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Abs t rac t .  Complex decision-support information systems for diverse 
domains need advanced facifities, such as knowledge repositories, rea- 
soning systems, and modeling for processing interrelated information. 
System development must satisfy flmctional requirements, but must also 
systematically meet global quality factors, such as performance, confi- 
dentiality and accuracy, called non-functional requirements (NFRs). 

To build quality into an important class of decision support sys- 
tems, case-based reasoning (CBR) systems, this paper presents "Qual- 
ityCBR," a goal-oriented, knowledge-based approach for systematically 
dealing with NFRs for CBR systems. With the idea that similar prob- 
lems have similar solutions, CBR systems store cases (problems with 
solutions) and solve new problems by retrieving and reusing similar past 
cases. QualityCBR integrates existing work on CBR and NFRs. It helps 
developers state and refine NFRs, consider tradeoffs, make decisions and 
evaluate their impact on NFRs. We illustrate the approach in a com- 
plex medical domain, in vitro fertilization, where CBR suggests therapy 
for patients, predicts the probability for successful pregnancy, and deter- 
mines patient's characteristics that can improve pregnancy rate. 

1 I n t r o d u c t i o n  

Complex information systems in both the public and private sectors need a num- 
ber of advanced facilities, including decision support systems (DSSs), reposito- 
ries, reasoning systems, and facilities for modeling and processing large amounts 
of complex information. Many DSSs have been built for individual domains in 
an ad hoc manner. However, to effectively build families of DSSs for complex 
domains, such as medical, governmental or industrial applications, we need a 
systematic knowledge-based approach to: (1) empower expert user to make effec- 
tive decisions using a DSS, and (2) address concerns for quality and performance 
requirements. 

Case-based reasoning (CBR) systems [25] are an important  class of DSSs 
that  represent experiences (problems with solutions) as cases. Cases are used 
for solving new problems by accessing past cases and comparing their similarity 
to a given problem. In this paper we use a generic CBR system called Tr 
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(pronounced tah-tree) to build a complex medical DSS, which can be used to 
advise physicians who prescribe treatment plans for in vitro fertilization (IVF) 
patients [24]. 

CBR systems must meet functional requirements, including retrieving past 
cases, selecting and reasoning about relevant ones, interactively exploring cases, 
and adapting them to produce a solution, which is then evaluated. In addition, 
CBR and other large and complex information systems must meet non-functional 
requirements (NFRs or quality requirements), which are globM requirements 
for quality factors such as performance, accuracy and confidentiality. NFRs are 
important for the success of complex systems. In the case of medical systems, 
confidentiality is crucial. 

Dealing with NFRs systematically is difficult, because a developer must con- 
sider not only requirements, but also implementation alternatives and tradeoffs. 
In addition, requirements can be in conflict with each other (e.g., it may not be 
possible to have both expressive representation and fast access time). There are 
many implementation alternatives, with impact on different NFRs (e.g., having 
entry clerks type information twice might improve accuracy, but decrease user 
friendliness). Decisions are interrelated, with a global impact on the target sys- 
tem. For these reasons, one can't simply use "canned alternatives" to meet the 
quality requirements. Instead, we use an approach where the developer considers 
the characteristics of a particular system being developed and application needs 
in a systematic way. This provides a process that helps producing customized 
systems that meet quality requirements. 

Simple applications can usually be built in an ad hoc manner, and dealing 
with requirements may not be difficult. However, a distinguishing aspect of large 
and complex information systems, whether medical, governmental or industrial, 
is that characteristics including data, algorithms, domains, requirements, pri- 
orities and workload must all be considered. Furthermore, these characteristics 
interact in complex ways. Hence it is important to deal with them in a systematic 
way. 

We deal with the complexity of these kinds of systems by: using a knowledge- 
based approach which catalogues expertise, offering competent and efficient CBR 
facilities, and using a structured approach to deal with NFRs. These facilities 
are combined in our approach, called QualityCBR. 

To provide a development process that addresses NFRs for CBR, and is goal- 
oriented, systematic developer-directed and qualitative, we draw on the "NFR 
Framework" [4, 6, 31]. The NFR Framework supports this process of build- 
ing quality in to a system interactively, while considering NFRs throughout the 
development process. Quality requirements are treated as goals to be systemati- 
cally achieved during the design and development process. The NFR Framework, 
with its associated tool, helps a developer state and refine NFRs, consider de- 
sign tradeoffs, justify decisions and evaluate their impact on NFRs, while giving 
the developer control of the development process. To deal with performance re- 
quirements, we draw on the Performance Requirements Framework [33, 34, 35], 
a specialization of the NFR Framework. 
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The factors which must be considered during development may all change 
during a system's lifetime. This greatly increases the complexity of development, 
and further motivates the need for a systematic approach. By using a knowledge- 
based approach, and by drawing on the NFR Framework's facilities for dealing 
with change [7], we can systematically deal with change. 

