
Building Quality into
Case-Based Reasoning Systems

Igor Jurisica 1 and Brian A. Nixon 2
1 University of Toronto, Faculty of Information Studies

140 St. George St., Toronto, ON M5S 3G6, Canada
jurisica@fis.utoronto.ca

2 University of Toronto, Dept. of Computer Science
Toronto, ON M5S 3H5, Canada

nixon@cs.toronto.edu

Abs t rac t . Complex decision-support information systems for diverse
domains need advanced facifities, such as knowledge repositories, rea-
soning systems, and modeling for processing interrelated information.
System development must satisfy flmctional requirements, but must also
systematically meet global quality factors, such as performance, confi-
dentiality and accuracy, called non-functional requirements (NFRs).

To build quality into an important class of decision support sys-
tems, case-based reasoning (CBR) systems, this paper presents "Qual-
ityCBR," a goal-oriented, knowledge-based approach for systematically
dealing with NFRs for CBR systems. With the idea that similar prob-
lems have similar solutions, CBR systems store cases (problems with
solutions) and solve new problems by retrieving and reusing similar past
cases. QualityCBR integrates existing work on CBR and NFRs. It helps
developers state and refine NFRs, consider tradeoffs, make decisions and
evaluate their impact on NFRs. We illustrate the approach in a com-
plex medical domain, in vitro fertilization, where CBR suggests therapy
for patients, predicts the probability for successful pregnancy, and deter-
mines patient's characteristics that can improve pregnancy rate.

1 I n t r o d u c t i o n

Complex information systems in both the public and private sectors need a num-
ber of advanced facilities, including decision support systems (DSSs), reposito-
ries, reasoning systems, and facilities for modeling and processing large amounts
of complex information. Many DSSs have been built for individual domains in
an ad hoc manner. However, to effectively build families of DSSs for complex
domains, such as medical, governmental or industrial applications, we need a
systematic knowledge-based approach to: (1) empower expert user to make effec-
tive decisions using a DSS, and (2) address concerns for quality and performance
requirements.

Case-based reasoning (CBR) systems [25] are an important class of DSSs
that represent experiences (problems with solutions) as cases. Cases are used
for solving new problems by accessing past cases and comparing their similarity
to a given problem. In this paper we use a generic CBR system called Tr

364

(pronounced tah-tree) to build a complex medical DSS, which can be used to
advise physicians who prescribe treatment plans for in vitro fertilization (IVF)
patients [24].

CBR systems must meet functional requirements, including retrieving past
cases, selecting and reasoning about relevant ones, interactively exploring cases,
and adapting them to produce a solution, which is then evaluated. In addition,
CBR and other large and complex information systems must meet non-functional
requirements (NFRs or quality requirements), which are globM requirements
for quality factors such as performance, accuracy and confidentiality. NFRs are
important for the success of complex systems. In the case of medical systems,
confidentiality is crucial.

Dealing with NFRs systematically is difficult, because a developer must con-
sider not only requirements, but also implementation alternatives and tradeoffs.
In addition, requirements can be in conflict with each other (e.g., it may not be
possible to have both expressive representation and fast access time). There are
many implementation alternatives, with impact on different NFRs (e.g., having
entry clerks type information twice might improve accuracy, but decrease user
friendliness). Decisions are interrelated, with a global impact on the target sys-
tem. For these reasons, one can't simply use "canned alternatives" to meet the
quality requirements. Instead, we use an approach where the developer considers
the characteristics of a particular system being developed and application needs
in a systematic way. This provides a process that helps producing customized
systems that meet quality requirements.

Simple applications can usually be built in an ad hoc manner, and dealing
with requirements may not be difficult. However, a distinguishing aspect of large
and complex information systems, whether medical, governmental or industrial,
is that characteristics including data, algorithms, domains, requirements, pri-
orities and workload must all be considered. Furthermore, these characteristics
interact in complex ways. Hence it is important to deal with them in a systematic
way.

We deal with the complexity of these kinds of systems by: using a knowledge-
based approach which catalogues expertise, offering competent and efficient CBR
facilities, and using a structured approach to deal with NFRs. These facilities
are combined in our approach, called QualityCBR.

To provide a development process that addresses NFRs for CBR, and is goal-
oriented, systematic developer-directed and qualitative, we draw on the "NFR
Framework" [4, 6, 31]. The NFR Framework supports this process of build-
ing quality in to a system interactively, while considering NFRs throughout the
development process. Quality requirements are treated as goals to be systemati-
cally achieved during the design and development process. The NFR Framework,
with its associated tool, helps a developer state and refine NFRs, consider de-
sign tradeoffs, justify decisions and evaluate their impact on NFRs, while giving
the developer control of the development process. To deal with performance re-
quirements, we draw on the Performance Requirements Framework [33, 34, 35],
a specialization of the NFR Framework.

365

The factors which must be considered during development may all change
during a system's lifetime. This greatly increases the complexity of development,
and further motivates the need for a systematic approach. By using a knowledge-
based approach, and by drawing on the NFR Framework's facilities for dealing
with change [7], we can systematically deal with change.

