,i) ~ exception, 
exception ) exception. 

We translate the while loop above to the logic program below. Each program 
location corresponds to a predicate whose arguments correspond to the variables 
that  are visible at that  location. We express conditionals through the heads of 
the clauses. Since our framework requires that  the program is total, we add 
clauses in order to model an exhaustive case statement (in a practical setting, 
such clauses could be presented implicitly). The transition systems induced by 
the while program and the logic program coincide. 

P([xlY], i) ~- p(y, i + 1) 

p([],i) ~-- q(H,i) 

p(a, i) +- exception (for each other data  constructor a) 

exception +- exception 

The CTL property EF({q(v~,  v~) I true}) specifies the set of all states at loca- 
tion p from which the location q can be reached. The values v= for the variable x 
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in such states are exactly the finite lists. The set of these values can thus be 
presented as the least solution of the equation list = cons(Tz, list) U nil over 
sets of trees, or of the program below (and this is also the result of the method 
presented in this paper). 

list(cons(x, y)) +-- list(y) 
list(nil) 

That  is, if the while loop is executed with an initial value other than a finite list 
for x, then it will not reach the program point q (a fact which may be useful for 
debugging purposes). 

The property EG({p(v~, i~) I true}) holds for the states p(v=, ix) where v= 
is an infinite list (which models a circular list). The set of all infinite lists is the 
greatest solution of the equation list = cons(Tz, list) over sets of infinite trees, 
or of the program below interpreted over the domain of infinite trees (again, this 
is also the result of the method outlined in this paper). 

list( cons(x, y) ) +-- list(y) 

That  is, if the while loop is executed with an initial value other than an infinite 
list for x, then a program location other than p will be reached or an exception 
will be raised. 

The next example is a program fragment (whose task is to reverse the list x) 
containing a typographical error ("[tl(L)]" instead of "tl(L)"). Again, we note 
p and q the program points before and after the while loop. 

[] 

[] 
[] 

y := C] 
while x =]= nil do 

x :=  [ t l ( x ) ]  

y := [hd(L) ly] 
x:=y 

We construct the corresponding logic program. 

init(x) +-- p(x, []) 

p([=l='],) +- p([='], [*ly]) 

p([],y) +- q([],y) 

q(=, y) +- r(y, y) 

p(a, i) +-- exception (for each other data  constructor a) 

exception +- exception 

Our method will derive that  for any other initial value than the empty list for 
the variable x the program location q can never be reached. 
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3 Transition Systems 

Abstracting away from the fine structure of states and of transitions, we may 
present a reactive system with finitely many states as a transition system 3 = 
(S, T) with the finite set S of states and the non-deterministic transition function 
T : S -+ 2 S. The state q is a successor state of the state p if q E ~'(p). We 
translate S into a formula 7)s of propositional logic. Here, for each state p, we 
have a symbol p standing for a nullary predicate (or, a Boolean variable). 

= A e, V q) (1) 
pES qEr(p) 

An interpretation of 7)s is presented as a set I C_ S of states; I specifies the set 
of all atoms p tha t  are valued true. A model (or, solution) of 7)s is an interpreta- 
tion under which the formula 7)8 holds. Models are partially ordered by subset 
inclusion. If we require, as usual, that  r is total (i.e., T(S) ~ ~ for all s E S; 
thus,every state has at least one successor), then the least model of 7)s is the 
empty set 0 and its greatest model is the set S of all atoms. 

We now consider the safety property "P will never happen",  written: A G ( S -  
P) ,  or: S - E F ( P )  in CTL notation, for some property P C_ S. The set E F ( P )  
of all states from which a state in P is reachable, is exactly the set of atoms in 
the least model of the following formula. 

7) ^P = A V q) ^ A p (2) 
pEP qer(p) pEP 

The following explanation may help to understand this characterization of E F ( P ) .  
The formula 7)8 ̂  P entails p iff there exists a sequence of implications p e-  Pl +- 
�9 .. +- Pn in 7)8 and an implication p,~ +- true, which is, Pn is an element of P.  
The least model of 7>8 A P is the set of all entailed atoms ("all atoms that  must 
be true in any model").  