There are two possible combinations of techniques for CBR and NFRs: (1) 
using CBR to support reasoning about and reuse of NFRs, and (2) using NFRs 
to systematically build quality into a CBR system. This paper addresses the lat- 
ter issue, using the QualityCBR approach. In particular, we describe the process 
of using QualityCBR and providing catalogues that deal with alternative imple- 
mentations. QualityCBR draws on a flexible knowledge representation language 
for information systems - -  Telos [30], relevance assessment [20], similarity-based 
retrieval algorithm [22], and the NFR Framework's goal-oriented, qualitative 
approach [31]. In addition, QualityCBR uses knowledge discovery algorithms 
[1, 24] and data model implementation experience [36]. QualityCBR is applied 
to a complex medical DSS for IVF practitioners T.A3 [24]. During the devel- 
opment of the system we considered some NFRs, albeit in an ad hoc manner. 
We show how a developer could use QualityCBR to systematically build a CBR 
system for IVF by addressing NFRs such as performance - "Select relevant cases 
quickly", confidentiality - "Store patient records securely", and informativeness 
- "Display results informatively". We also consider the impact of some changes. 

2 T h e  Q u a l i t y C B R  A p p r o a c h  

This section presents the elements of the QualityCBR approach, for address- 
ing non-functional requirements of case-based reasoning systems. Traditionally, 
CBR system were developed for a specific application. The presented work aims 
at defining a generic framework that is adaptable for different domains, while en- 
suring that both functional and non-functional requirements are systematically 
met. 

2.1 Case -Based  Reason ing  

This section describes principles of case-based reasoning (CBR) and a particular 
prototype T.A3. Our aim is a flexible system that can be applied to various do- 
mains, without sacrificing system performance. We consider system performance 
as a quality of solution and its timeliness. 

A case-based reasoning approach [25] relies on the idea that similar problems 
have similar solutions. Facing a new problem, a CBR system retrieves similar 
cases stored in a case base and adapts them to fit the problem at hand. Infor- 
mally, a case comprises an input (the problem), an output (the solution) and 
feedback (an evaluation of the solution). CBR involves the process of: (1) Ac- 
cepting a new problem description; (2) Retrieving relevant cases from a case base 
(past problems with similar input); (3) Adapting retrieved cases to fit the input 
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problem and finding a solution to it; and (4) Evaluating the solution (producing 
feedback for the case). 

Considering the above CBR cycle, one can say that  the more similar the 
eases are, the less adaptation is necessary, and consequently, the proposed so- 
lution may be more correct. Then, an important task is how to measure case 
relevance (similarity or closeness) to guarantee retrieving only highly relevant 
cases, i.e., cases that  are similar according to specified criteria, and thus can 
be useful in solving the input problem in a particular context. Thus, we need a 
variable-context similarity assessment. In many processes, it is better to retrieve 
fewer cases, or none, than to retrieve less useful eases that  would result in a 
poor solution. But similarity of cases is only one measure of system quality. It 
is also important that  the solution be provided quickly. It should be noted that  
the tradeoff between closeness and timeliness of a solution depends on require- 
ments of a particular application [19]. For these reasons we use a variable-context 
similarity assessment and case base clustering as described next. 

TA3 is a CBR system, which uses a variable-context similarity-based retrieval 
algorithm [22] and a flexible representation language. Knowledge must be rep- 
resented in a form appropriate for the intended user, and the representation 
should be rich enough to support complex, yet efficient processing [23]. Cases 
are represented as a collection of attribute-value pairs. Individual attributes are 
grouped into one or more categories [22]. Categories bring additional structure 
to a case representation. This reduces the impact of irrelevant attributes on sys- 
tem performance by selectively using individual categories during matching. As 
a result, we get a more flexible reasoning system [19], a more comprehensible 
presentation of complex information [20], improved solution quality [24], and 
improved scalability [23]. 