There are two possible combinations of techniques for CBR and NFRs: (1)
using CBR to support reasoning about and reuse of NFRs, and (2) using NFRs
to systematically build quality into a CBR system. This paper addresses the lat-
ter issue, using the QualityCBR approach. In particular, we describe the process
of using QualityCBR and providing catalogues that deal with alternative imple-
mentations. QualityCBR draws on a flexible knowledge representation language
for information systems - - Telos [30], relevance assessment [20], similarity-based
retrieval algorithm [22], and the NFR Framework's goal-oriented, qualitative
approach [31]. In addition, QualityCBR uses knowledge discovery algorithms
[1, 24] and data model implementation experience [36]. QualityCBR is applied
to a complex medical DSS for IVF practitioners T.A3 [24]. During the devel-
opment of the system we considered some NFRs, albeit in an ad hoc manner.
We show how a developer could use QualityCBR to systematically build a CBR
system for IVF by addressing NFRs such as performance - "Select relevant cases
quickly", confidentiality - "Store patient records securely", and informativeness
- "Display results informatively". We also consider the impact of some changes.

2 T h e Q u a l i t y C B R A p p r o a c h

This section presents the elements of the QualityCBR approach, for address-
ing non-functional requirements of case-based reasoning systems. Traditionally,
CBR system were developed for a specific application. The presented work aims
at defining a generic framework that is adaptable for different domains, while en-
suring that both functional and non-functional requirements are systematically
met.

2.1 Case -Based Reason ing

This section describes principles of case-based reasoning (CBR) and a particular
prototype T.A3. Our aim is a flexible system that can be applied to various do-
mains, without sacrificing system performance. We consider system performance
as a quality of solution and its timeliness.

A case-based reasoning approach [25] relies on the idea that similar problems
have similar solutions. Facing a new problem, a CBR system retrieves similar
cases stored in a case base and adapts them to fit the problem at hand. Infor-
mally, a case comprises an input (the problem), an output (the solution) and
feedback (an evaluation of the solution). CBR involves the process of: (1) Ac-
cepting a new problem description; (2) Retrieving relevant cases from a case base
(past problems with similar input); (3) Adapting retrieved cases to fit the input

366

problem and finding a solution to it; and (4) Evaluating the solution (producing
feedback for the case).

Considering the above CBR cycle, one can say that the more similar the
eases are, the less adaptation is necessary, and consequently, the proposed so-
lution may be more correct. Then, an important task is how to measure case
relevance (similarity or closeness) to guarantee retrieving only highly relevant
cases, i.e., cases that are similar according to specified criteria, and thus can
be useful in solving the input problem in a particular context. Thus, we need a
variable-context similarity assessment. In many processes, it is better to retrieve
fewer cases, or none, than to retrieve less useful eases that would result in a
poor solution. But similarity of cases is only one measure of system quality. It
is also important that the solution be provided quickly. It should be noted that
the tradeoff between closeness and timeliness of a solution depends on require-
ments of a particular application [19]. For these reasons we use a variable-context
similarity assessment and case base clustering as described next.

TA3 is a CBR system, which uses a variable-context similarity-based retrieval
algorithm [22] and a flexible representation language. Knowledge must be rep-
resented in a form appropriate for the intended user, and the representation
should be rich enough to support complex, yet efficient processing [23]. Cases
are represented as a collection of attribute-value pairs. Individual attributes are
grouped into one or more categories [22]. Categories bring additional structure
to a case representation. This reduces the impact of irrelevant attributes on sys-
tem performance by selectively using individual categories during matching. As
a result, we get a more flexible reasoning system [19], a more comprehensible
presentation of complex information [20], improved solution quality [24], and
improved scalability [23].

During the CBR process, we want to handle partial as well as exact matches.
We have a partial matchin9 when attribute values of one case match only a
subset of values of another case. In order to retrieve and control both exact and
partial matching, a view of a case, called a context, is defined. Thus, a case to be
interpreted in a given context. By controlling what constitutes a partial match,
context specifies important attributes and how "close" an attribute value must
be. We say that a case satisfies (or matches) a particular context, if for each
attribute specified in the context, the value of that attribute in the case satisfies
the constraint [22]. Thus, the matching process can be described as a constraint
satisfaction problem [40]. The quality of the matching process is measured by the
closeness of retrieved cases [22], timeliness of the answer [23], and wzlaptability
of the suggested solution [26].

Ortega has shown that partial m-of-n matches improve performance if rn is
reasonably selected [37]. Our approach of representing cases as sets of Telos-
style categories [30], each comprising a set of tuples, allows for multiple levels
of m-of-n matching. Thus, important attributes may require n-of-n matches for
a given category, and less important attributes may allow for k-of-n matches
(k < n). The problem is to find these attribute groupings, i.e., a context that
specifies which attributes are needed for accurate prediction, and what range or
similarity should be allowed for attribute value .

367

This knowledge can be automatically discovered [24] and can be used for
case base clustering by: (1) appropriately grouping attributes into categories
(clustering of attributes); (2) discovering what values are "close" for particular
attributes (clustering of attribute values); and (3) structuring the case base into
clusters of relevant cases (clustering of cases).

2.2 Handling Non-Functional Requirements

The NFR Framework [4, 31] helps a developer represent and use key concepts
about NFRs (e.g., security and performance), the particular domain (e.g., IVF),
and development expertise, (e.g., CBR, databases and system development).

Being influenced by work in DSSs [28], the NFR Framework maintains a con-
cise and structured development graph whose components record the developer's
goals, decisions and design rationale. The developer states a set of NFRs for
the system, which are represented as goals that are considered throughout the
system development process. In trying to meet the requirements, developers are
helped in choosing among design alternatives, which are organized in a catalogue
of methods. Partial positive or negative relationships among goals are recorded
as qualitative link types. Knowledge of design tradeoffs is arranged in a catalogue
of correlation rules. After decisions are made, the NFR Framework uses its eval-
uation algorithm to help the developer determine if overall goMs have been met.
Section 3.2 presents the components of the NFR Framework in more detail, and
illustrates their use.