Now consider the inevitability property "P  will always finally happen",  writ- 
ten A F ( P ) ,  or S - E G ( S  - P)) .  The set E G ( S  - P)  is the set of atoms in the 
greatest model of the following formula. (The notation P A-1 P must not be 
confused with 7) A (S - P) .)  

7 ) s A - ' P  = A (P~ V q ) A  A "~p (3) 
PEP qEv(p) pEP 

This may be explained as follows. The formula above entails -~p (i.e., it can 
be valid only if the model does not contain p) iff every maximal sequence of 
implications of the form p -~ Pl -~ P2 -~ . . .  in /)8 is finite and terminates 
with Pn --+ false. Thus, an atom p is in the greatest model of 7)s A-- P iff there 
exists an infinite sequence of implications avoiding false, which is, there exists 
an infinite sequence of transitions that  starts in the state p and avoids the states 
in P .  

The  formulas (1), (2) and (3) are the Clark completion of logic programs 
that  we formally introduce in Section 5. They are used to define the semantics 
of program logically. 
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4 P u s h d o w n  Processes  

We can model a system consisting of finite-state processes, one of which uses 
a pushdown stack as a da ta  structure, by a pushdown automaton.  In order 
to describe the ongoing behavior of such a system, we will consider input-less 
pushdown au toma ta  without an acceptance condition. Formally, a pushdown 
process is a tuple 

, 4 =  (Q,2Y,5,q ~ 

consisting of a finite set of control states Q, the stack alphabet  ~ ,  the non- 
deterministic transit ion function 

5 C_ (Q x ~') x (Q x {e}) 
u (Q x x (Q x z )  

and the initial control s tate q0. The states in the corresponding transit ion system 

S`4 = (Q x r`4) 

are pairs (q, w) consisting of the control s tate  q E Q and the stack contents 
w E ~ *  (where w = ~ if the stack is empty).  The transitions either read one 
symbol and remove it from the stack or add one. 

rA((q ,w))  = {(ql, w~) I w = a.w I where a E ~ ,  ((q,a),(q~,E)) E 5 or 

w' = a.w where a E Z ,  ((q, c), (q', a)) E 6} 

Given a pushdown process ,4, we define the program 7),4 below. We now view ~U 
as a set of unary function symbols and e as a constant symbol,  and we consider 
terms over the signature ~ U {~}. 

7)`4 = {q(a(x)) 6- q'(x) l ((q,a) ,(q ' ,~))  E 6} 

U {q(x) 6- q ' (a (x ) ) l ( (q ,~ ) ,  (q',a)) E 6} 

A program with the first kind of clauses only corresponds to a word automaton.  
A clause of the form q(a(x)) +- q~(x) can be read as the instruction: "in s ta te  q, 
reading the word w = a(x) with the first letter a and remaining suffix x, go 
to s ta te  q' and read the suffix x"; q is a final s tate  iff the program contains 
a clause of the form q(~). Here, a word a l a 2 . . . a n  is represented as a unary  

tree al (a2( . . .  an (e ) . . . ) ) .  
The  second kind of clause q(x) 6- q~(a(x)) can be read as the "push" instruc- 

tion: "in s tate  q with stack contents w, go to s tate  p~ with stack contents a(w)." 
The next remark is a consequence of the formal definition of the transit ion 

system S~ induced by a program 7), which we defer to the next section. 

R e m a r k .  The transit ion system 3`4 of the pushdown process ,4 and the t ran-  
sition system S ~  induced by the program 7)`4 tha t  corresponds to ,4 coincide. 