During the CBR process, we want to handle partial as well as exact matches. 
We have a partial matchin9 when attribute values of one case match only a 
subset of values of another case. In order to retrieve and control both exact and 
partial matching, a view of a case, called a context, is defined. Thus, a case to be 
interpreted in a given context. By controlling what constitutes a partial match, 
context specifies important attributes and how "close" an attribute value must 
be. We say that  a case satisfies (or matches) a particular context, if for each 
attribute specified in the context, the value of that  attribute in the case satisfies 
the constraint [22]. Thus, the matching process can be described as a constraint 
satisfaction problem [40]. The quality of the matching process is measured by the 
closeness of retrieved cases [22], timeliness of the answer [23], and wzlaptability 
of the suggested solution [26]. 

Ortega has shown that  partial m-of-n matches improve performance if rn is 
reasonably selected [37]. Our approach of representing cases as sets of Telos- 
style categories [30], each comprising a set of tuples, allows for multiple levels 
of m-of-n matching. Thus, important attributes may require n-of-n matches for 
a given category, and less important  attributes may allow for k-of-n matches 
(k < n). The problem is to find these attribute groupings, i.e., a context that  
specifies which attributes are needed for accurate prediction, and what range or 
similarity should be allowed for attribute value .  
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This knowledge can be automatically discovered [24] and can be used for 
case base clustering by: (1) appropriately grouping attributes into categories 
(clustering of attributes); (2) discovering what values are "close" for particular 
attributes (clustering of attribute values); and (3) structuring the case base into 
clusters of relevant cases (clustering of cases). 

2.2 Handling Non-Functional Requirements 

The NFR Framework [4, 31] helps a developer represent and use key concepts 
about NFRs (e.g., security and performance), the particular domain (e.g., IVF), 
and development expertise, (e.g., CBR, databases and system development). 

Being influenced by work in DSSs [28], the NFR Framework maintains a con- 
cise and structured development graph whose components record the developer's 
goals, decisions and design rationale. The developer states a set of NFRs for 
the system, which are represented as goals that are considered throughout the 
system development process. In trying to meet the requirements, developers are 
helped in choosing among design alternatives, which are organized in a catalogue 
of methods. Partial positive or negative relationships among goals are recorded 
as qualitative link types. Knowledge of design tradeoffs is arranged in a catalogue 
of correlation rules. After decisions are made, the NFR Framework uses its eval- 
uation algorithm to help the developer determine if overall goMs have been met. 
Section 3.2 presents the components of the NFR Framework in more detail, and 
illustrates their use. 

The NFR Framework has been previously applied to information systems 
in several domains, in both the public and private sectors (e.g., health insur- 
ance, banking and government systems) [5, 7]. Its approach can be specialized 
to deal with a number of NFRs, such as performance [33, 34, 35], accuracy [4] 
and security [3]. For performance, for example, we represented principles for 
building good response time into systems [39] and arranged information system 
implementation knowledge using a layering approach [17] based on data model 
features, to reduce the number of issues considered at a time. 

The "NFR Assistant" prototype tool [4], provides support to a developer 
using the NFR Framework, by providing catalogues of concepts and methods, 
aiding the construction and evaluation of development graphs, and keeping track 
of correlations. The tool draws on the ConceptBase system [18] which uses the 
Telos [15, 30] knowledge representation language. A specialization of the tool, 
the Performance Requirements Assistant [34, 35], offers catalogues of concepts 
and techniques for treating performance requirements, using other Telos-based 
knowledge base management tools, 1 but offers only a subset of the functionality 
of the NFR Assistant. 

1 M. Stanley's Telos sh and B. Kramer's RepBrowser, at the University of Toronto. 
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2.3 Cata loguing  C B R  and  N F R  Knowledge 

The QualityCBR approach organizes knowledge about issues and techniques for 
CBR and NFRs. These knowledge bases, represented in Telos, serve as a ba- 
sis for recording experts' knowledge and are used during system development, 
They help a user to satisfy NFRs (such as performance and confidentiality), 
effectively use CBR techniques (e.g., knowledge representation, retrieval), and 
consider particular characteristics of the system under development (e.g., work- 
load, confidentiality concerns). 

Clustering 

Partial Full 

DK for K D ~  

Domain Knowledge Explanation Database Data Based Knowledge Discovery Learning Techniques 
(DK) (KDD) (EBL) (DB) 

Fig. 1. A Catalogue of Clustering Techniques for CBR. 