The NFR Framework has been previously applied to information systems
in several domains, in both the public and private sectors (e.g., health insur-
ance, banking and government systems) [5, 7]. Its approach can be specialized
to deal with a number of NFRs, such as performance [33, 34, 35], accuracy [4]
and security [3]. For performance, for example, we represented principles for
building good response time into systems [39] and arranged information system
implementation knowledge using a layering approach [17] based on data model
features, to reduce the number of issues considered at a time.

The "NFR Assistant" prototype tool [4], provides support to a developer
using the NFR Framework, by providing catalogues of concepts and methods,
aiding the construction and evaluation of development graphs, and keeping track
of correlations. The tool draws on the ConceptBase system [18] which uses the
Telos [15, 30] knowledge representation language. A specialization of the tool,
the Performance Requirements Assistant [34, 35], offers catalogues of concepts
and techniques for treating performance requirements, using other Telos-based
knowledge base management tools, 1 but offers only a subset of the functionality
of the NFR Assistant.

1 M. Stanley's Telos sh and B. Kramer's RepBrowser, at the University of Toronto.

368

2.3 Cata loguing C B R and N F R Knowledge

The QualityCBR approach organizes knowledge about issues and techniques for
CBR and NFRs. These knowledge bases, represented in Telos, serve as a ba-
sis for recording experts' knowledge and are used during system development,
They help a user to satisfy NFRs (such as performance and confidentiality),
effectively use CBR techniques (e.g., knowledge representation, retrieval), and
consider particular characteristics of the system under development (e.g., work-
load, confidentiality concerns).

Clustering

Partial Full

DK for K D ~

Domain Knowledge Explanation Database Data Based Knowledge Discovery Learning Techniques
(DK) (KDD) (EBL) (DB)

Fig. 1. A Catalogue of Clustering Techniques for CBR.

Some steps, typically done early in using the approach, involve defining and
organizing a variety of types of knowledge applicable to the system under devel-
opment. This produces a number of catalogues of concepts:

- Concepts about a particular class of reasoning systems (e.g., CBR), such
as components of the CBR system, problem decomposition techniques and
implementation alternatives. Figure 1 shows a sample catalogue for imple-
mentation alternatives for clustering techniques. Specialized catalogues draw
on combinations of aspects, e.g., domain knowledge for knowledge data dis-
covery.

- Concepts about particular NFRs (e.g., performance and security). For ex-
ample, a terminology of performance concepts is made available, along with
a catalogue which shows the impact of implementation techniques on time
and space goals [34].

- Concepts about the particular application domain, e.g., IVF: descriptions of
processes (e.g., a cycle of patient treatment) and workload (e.g., number of
patients).

- Generic concepts associated with the NFR Framework, e.g., definitions of
the components of development graphs which record developers' decisions.

369

3 I l l u s t r a t i n g t h e Q u a l i t y C B R A p p r o a c h

This section shows the use of QualityCBR's components and cataloguing to sup-
port several NFRs for the IVF domain. Section 3.1 presents the domain of our
study of the IVF system. We consider top level non-functional requirements for
an IVF system, which could be stated by a developer, involving: performance -
patient records must be retrieved and analyzed quickly (Section 3.2), and confi-
dentiality- records must be stored securely (Section 3.3). In addition, the system
should be robust and user-friendly (Section 3.4).

3.1 Func t iona l Requ i r emen t s in t he IVF Domain

In vitro fertilization (IVF) is an example of a complex medical domain, where
DSS can be used to suggest the hormonal treatment and to support research [24].
Individual patients respond to the treatment differently. A patient's response and
the pregnancy rate depends on many attributes. While experienced doctors can
use their knowledge to suggest a treatment for a patient, it is difficult for them to
perceive trends and make informed decisions to optimize success rates for each
individual infertile couple. This is especially a concern when knowledge about
influencing factors changes.

Pre&ction of the likelihood of pregnancy involves suggestion of a treatment.
This is performed in two stages. First, given initial information about the patient
(diagnosis, previous treatment history, etc.) the task is to find similar patients
from the case base and make a suggestion of how to treat the current patient to
increase the probability of successful pregnancy. This includes finding all relevant
cases, and considering retrieved cases with pregnancy as successful examples and
retrieved cases without pregnancy as negative cases. An adaptation process uses
this information to suggest values for remaining attributes in the current case,
namely how long the patient should be stimulated and what amount of the hor-
mones should be used. Second, after the initial treatment is completed, additional
attributes are available (patient's responsiveness to the hormonal stimulation).
The task is then to predict the outcome of the whole treatment, i.e., to predict
likelihood values for pregnancy and for unsuccessful cases. The prediction task
can also be considered as an optimization problem: for a given patient minimize
the amount of hormonal therapy required, without compromising the outcome.

Knowledge discovery is used to find regularities in the case base by using
knowledge-mining techniques, as well as to suggest missing data. Here, physicians
have no particular case in mind, however, they may consider the whole knowledge
base or only certain cases. Knowledge mining in 7,43 involves finding a context
in which a particular group of cases is considered similar. The user has the ability
to specify a threshold, which controls the quality and the quantity of discovered
information [24].

Considering that each patient is described by about a hundred attributes [24],
that there are about 600 patients per year per clinic and that there are about
300 IVF clinics in North America [29], the problem is not simple. Moreover,
IVF information is more sensitive than general medical information and the

370

complex IVF process involves various professionals, which need to access part
or whole information about the patient. IVF has relevance to both the pubhc
and private sectors. In the Province of Ontario, Canada, for example, publicly-
funded health insurance covers the cost of IVF for certain forms of infertility,
e.g., tubal blockage, while others are not covered, and are handled by private
clinics.