[] 
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The assumption that  the transitions modify the size of the stack by exactly one 
symbol is not a proper restriction as long as acceptance is considered. If, how- 
ever, we t ry  to simulate the non-deterministic guessing of a new stack contents 
via a sequence of transitions that  each guess one symbol to be added, then the 
necessary modification of the transition relation of the pushdown process would 
not leave the temporal  properties invariant (because the guessing sequence can 
be infinite). Thus, the following generalization seems to be a proper one. 

D e f i n i t i o n  1 ( G e n e r a l i z e d  p u s h d o w n  p roces se s ) .  A generalized pushdown 
process is specified by any monolithic total program over the signature consisting 
of unary function symbols and one constant symbol. 

We may restrict the syntax wlog. to three kinds of Horn clauses. 

q(a(x)) +-- q'(x) 
q(x) +-- q'(a(x)) 
q(x) 6-- q'(y) 

Given the clause q(x) +- q'(y), every state of the form (q',w') with any stack 
contents w' can be a successor state of the state (q, w). Thus, we here have a 
non-determinism of branching degree w. 

We will state already here the following theorem, which was shown in [3] 
for pushdown processes in the restricted sense, i.e., without non-deterministic 
guesses of stack contents (and hence, with a finite degree of branching). 

T h e o r e m  1. Given a generalized pushdown process and a CTL property qo with 
regular atomic propositions, the set of all states satisfying ~o is again regular; 
its representation in the form of a non-deterministic finite automaton can be 
computed in single-exponential time (in the number of states). 

P r o o f .  The statement is an instance of Theorem 4. [] 

5 Monolithic Programs 

In a multi-processor transition system, the states have a structure and the tran- 
sition function is defined by referring to that  structure; we will consider such 
systems and their modeling through general logic programs in Section 7. In con- 
trast,  in a monolithic transition system, the transition function is defined directly 
on the states (i.e., as monolithic items). We can model such a system by a logic 
program P whose clauses' bodies contain exactly one atom. By extension, we 
then say that  P is a monolithic program. Thus, a monolithic program P is given 
through implications of the form 

p(t) s -  v'(t') 

where p and p' are predicates (different from true) and t and t '  are terms over a 
given signature E of function symbols. When we refer to the logical semantics 
of P ,  we use the formula below. 

P =- A Vx p(x) o V 3 _ = ( x = t i A p ~ ( t : ) )  
p i 
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Here, p ranges over the set Pred of all predicates defined by the program and 
i ranges over a suitable index set Ip such that  {p(t~) 6- p'(t~) I i E Ip} are all 
clauses with the predicate p in the head. As usual, 3-x stands for the quantifi- 
cation of all variables in ti and t~ but x. For technical convenience, we assume 
that  all predicates are unary; the results can easily be extended to the case with- 
out this restriction (for example, by extending the signature of function symbols 
with symbols forming tuples). 

We note T~ the set of trees (i.e., ground terms) over the signature ~ .  We 
use the same meta variables t, t', etc. for terms and trees. Given the program 7) 
defining the set of predicates Pred and the signature ~ ,  the Herbrand base Bp 
is the set of all ground atoms pit), which are applications of predicates to trees. 
(Note tha t  Bp does not include the propositional constant true.) 

B~ = {p(t) I P �9 Fred, t �9 T~} 

A ground clause of 7 ) is an implication between ground atoms that  is entailed 
by P;  thus, it is of the form p(a(t)) 6- p'(a(t')) where p(t) 6- i f (g)  is a clause 
of P and a : Var ~ TE is a valuation (extended from variables to terms in the 
canonical way). 

We will always assume that  P is total, which means that  for all ground 
atoms p(t) there exists a ground clause of P of the form p(t) 6- p'(t'). 