3.2 Dealing with Pe r fo rmance R e q u i r e m e n t s

We now show how performance requirements for the IVF domain are handled
using QualityCBR. We also describe components of the NFR Framework used
in QualityCBR.

System performance is an important factor for complex applications. Good
performance includes fast response time and low space requirements. For the IVF
system, a developer might state that one important goal is to have fast response
time when accessing patient records, for reasoning as well as case updating. This
requirement is represented as a goal: Time [Pa t ien t Records and Reasoning],
as shown in Figure 2. Time is the sort of the goal (i.e., the particular NFR con-
cept, addressed by the goal) and [Pa t i en t Records and Reasoning] is the
parameter (i.e., the subject) of the goal. (The entries within circles will be dis-
cussed below.) Another main goal is to have fast response time for reasoning
operations done by researchers, represented by Time [Research Reasoning].

- - _ Legend
Time Time / - " x

[Patient Records [Research ~ NFR Goal ~ . ~ Satifficed Goal
and Reasoning] Reasoning] ~

/ ~ Cla_'nn_[" Aid Doctor" [\ + ,~--', Argument ~ Denied Goal

/ \ �9

~ p d a t e] ~[Predietion] ~ [Discovery] I _ --~ Corrdation link J + Positive Link
t

~ ~ ' ~ " > ~ a . ~ . / I j " Very Negative Link
, ,

No Partial Full
Clustering Clustering Clustering

Fig. 2. Dealing with Performance Requirements for Reasoning.

Using methods and catalogues of knowledge (for performance, CBR, IVF,
etc.), goals can be refined into more specialized goals. Here, the developer used
knowledge of the IVF domain to refine the time goal for patient information into
two goals, one for good response time for updating patient records and the other
for good response time for the retrieval and decision making process. These two
offspring goals are connected by an And link to the parent goal. This means that

371

if both the goal for fast updates and the goal for fast prediction are accomplished
then we can say that the parent goal of fast access to patient records will in some
sense be accomplished. The NFR Framework takes a qualitative, "satisficing"
approach, in which goals are more-or-less met, although they may not be satisfied
in an absolute sense [38].

Similarly, the goal of good response time for research reasoning can be refined
into a goal of fast response for the "discovery" process which searches patient
records for patterns. Here, the parent has one offspring, connected by a positive
("§ link, which indicates that accomplishing the offspring will contribute pos-
itively towards accomplishing the parent goal. Other types of relationships can
be shown by other link types (see Figure 2).

In building quality into a system, it is important to identify priorities.
For the case of building performance in, we should identify time-critical op-

erations as well as those which dominate the workload [39]. Here, we identify
the prediction operation as being time-critical (indicated by "!"), and provide
a reason using domain knowledge: it is important to aid the doctor by quickly
suggesting a treatment. This is an example of recording design rationale [28] -
the reasons for decisions - using the NFR Framework's arguments. As part of
the development graph, arguments are available when making further decisions
and changes.

It is important to note that the developers use their expertise to determine
what to refine, how to refine it, to what extent to refine it, as well as when to
refine it. The NFR Framework and its associated tool help the developer, do
some consistency checking, and keep track of decisions, but it is the developer
who is in control of development process.

Implementation Alternatives.

In moving towards a target system, one must consider implementation al-
ternatives for case base clustering, which appropriately groups attributes, their
values, and relevant cases together. The main concern for clustering is with the
storage of patient records, which besides general patient information (name, ad-
dress, etc.) consist of attribute-value pairs describing the diagnosis of infertility,
previous and current treatments, the result, etc. Effective storage of this in-
formation facilitates the various CBR operations, because individual pieces of
information have different importance and different effects on the treatment and
on the overall outcome. Currently, the information is recorded in a paper-based
form with general patient information being sent to a central hospital computer.
A computerized IVF case base is populated in a batch process.

Many of the implementation alternatives (shown as dark circles in Figure 2)
will be drawn from appropriate catalogues. Implementation alternatives for the
following clustering operations must be considered:

- Storage and update. In the IVF application, data entry and updates have the
form of filling in blanks, either selecting a value from a pick-lists or typing
it. Considering the amount of data in one clinic, storage and update are
not major problems. However, taking into account possible extensions, e.g.,

372

linking several IVF clinics in a network to share their case bases, it is useful
to note this requirement.

- Prediction. A doctor uses the system to suggest a hormonal therapy for
the current patient (see Section 3.1). It is important that the accuracy of
predicted information is within reasonable bounds and a solution is provided
swiftly. There is a relationship between accuracy, time and space: the more
cases are stored, the more accurate solutions can be provided, but the longer
it takes to find cases relevant to a given problem.

- Knowledge discovery. Treatment protocols can be improved by using knowl-
edge discovery [24]. Discovered knowledge is used to organize attributes into
categories, and cases into clusters (equivalence classes).

The above considerations affect implementation alternatives ("satisficing
goals") for case base clustering: (1) the system may not use any clustering;
(2) it may use full clustering; or (3) an hybrid, a partial clustering scheme can
be deployed; further variations of clustering from the methods catalogue can be
considered (see Figure 1). Without clustering, updates are faster, as data need
not be reorganized; however, prediction is slower as there is no clustering to
aid the retrieval process. Thus, at the bottom left of Figure 2, No Clustering
is shown to have a positive impact on update time, and a negative impact on
prediction time. Full clustering is done by knowledge discovery: it speeds up
prediction, but hinders update time. No and full clustering each slow down at
least one of the three operations. The developer can formulate alternatives which
reduce or avoid this problem. Partial clustering may start with cases clustered
using domain knowledge, but may subdivide certain clusters into more detailed
groups. Its main advantage is that it speeds up all three operations, instead
of slowing any of them. However, no clustering is better ("++") than partial
for update, and full clustering is better than partial for retrieval. Thus, partial
clustering offers intermediate performance for some operations, but avoids bad
performance for all of them. As a result, partial clustering is selected ("v ~')
over the unchosen ("x") alternatives. Note, that an IVF facility that does not
support research may give low priority to performance for knowledge discovery.
Since the hormonal therapy suggestion would have high priority, full clustering
would be selected.

Evaluating Goal Accomplishment.

After decisions are made, the developer can determine their overall impact
on the system's requirements. The developer is aided by the NFR Framework's
semi-automatic evaluation algorithm, which examines the development graph,
generally bottom-up. It starts with implementation decisions to accept ("x/~') or
reject ("x") alternatives (shown in dark circles at the bottom of Figure 2),

Results then propagate upward along evaluation links. Evaluation assigns
values (e.g., "x/" or "x") to parent goals based on the values of offspring goals,
and and the relationships (link types, e.g., "+" or %") between offspring and
parent goals. For example, with a "+" link type, meeting ("~2') the offspring
(e.g., Partial Clustering) helps meet ("x/") the parent; however, if the offspring

373

is denied ("• not achieved), the parent will be denied ("• The "-" link
type can be thought of as giving the parent the "opposite" of the offspring's
label. Values from all applicable offspring propagate to a parent. Here, partial
clustering helps quickly accomplish updating, presentation and discovery. During
the process, the developer may step in, to determine propagated values. For
example, if a parent goal received positive and negative values from different
offsprings, the developer is able to resolve the conflict using domain knowledge.

It should be noted that not all goals can always be met, but performance can
be enhanced if the priorities are accomplished [39]. As presented in Figure 2,
the critical goal for prediction has been met. Since the update time goal was also
met, the top goal for records and reasoning was met. As the discovery goal was
met, the top goal for research reasoning was also met.

Dealing with Changes in Priorities.

Let's consider four imaginary IVF clinics with different priorities: (1)fast
update of records, (2) fast prediction, (3) both fast prediction and fast update
are important,~and (4)fast case base analysis (discovery). Depending on the
priorities, we may adjust the solution of Figure 2 by choosing a different alter-
native. As a result, the first clinic would not use clustering, the second would
use full clustering, and the third and fourth clinics would achieve their require-
ments by deploying partial (hybrid) clustering. This is an example of reusing an
existing development graph, which uses the NFR Framework's components to
capture decisions and rationale, as a resource for rapid analysis of the impact
of change upon the achievement of NFRs [7]. In addition, we have used do-
main knowledge, priorities and performance catalogues to produce customized
solutions which meet needs of a particular organization.

3.3 Security Requirements

Security is an important factor, especially in medicine, and IVF is a particularly
sensitive application. Security includes such concepts as integrity, confidentiality
and availability [4], whose combination is used in a generic methodology for
medical data security [14].

For the IVF clinic, we identified two primary goals (top part of Figure 3): (1)
The physical integrity of gametes of the patient is extremely crucial (indicated by
"!!"). (2) The confidentiality of patient data should be maintained. A third goal
is to maintain the professional integrity (reputation) of the doctor (researcher).

Physical Integrity of Patient Material.

The crucial concern is that a patient's gametes must not be mistaken for
someone else's. Thus, accurate identification of gametes strongly contributes to
physical integrity. This can be accomplished either by using patient's name or
an identifying number. Using only a number might contribute to confidential-
ity; for example, the lab technician, who deals with gametes, but not directly

374

Integrity Integrity Confidentiality
[Patient] [Doctor] [Patient Info]

++

Confidentiality
/ [Identifying I n f o ~ ~) [Non-ldentifytng lnfo]

Acc m:a. telD/~ Confidentiality ~ And ~ Confidentiality
wauent ~ , ~ o b] (!J) (! J) ['Identifying lnfo Outside Lab] gametesl ~ ..

Number Only Name in Lab Name Outside Lab Number Outside Lab

Fig. 3. Dealing with Security Requirements for an IVF Clinic.

with patients, could in principle use only numbered dishes without knowing pa-
tient's name. However, this could increase the chance of confusing gametes of
two patients, which must be avoided. Instead, the lab labels dishes with gametes
using the patient's name, which is only made available to authorized personnel,
including the technician. The analysis is shown in the lower left of Figure 3.

It's interesting to note the interaction between the goals of physical integrity
of gametes, and the confidentiality of patient information, and the resolution of
the conflict to benefit the higher-priority goal. In addition, to help meet both
goals, the lab has a system of physical security. While this is not shown in the
figure, it is important to note that measures taken outside the computer system
can have an impact on the NFRs being considered.

Confidentiality of Patient Information.

The IVF clinic records some basic identifying information about a patient
(name, age, hospital number, etc.), a record of the patient's visits during a treat-
ment cycle, treatments made, and observations. In addition, the central hospital
computer maintains accounting records, which do not have the details of IVF
treatment. Patient information is used for both tracking individual patients for
treatment, and for reviewing groups of patients for research purposes. This dual
usage complicates confidentiality considerations. Furthermore, researchers some-
times need to obtain further information about particular patients, hence the
statistical research information must contain some patient identifiers. Clearly,
access to medical data should be restricted to authorized persons, in relation to
their status [13]. In the case of the IVF clinic, the mere fact that someone is an
IVF patient is considered quite a personal matter, hence confidential [10].