An interpretation I ,  which we present as a subset of the Herbrand base, 
(i.e., I C Bp), interprets a pred ica tep  as the set {t �9 T~ I Pit ) �9 I}.  A 
model of the program P is an interpretation under which the formula :P is 
valid. Models are ordered by subset inclusion. The least model of 7), lm(7)), and 
the greatest model of 7), grn(7)), always exist. The least [greatest] model of a 
monolithic total program 7) is always the empty [universal] set, i.e., lm(7)) = O 
and gm(7 )) = Ts The models of the programs that  we will define next turn out 
to be more interesting. These programs consists of Horn clauses with additional 
conjuncts (the "oracles"). Note that  -~Fp(t) is equivalent to p(t) �9 (B~ - F). We 
always use 7~ A F for defining least models, and P A-~ F for defining greatest 
models. 

De f in i t i on  2 ( P r o g r a m s  w i t h  oracles) .  Given a monolithic program P and 
a subset F of the Herbrand base, we define two kinds of programs with oracles. 

7) A r = 7) u {p(x)  6-  Fp(z) I P �9 Fred} 

7) A-- F = {p(t) 6- p'(t') A -~Fp(t) I p(t) 6- p'(t') is a clause in 7)} 

The operational semantics of 7) can be described as a transition system 

whose states are the ground atoms (not (!) including true), and whose transition 
function T~ : Bp -~ 2 ~ is defined as follows. 

~'~,(p(t)) = {p'(t') [ p(t) 6- p'(t') is a ground clause of 7 )} 



367 

Since we have assumed that  7 ) is total, we have that  Tp(S) i~ 0 for all states s 
("the transition function ~-p is total"). The fixpoint semantics of P is given 
through the Tp operator on subsets of the Herbrand base. 

Tp(I) = {p(t) [ p(t) t -  p~(t') is a ground clause of P and p'(t') E I} 

We immediately note the connection with the inverse of the transition function 
(as usual, T~I(P) ---- {S E Bp ] 7"7~(8) C_ P} for subsets P of states). 

T~ 1 = T p  

In order to define the logic CTL over the transition system Sp induced by the 
program P,  we first need to fix the set Prop of atomic propositions. As in the 
finite-state case, an atomic proposition F denotes a set of states, which we also 
write as F.  When dealing with algorithmic issues, we will require that  F can be 
finitely represented. This is possible, for example, when we require that  F is a 
regular atomic proposition, which means that  the set 

5 ,  = {t e TE I p(t) e r )  

is a recognizable set of trees, for each predicate p. 

Usually, the denotation of an atomic proposition is described via the detour 
of a labeling function L : S ~ 2 Pr~ where F denotes the set {s E S ] F E L(s)}. 
In our setting, the labeling function L is implicit by L(s) = {F E Prop I s E F}). 
The finite representation of the sets Fp for the atomic propositions occurring in 
the CTL formula is part of the input. (It is not clear how L could be represented 
finitely otherwise.) 

Given the set Prop of atomic propositions, the set of formulas of the logic 
CTL and their meaning are defined as in the finite-state case. 

~0 ::= F I - ~  I ~1 V ~2 ] EX(~p) [ E(~olU~02) I A(~olU~2) 

In addition, we use the following abbreviations: AX(~o) = -~EX(-~o), EF(~o) = 
E( trueU~o), AF(~) = A(trueU~o), EG(~) = -,AF(-~o), AG(~) = -~Ef(-~qo). 

We write S ,p  ~ ~0 if the transition system $ with the initial state p satisfies 
the formula ~0. Given 8,  we simply write ~ for the set of all states for which the 
formula ~0 is satisfied. 

 -{slS, s 

Theorem 2 (CTL properties and program semantics). Given the transi- 
tion system 3~ corresponding to the monolithic program ~P, each set of states 
denoted by a CTL formula qo can be characterized in terms of subsets of the 
Herbrand base defined through the semantics of programs with oracles, via the 
following correspondences. 
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E X ( P )  = 

A X ( S  - P)  = 

E F ( P )  = 

A F ( P )  = 

E ( S  - Pz)UP2 = 

A ( S  - P~)UP2 = 

'J - 

l m ( P  ^ P )  

S - g m ( P  A~ P)  

lm((p Pl) ^ P2) 
S - (gm(7) A~ (S -- P2)) U lm ( (P  A-~ P2) A P1)) 

These correspondences hold for all subsets of states P _C BT,, which may be 
defined by atomic propositions F or by CTL formulas. 