The issue of security of statistical data is a complex one. According to [32]:
"confusion still surrounds the question of whether privacy can be fundamentally

375

violated by statistics drawn from personal records". However, it was also shown
that statistical information could provide detailed information about individuals
[9]. The more information pieces are tied together the more identifiable the
individual is.

Confidentiality of patient information must handle two goals: (1) information
that identifies a patient and (2) information that does not (see Figure 3). In
IVF domain, data can be used both for clinical treatment and for research.
Thus, the goal of confidentiality of identifying information can be refined by the
developer to handle these situations. As discussed earlier, the patient's name
will be used within the lab, to meet the overriding goal of integrity of gametes,
which (along with the goal of confidentiality of records) will be aided by physical
security measures. To reduce the risk of names being divulged to third parties,
the patient's name should not be used outside the lab. Instead, an identification
number (hospital number, sample number or user generated number [16]) is used.

Eva lua t ing the Overal l Impac t of Decisions.

Using a name within the lab helps accurately identify gametes, and maintain
its physical integrity. The selective use of name and number provides confiden-
tiality of identifying information, both inside and outside the lab. Meeting this
critical goal contributes to the overall confidentiality of patient information. In
turn, meeting both that confidentiality goal and the goal for physical integrity
of gametes contributes positively to maintaining the professional integrity of the
doctor (researcher). While we did not initially identify professional integrity as
a main goal, it is very interesting to see that the result of our analysis using
the NFR Framework was in harmony with the observation that the integrity of
researchers is paramount [2].

3.4 O t h e r N F R s

Additional NFRs for the presented system include: (1) Robustness: the ability
to gracefully handle a variety of situations; (2) User friendliness: providing the
right degree of assistance to users; and (3) Informativeness: providing the right
amount of information, appropriately arranged.

Robustness concerns for the CBR system include: (1) reducing the effect of
irrelevant attributes on CBR so that the prediction accuracy does not degrade
with an increased number of irrelevant attributes and presenting only attributes
relevant to the task; (2) fault tolerance during data entry and reasoning. Thus,
the goal for robustness of the system is refined into goals for data integrity,
robustness of reasoning and robustness of presentation (Figure 4, top left).

Data integrity is important [14]. As suggested in [13], verification and val-
idation of data completeness and accuracy is an additional measure ensuring
data integrity. Thus, especially in the early stages of system development, all
attributes available should be used. This allows for correlating the attributes,
which can lead to identifying data integrity violations: However, if all attributes
are also used in later stages, this would lead to problems with reasoning and

376

User
Robustness[System] Friendliness[System] Informativeness[System]

Data Integrity \ \ [System] ~'~ Robustness ~ ~ Robustness ~ / /

Use ++ + [AIIAttrib.~ / / I ~ e U ~ ~ ~ i ~ C h e c k

RetypeData
Early Later Early Later

Fig. 4. Dealing with Several NFRs for the System.

presentation. Thus, only relevant attributes should be used in later phases. As
described in Section 2.1, knowledge-discovery techniques can be used to locate
features relevant to the problem solving task [24]. Using only relevant features
improves flexibility [20], accuracy [22], and efficiency [23]. The effect of this se-
lective use of attributes contributes positively to the top goals of robustness and
informativeness, both of which are accomplished, but user friendliness is not
accomplished for the reasons described below.

Generic relationships between NFRs and satisficing goals can be catalogued
in advance as "correlation rules." These relationships can then be detected by
the NFR assistant system, even if the developer has not explicitly linked the
goals. Here, to syntactically verify data, the developer has the operator type it
twice, which is helpful for data integrity. However, the NFR Assistant system
detects that this is bad for user friendliness (the "correlation link," shown as a
dashed line, is negative), which results in the user friendliness goal not being
met. Correlation links (dashed lines) propagate values in the same way that
evaluation links to.

Selecting Different Implementation Alternatives.

Recognizing that system friendliness is important for users, the developer
may consider ways of achieving this goal, such as implementation alternatives
presented in Figure 5 (an extension of the lower left part in Figure 4). These in-
clude another user-oriented method - menu-driven input, and as system-provided
checking - a dictionary of used terms, and using n-grams, which supports au-
tomatic recognition of misspelled words. In the example, n-grams are selected,
so that syntactic checking remains accomplished, albeit by a different method,
which contributes positively to user friendliness. In addition, the chosen methods
for displaying all attributes early and relevant attributes later remain unchanged

377

from Figure 4, hence continue to contribute positively to user friendliness, which
is now accomplished.

Syntactic User Friendliness
Check [System] +
[1)~1 +-b ~ ~ ' r

" N /I / ~ [Rele~tAttribX~]
BySystem (~ " ~) ByUser / r /' Use~arly k

Claim["User , ~ , t ~ z / f , JAil Attri[~tites] (x~ (~
Friendliness I x/,L--~ / \ ["N / / ~
Important"] _v_, / ~ I ~ "~/ Informativeness Robustness @ ~) ~ ~) [System] [Presentation]

n-Grams Dictionary Menu RetypeData

Fig. 5. A Re-examination of Methods for Syntactic Checking.

This is another example of dealing with change - namely, a change in imple-
mentation alternatives. The net result is that the developer's expertise was used
to accomplish the remaining top goal of user friendliness, while maintaining ro-
bustness and informativeness. This was done by reusing the information already
captured in Figure 4, which dealt with several NFRs.

4 C o n c l u s i o n s

We are concerned with quality issues in decision support for complex information
systems. We have presented an approach, called QualityCBR, for dealing with
non-functional requirements for case-based reasoning systems. This integrates
the NFR Framework's systematic process for building quality with the T.A3 CBR
system, intended for decision support. In developing QualityCBR, catalogues
have been organized to represent diverse knowledge concerning CBR, NFRs,
IVF, and development techniques. By drawing on several axes (e.g., CBR and
performance), we can focus on small groups of specific methods. This approach
is similar to the organization of information system performance requirements
issues [34]. We feel that the use of such catalogues is helpful in dealing with
NFRs in medical computing and other complex domains, public and private.

To demonstrate how a developer can use QualityCBR to deal with conflicting
and changing requirements, we illustrated its use in a medical domain. A variety
of NFRs (e.g., performance, security, informativeness), and tradeoffs between
individual requirements have been considered.

We also found that the NFR Framework's development graphs and change
facilities [7] made the process of dealing with change easier. In this paper we have
considered changes in priorities of NFRs and in implementation techniques. This
is consistent with results of using the NFR Framework to deal with changes in
requirements for a commercial system.

378

7-,43's performance evaluation has been conducted on several domains: pre-
diction and knowledge mining in medicine [24], [24], control task in robotic do-
mains [21], character recognition [22], iterative browsing and intelligent retrieval
[20]. Each domain has different characteristics; this helps evaluation of differ-
ent aspects of the system. We have evaluated both the competence [24] and
scalability [23] of the system.

It would be interesting to see if QualityCBR could be used to use other goal-
oriented approaches to requirements engineering, e.g., [8, 11, 12]. This would
draw on several facilities, such as representation of goals, priorities, and positive
and negative links.

We would like to conduct fuller studies of applying T.A3 to a variety of
areas, both public and private, such as medicine, engineering and commerce,
which require a variety of NFRs. Notably, we plan to explore the capability
of using QualityCBR during building engineering applications, such as robotics
[21], where real time response is critical. For example, the use of an "any time
system" (which must produce a valid answer at any time) entails flexible and
adaptive procedures to meet accuracy and safety requirements [19]. These steps
will help us to better asses the generality of the approach and proposed combined
tools to evaluate its costs and benefits. Studies should use a methodology, such
as [27] which allows us to have the kind of confidence in the results that one
would have in using the scientific method.

An important direction for future work is to apply CBR to the NFR Frame-
work and its associated tool. For example, sets of development graphs for a
variety of systems could be examined and analyzed to find patterns (templates)
of sequences of method applications. This could be aided by facilities for cri-
tiquing and rationalizing specifications [11]. Such templates could then be used
as larger building blocks when using the NFR Framework to develop a variety of
systems. Thus, CBR would provide underlying technology for a reuse assistant
for the NFR Framework.

We trust that building quality into CBR, and using CBR in tools for dealing
with NFRs, will aid the development of complex information systems for a variety
of public and private domains. 2

R e f e r e n c e s

1. R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance pcr-
spective. IEEE Transactions on Knowledge and Data Eng. Learning and Discovery
in Knowledge-Based Databases, 5(6):914-925, 1993.

2 Acknowledgments. The authors were with the Dept. of Computer Science, University
of Toronto, when this paper was initially prepared. This research was supported
by the Information Technology Research Centre of Ontario, Canadian Consortium
for Software Engineering Research and the IBM Centre for Advanced Studies. We
thank Robert F. Casper and Andrea Jurisicova for much helpful information on
IVF procedures. Over the years we have benefited from the insight and direction of
Professors John Mylopoulos and Janice Glasgow. This paper benefits from earlier
NFR work with Lawrence Chung and Eric Yu. Our families have been a constant
source of support.

379

2. R. Behi and M. Nolan. Ethical issues in research. British Journal of Nursing,
4(12):712-716, 1995.

3. L. Chtmg. Dealing with security requirements during the development of informa-
tion systems. In Proc. 5 th Int. Conf. on Advanced Information Systems Engineer-
ing, pages 234-251, Paris, France, 1993. Springer-Verlag.

4. L. Chung. Representing and Using Non-Functional Requirements: A Process-
Oriented Approach. PhD thesis, Dept. of Computer Science, Univ. of Toronto,
1993.

5. L. Chung and B. A. Nixon. Dealing with Non-Functional Requirements: Three
Experimental Studies of a Process-Oriented Approach. In Proc. 17 r Int. Conf.
on Software Eng., pages 25-37, Seattle, WA, 1995.

6. L. Chung, B. A. Nixon, J. Mylopoulos, and E. Yu. Non-Functional Requirements
in Software Engineering. In preparation, 1998.

7. L. Chung, B. A. Nixon, and E. Yu. Dealing with Change: An Approach using
Non-Fhnctional Requirements. Requirements Engineering, 1(4):238-260, 1996. An
earlier version, Using Non-Functional Requirements to Systematically Support
Change, appeared in Proc. 2 ~ IEEE Int. Symp. on Requirements Eng., York,
U.K., 1995, pp. 132-139.

8. A. Darderme, A. van Lamsweerde, and S. Fickas. Goal-directed requirements ac-
quisition. Science of Computer Programming, 20:3-50, 1993.

9. D. E. Denning, P. J. Denning, and M. D. Schwartz. The tracker: A threat to
statistical database security. ACM TODS, 4:76-96, 1979.