P r o o f .  The first two equalities hold by the definitions of E X  = rs -1 and Tp. The 
next  two equalities follow by: (1) the definition of E F  [EG] through the least 
[greatest] fixpoint of E X ,  (2) the correspondence between the semantics of logic 
programs defined by the least [greatest] fixpoint and the least [greatest] model 
(which extend to programs with oracles), and (3) the following identities between 
fixpoint operators over properties P C_ Bp, for any given property p0 C_ Bp. 

,~p. (pO U E X ( P ) )  = TpApo 

AP. ((S - po) M E X ( P ) )  = TpA, po 

The proof of the two remaining equalities uses two basic general facts about  the 
operational semantics and the model-theoretic semantics of a given logic pro- 
gram 7 ~. A ground atom p(t) has an execution in Sp that  leads to the atom true, 
i.e., p(t) E EF({ t rue} ) ,  if and only ifp(t)  E / r e (P ) ;  it has a non-failing execution 
in 39  i.e., p(t) E EG(B~, U {true}) if and only if p(t) E gm(P) .  We apply these 
two facts to programs with oracles instead of 7~. 1 We note that  E ( S -  P1)UP2 is 
the set of all ground atoms p(t) which have an execution that  reaches a state in P2 
while avoiding states in Pz, i.e., which reaches true in the program (PA~ P1)AP2. 
Similarly, a state s is not in A ( S  - Pz)UP2 if it either has an execution that  
never reaches a state in P2, i.e., it has a non-terminating execution in the pro- 
gram P A-~ (S - P2), or it has an execution that  reaches a state s' in P1 while 
avoiding states in P2 (in the execution up to, and including s'), i.e., it has an 
execution in the program (P  A ~ P2) A Pz. [] 

6 Set-based Analysis 

In set-based analysis, an abstract semantics of a program is represented as a 
particular solution of a formula with set-valued variables (often called a set- 
constraint). The formula is syntactically inferred from the program. The values 

1 By our assumptions on monolithic total programs ~, EF({true}) = @ because true 
does not appear in the body of a clause in P, and EG(B~,) = B~, because the 
transition function is total. 
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in the solution are regular sets of trees. Thus, they can be represented through 
non-deterministic tree automata,  which have a linear emptiness test�9 The algo- 
rithmic essence of set-based analysis is the solving of the set constraint�9 This 
means to compute the particular solution that  represents the set-based abstract  
semantics, which again means to compute 'a  non-deterministic tree automaton 
that  represents the solution. 

We will give here an introduction to the set-based analysis of logic programs 
with uniform programs (as in [16]). Uniform programs subsume several classes of 
set constraints used in the set-based analysis of logic and imperative languages 
(e.g., in [20, 18, 13, 8]) modulo simple translations. Note that  we can view any 
logic program as a formula whose monadic predicate symbols stand for variables 
ranging over sets of trees, and whose individual variables ranging over trees are 
all quantified; thus, its free variables are set-valued. We now need to consider 
general logic programs, which are sets of Horn clauses p(t) +- p l ( t l ) A . . .  Apn (tn) 
with any number n > 0 of body atoms. The definitions of the least [greatest] 
model semantics and fixpoint semantics for monolithic programs in Section 5 
carry over directly to the general case (with some extra notational burden). We 
will discuss the operational semantics in Section 7. 

A uniform program [16] consists of Horn clauses in one of the following two 
forms. (In a linear term t, each variable occurs at most once.) 

- p(t) t - -p l (xx)  A . . .  A pk(Xm), where the term t is linear. 

- q(x) +--pl(tl) A . . .  Apm(tm) ,  where t l , . . . ,  tm are any terms over ~ .  