10. C.L. Early and L. C. Strong. Certificates of confidentiality: A valuable tool for
protecting genetic data. American Journal of Human Genetics, 57(3):727-731,
1995.

11. S. Fickas and P. Nagarajan. Being suspicious: Critiquing problem specifications.
In Proc. AAAI-88, pages 19-24, Saint Paul, MN, 1988.

12. S. F. Fickas. Automating the transformational development of software. IEEE
Trans. on Software Eng., SE-11(11):1268-1277, 1985.

13. F.H. France and P.N. Gaunt. The need for security - A clinical view. International
Journal of Bio-Medical Computing, 35(Suppl. 1):189-194, 1994.

14. S. Furnell, P. Gaunt, G. Pangalos, P. Sanders, and M. Warren. A generic method-
ology for health care data security. Medical Informatics, 19(3):229-245, 1994.

15. S. Greenspan, J. Mylopoulos, and A. Borgida. On Formal Requirements Model-
ing Languages: RML Revisited. In Proceedings, 16th International Conference on
Software Engineering, pages 135-147, Sorrento, Italy, 1994.

16. F. Honig. When you can't ask their name: Linldng anonymous respondents with
the Hogben number. Australian Journal of Public Health, 19(1):94-96, 1995.

17. W. F. Hyslop. Performance Prediction of Relational Database Management Sys-
tems. PhD thesis, Dept. of Computer Science, Univ. of Toronto, 1991.

18. M. Jarke. ConceptBase V3.1 User Manual. Univ. of Passau, 1992.
19. I. Jurisica. Supporting flexibility. A case-based reasoning approach. In The A A A I

Fall Symposium. Flexible Computation in Intelligent Systems: Results, Issues, and
Opportunities, Cambridge, MA, 1996.

20. I. Jurisica. Similarity-based retrieval for diverse Bookshelf software repository
users. In IBM CASCON Conference, pages 224-235, Toronto, Canada, 1997.

21. I. Jurisica and J. Glasgow. A case-based reasoning approach to learning control. In
5 th International Conference on Data and Knowledge Systems for Manufacturing
and Engineering, DKSME-96, Phoenix, AZ, 1996.

380

22. I. Jurisica and J. Glasgow. Case-based classification using similarity-based re-
trieval. International Journal of Artificial Intelligence Tools. Special Issue of IEEE
ICTAI-96 Best Papers, 6(4):511-536, 1997.

23. I. Jurisica and J. Glasgow. An efficient approach to iterative browsing and retrieval
for case-based reasoning. In Angel Pasqual del Pobil, Jose Mira, and Moonis Aft,
editors, Lecture Notes in Computer Science, IEA/AIE*98. Springer-Verlag, 1998.

24. I. Jurisica, J. Mylopoulos, J. Glasgow, H. Shapiro, and R. F. Casper. Case-based
reasoning in IVF: Prediction and knowledge mining. Artificial Intelligence in
Medicine, 12(1):1-24, 1998.

25. D. Leake, editor. Case.Based Reasoning: Experiences, lessons and future direc-
tions. AAAI Press, 1996.

26. D. Leake, A. Kiniey, and D. Wilson. Case-based similarity assessment: Estimating
adaptability from experience. In Proc. of the AAAI-97, 1997.

27. A. S. Lee. A scientific methodology for MIS case studies. MIS Quarterly, pages
30--50, 1991.

28. J. Lee. Extending the Potts and Bruns Model for Recording Design Rationale. In
Proc., 13th Int. Conf. on Software Eng., pages 114-125, Austin, Texas, 1991.

29. P. M. McShane. Customized comparative clinical results assessment of your IVF
program. IVF America, 1993.

30. J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: Representing
knowledge about information systems. ACM Transactions on Information Sys-
tems, 8(4):325-362, 1990.

31. J. Mylopoulos, L. Chung, and B. Nixon. Representing and Using Non-Functional
Requirements: A Process-Oriented Approach. IEEE Transactions on Software En-
gineering, 18:483-497, 1992.

32. H.B. Newcombe. When privacy threatens public health. Canadian Journal of
Public Health. Revue Canadienne de Santg Publique., 83(3):188-192, 1995.

33. B. A. Nixon. Dealing with performance requirements during the development of
information systems. In Proc. IEEE International Symposium on Requirements
Engineering, pages 42--49, San Diego, CA, 1994.

34. B. A. Nixon. Representing and using performance requirements during the devel-
opment of information systems. In Proc. ~th Int. Conf. on Extending Database
Technology, pages 187-200, Cambridge, U.K., 1994.

35. B. A. Nixon. Performance Requirements for Information Systems. PhD thesis,
Dept. of Computer Science, Univ. of Toronto, 1997.

36. B. A. Nixon, K. L. Chung, D. Lauzon, A. Borg'ida, J. Mylopoulos, and M. Stanley.
Design of a compiler for a semantic data model. In J. W. Schmidt and C. Thanos,
editors, Foundations of Knowledge Base Management, pages 293-343. Springer-
Verlag, 1989.

37. J. Ortega. On the informativeness of the DNA promoter sequences domain theory.
Journal of Artificial Intelligence Research, 2:361-367, 1995. Research Note.

38. H. A. Simon. The Sciences of the Artificial, 2 nd Edition. MIT Press, Cambridge,
MA, 1981.

39. C.U. Smith. Performance Engineering of Software Systems. Addison-Wesley,
Reading, MA, 1990.

40. P. R. Thagard, K. J. Holyoak, G. Nelson, and D. Gotchfeld. Analog retrieval by
constraint satisfaction. Artificial Intelligence, 46:259-310, 1990.