We derive a uniform program P~ from any logic program P in the following way. 
For every Horn clause 

p(t) +- body 

where the term t has the n variables x l , . . . ,  xn, we apply renamings xij to every 
occurrence of xi in t in order to obtain a linear term t. We introduce n new 
predicate symbols Pi- Then, P~ contains the following n + 1 clauses for every 
such Horn clause. 

p(t~ +- Ain__l A jp i ( x i j )  

p l ( x l )  +-- body 

pn(xn) ~ body 

The program P~ expresses exactly the so-called set-based abstraction of 7 9 de- 
fined in [18] in semantic terms. We can easily translate every uniform program 
into one whose Horn clauses are in one of the following three forms. 

- p ( f ( X l , . . . , X n ) )  ~-" pl(Xl) A . . .  Apn(Xn) 
where n >_ 0 and x l , . . . ,  xn pairwise different 

- p(x) +-p l (x )  A . . .  Apm(X) 

- p ( x )  p ' ( t )  
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A nondeterministic tree automaton is a uniform program consisting of the first 
kind of clauses only. Predicates correspond to states. 

The second kind of rules introduces conjunctions of states. An alternating 
tree automaton is a uniform program consisting of the first two kinds of clauses. 
Note that  this is a nice formalization of this concept, without the need to define 
complicated acceptance conditions. 

Finally, the third kind of rule introduces a kind of push operation. The rule 
p(x) ~-- p '( f(x,  y)) can be read as the instruction: "in state p with stack con- 
tents t (where t is a tree), go to state p~ with stack contents f ( t ,  t ~) where t ~ 
is any tree chosen non-deterministically" (which can be viewed as pushing the 
context f( . ,  t') onto the stack). 

The following facts hold for the interpretation of programs over finite trees 
and over infinite trees. The first fact is obvious; the second and third are shown 
in [16, 6] (the second statement of Fact 2 follows from the form of uniform pro- 
grams). We call a model M _C B~, regular if it can be defined as the least (or, 
equivalently, as the greatest) model of a tree automaton program; i.e., if all sets 
Mp = {t E T~ I p(t) E M} are regular sets of trees (in the standard sense). 

Facts about set-based analysis. 

1. The uniform program P~ derived from the logic program P in the way de- 
scribed above approximates P in the following sense. 

lm(7 ~) C lm(7 ~)  

gm(7 9) C gm(P ~) 

2. The least [greatest] model of a uniform program P~ is regular; i.e., it can 
represented by a non-deterministic tree automaton, which again can be rep- 
resented as a program ~sba (which we define to be the output  of the set-based 
analysis). 

lm(V ~) = lm(7)sba) 

gm(p ) = gm(V, ba) 

More specifically, if the predicate p is defined by clauses with the heads 
p(tk [Xl , . . . ,  x~ h ]) with nk free variables, then there exist regular sets of trees 
T p , . . . ,  T ~  (for each k) such that  the set of all p-atoms in the least model 
[greatest] is a union of Cartesian products in the following sense. 

ira(v")= U 
pEPred k 

3. The step P~ ~ Psba can be computed in single-exponential time. This is also 
a lower bound for the case of an arbitrary signature; the best known lower 
bound for the word case is PSPACE. 
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T h e o r e m  3 (Conse rva t i ve  a p p r o x i m a t i o n  of  C T L  p r o p e r t i e s ) .  Given a 
transition system specified by a monolithic program P,  we can conservatively 
approximate applications of CTL operators in the following sense. 

E X ( P )  C_ TT~ (P) 

A X ( S  - P)  D_ S - TT~, (P) 

E F ( P )  C_ lm(7)~ A P)  

A F ( P )  D_ S - gm('P ~ A-, P) 

E ( S  - P1)VP2 C_ lm((P~ A-~ P1) A/)2) 

A ( S  - P1)UP2 D_ S - (gm(P~ A--, (S  - P2)) LI Im((7 :) A-', P2) A P1)) 

Proof .  We only need to put together Fact 1 and Theorem 2. [] 

T h e o r e m  4 (Se t -based  ver i f i ca t ion  o f  C T L  p r o p e r t i e s ) .  Given a mono- 
lithic uniform program P and a CTL property ~ with regular atomic proposi- 
tions, the set of all states satisfying ~ is again regular; its representation through 
a non-deterministic tree automaton can be computed in single-exponential time 
(in the number of predicates of P).  

P roof .  This follows by Facts 2 and 3 and Theorem 2. [] 

S e t - b a s e d  abs trac t  ver i f icat ion  and t ypes .  Theorem 3 suggests the following 
procedure. Given any monolithic program P and a CTL property ~ built up from 
regular atomic propositions and the operator E X ,  E F ,  E G  and EU,  we compute 
a superset ~ of the set of all states satisfying ~ in single-exponential time. The 
set ~ consists of all states that  satisfy ~ according to the set-based abstract 
semantics of p.2 

By Fact 2, we know that  ~ is a union of Cartesian products of regular sets of 
trees. 

pEPred k 

We call the set T~ = Uk T/~ the type of the variable xi, for i -- 1 , . . .  ,n.  If the 
value for xl in a ground instance s �9 Bp of the atom p(t) does not lie in Ti, then 
the state s does not satisfy ~. 

In summary, we obtain an abstract falsification procedure for the 3-CTL 
fragment of CTL, and an abstract verification procedure for the V-CTL fragment. 

Set  cons t r a in t s .  It is also possible to apply the two approaches in [18] and [25] 
of set-based analysis of logic programs with least [greatest] models, which infer 

2 The set-based abstract semantics of P is given by the transition system $7,u induced 
by P~. Here, a state is a conjunction of atoms. Its successor states are obtained by the 
simultaneous rewriting of all its atoms. We ignore the newly introduced predicates; 
these can be eliminated easily. 
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a definite [co-definite] set constraint from a logic program and then computes 
its solution in single-exponential time [17, 8]. We have preferred the formalism 
of uniform programs for the presentation in this paper because it allows us to 
greatly simplify the presentation; there is not much difference technically, and 
no difference at all in the case of unary function symbols (which is relevant for 
pushdown processes). 

7 Parallel Programs 

In this section, we will consider transition systems specified by parallel programs 
tha t  consist of Horn clauses of the form 

p(t) +- p l ( t l )  ^ . . .  A p . ( t . )  

with any number n > 1 of body atoms. Operationally, the conjunction of body 
atoms corresponds to parallel composition. Thus, a parallel program defines a 
concurrent system, which has, however, only a restricted way of communication 
(in particular, there is no synchronization between parallelly composed atoms). 
The logic program P defines a fair transition system 8p = (Sp, Tp). The states 
axe the ground queries, which are nonempty conjunctions of ground atoms. 

Sp = {pl(tl) ^ . . . ^ p r o ( t i n )  I m > 1 and pl(tl),. . . ,pm(tm) E B~} 

The one-step transition relation T~ is defined as usual for ground derivations of 
logic programs or constraint logic programs [21,19]. We identify conjunctions 
modulo commutativity and associativity of conjunction. We give the definition 
of wp in a form that  relies on this convention (i.e., every of the conjuncts forming 
a state can be chosen to be the first in a representation of the state). 

Tp (i"01 (tl) A . . .  A pro(tin)) 

= pl( t l )  A . . .  APi-l(ti-1) A bodyApi+l(ti+l) A. . .  ^pro(tin) [ 

i E {1 , . . . ,  m}, pi(ti) +- body is a ground clause of P} 

The fairness condition of the transition system is related to the fairness of the 
selection rule which is usually associated with the execution of logic programs. It 
says tha t  in every execution sequence containing the state Pl (tl) A . . .  ^Pm (tin), 
a ground clause with head pj (tj) is eventually applied to yield a successor state 
(for every j = 1 , . . . ,  m). 

We require that  the program P is total (which is, there exists a ground clause 
with the head p(t) for every ground atom B~), and thus obtain that  r~, : S -+ 2 s 
is totally defined (even if the fairness condition is taken into account). 

In order to define the logic CTL over the transition system 37, induced by the 
parallel program P,  we will first fix a restricted set Prop of atomic propositions. 
These are of the form states(F) for some subset F of the Herbrand base. It is 
defined as the set of the states whose conjuncts all lie in F.  

states(F) = {pl(tl) A . . .  Apm(tm) I p l ( t l ) , - . .  ,pro(tin) e F} 
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Defini t ion 3 (Res t r ic ted  CTL formulas) .  A restricted CTL formula (for a 
given set of predicates P r e d  and a signature E defining the Herbrand base Bp) 
is a CTL formula such that either: the atomic propositions P are of the form 
P = states(1.) where 1. C Bp and the quantifiers are only among E X ,  E F ,  E G ,  
or: the atomic propositions P are of the form P = B p  - states(1.) and the 
quantifiers axe among A X ,  A F ,  AG.  

T h e o r e m  5 (CTL proper t ies  and  semant ics  of  parallel  programs) .  
Given the fair transition system S p  corresponding to the parallel program P, 
each set of states ~ denoted by a restricted CTL formula ~a can be characterized 
through the semantics of programs with oracles, via the following correspon- 
dences (for all subsets of states 1. C B~,). 

EF(states(1")  ) = s ta t e s ( lm(P  A 1.)) 

A E ( S  - s tates(F))  = S - s tates(gm(7 ) A- ,  1.)) 

E G (  states( S - 1")) = states(gin(7 9 A-~ 1.)) 

A G ( S  - states(1.)) = S - states(Ira(7 ) A-~ 1.)) 

Proof. The proof follows the lines of the proof of Theorem 2. [] 

We can now rephrase Theorem 3 for parallel programs and for restricted CTL 
formulas with the CTL operators appearing in the statement above. Therefore, 
we can apply [abstract] set-based verification (in the sense of Theorem 4) also 
to this setting. 

Les us note that parallel programs over nullary predicates represent Basic 
Parallel Processes (see, e.g., [15]). We leave open the question of the connections 
with other, infinite-state concurrent systems. 

8 C o n c l u s i o n  a n d  F u t u r e  W o r k  

The use of logic programs as specifications of transition systems gives us a new 
view on accurate and abstract verification of CTL properties for finite and infi- 
nite systems. The use of set-based analysis as a method to define an approxima- 
tion function gives a new view on pushdown processes (namely, as the target of 
the approximation function) and yields a notion of descriptive types of program 
variables (wrt. a given CTL property). The use of set-based analysis as an algo- 
rithm to compute the conservative approximation of CTL properties gives a new 
view of model checking of pushdown processes, namely as constraint-solving, viz. 
theorem proving. 

One obvious issue of further research is the extension of our method of ab- 
stract verification via set-based analysis to other temporal logics. The extension 
to the alternation-free mu-calculus seems to be possible directly. The work in [6] 
is a first step for the extension to the full mu-calculus. 

The applications of our method that we have presented in this paper indicate 
its usefulness for the detection of "simple" programming errors, i.e., for the 
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falsification of programs with respect to behavioral properties. The method may, 
however, also be useful for the verification of parameterized systems. The idea 
here is to use logic programs that  first non-deterministically guess a parameter  
(say, the length of the token ring in the example used in [9]) and then simulate 
the corresponding system. 

In the finite-state case, computing the model of a program with oracles is 
the fixpoint iteration in standard model checking. The programs are Boolean 
formulas. This is a new view of model checking which may be interesting in 
connection with BDD's. Also, we need to explore the connection with work 
in [24] which shows the equivalence of solving Boolean equation systems and 
model-checking in the modal p-calculus. 

In the finite-state case, programs with oracles are closely related to the prod- 
uct construction of [1]. It may be interesting to explore the connection with the 
similar product  construction of [27] in the infinite-state case. 
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