Some steps, typically done early in using the approach, involve defining and 
organizing a variety of types of knowledge applicable to the system under devel- 
opment. This produces a number of catalogues of concepts: 

- Concepts about a particular class of reasoning systems (e.g., CBR), such 
as components of the CBR system, problem decomposition techniques and 
implementation alternatives. Figure 1 shows a sample catalogue for imple- 
mentation alternatives for clustering techniques. Specialized catalogues draw 
on combinations of aspects, e.g., domain knowledge for knowledge data dis- 
covery. 

- Concepts about particular NFRs (e.g., performance and security). For ex- 
ample, a terminology of performance concepts is made available, along with 
a catalogue which shows the impact of implementation techniques on time 
and space goals [34]. 

- Concepts about the particular application domain, e.g., IVF: descriptions of 
processes (e.g., a cycle of patient treatment) and workload (e.g., number of 
patients). 

- Generic concepts associated with the NFR Framework, e.g., definitions of 
the components of development graphs which record developers' decisions. 
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3 I l l u s t r a t i n g  t h e  Q u a l i t y C B R  A p p r o a c h  

This section shows the use of QualityCBR's components and cataloguing to sup- 
port several NFRs for the IVF domain. Section 3.1 presents the domain of our 
study of the IVF system. We consider top level non-functional requirements for 
an IVF system, which could be stated by a developer, involving: performance - 
patient records must be retrieved and analyzed quickly (Section 3.2), and confi- 
dentiality- records must be stored securely (Section 3.3). In addition, the system 
should be robust and user-friendly (Section 3.4). 

3.1 Func t iona l  Requ i r emen t s  in t he  IVF Domain  

In vitro fertilization (IVF) is an example of a complex medical domain, where 
DSS can be used to suggest the hormonal treatment and to support research [24]. 
Individual patients respond to the treatment differently. A patient's response and 
the pregnancy rate depends on many attributes. While experienced doctors can 
use their knowledge to suggest a treatment for a patient, it is difficult for them to 
perceive trends and make informed decisions to optimize success rates for each 
individual infertile couple. This is especially a concern when knowledge about 
influencing factors changes. 

Pre&ction of the likelihood of pregnancy involves suggestion of a treatment. 
This is performed in two stages. First, given initial information about the patient 
(diagnosis, previous treatment history, etc.) the task is to find similar patients 
from the case base and make a suggestion of how to treat the current patient to 
increase the probability of successful pregnancy. This includes finding all relevant 
cases, and considering retrieved cases with pregnancy as successful examples and 
retrieved cases without pregnancy as negative cases. An adaptation process uses 
this information to suggest values for remaining attributes in the current case, 
namely how long the patient should be stimulated and what amount of the hor- 
mones should be used. Second, after the initial treatment is completed, additional 
attributes are available (patient's responsiveness to the hormonal stimulation). 
The task is then to predict the outcome of the whole treatment, i.e., to predict 
likelihood values for pregnancy and for unsuccessful cases. The prediction task 
can also be considered as an optimization problem: for a given patient minimize 
the amount of hormonal therapy required, without compromising the outcome. 

Knowledge discovery is used to find regularities in the case base by using 
knowledge-mining techniques, as well as to suggest missing data. Here, physicians 
have no particular case in mind, however, they may consider the whole knowledge 
base or only certain cases. Knowledge mining in 7,43 involves finding a context 
in which a particular group of cases is considered similar. The user has the ability 
to specify a threshold, which controls the quality and the quantity of discovered 
information [24]. 

Considering that each patient is described by about a hundred attributes [24], 
that there are about 600 patients per year per clinic and that there are about 
300 IVF clinics in North America [29], the problem is not simple. Moreover, 
IVF information is more sensitive than general medical information and the 
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complex IVF process involves various professionals, which need to access part 
or whole information about the patient. IVF has relevance to both the pubhc 
and private sectors. In the Province of Ontario, Canada, for example, publicly- 
funded health insurance covers the cost of IVF for certain forms of infertility, 
e.g., tubal blockage, while others are not covered, and are handled by private 
clinics. 

3.2 Dealing with Pe r fo rmance  R e q u i r e m e n t s  

We now show how performance requirements for the IVF domain are handled 
using QualityCBR. We also describe components of the NFR Framework used 
in QualityCBR. 

System performance is an important factor for complex applications. Good 
performance includes fast response time and low space requirements. For the IVF 
system, a developer might state that one important goal is to have fast response 
time when accessing patient records, for reasoning as well as case updating. This 
requirement is represented as a goal: Time [Pa t ien t  Records and Reasoning], 
as shown in Figure 2. Time is the sort of the goal (i.e., the particular NFR con- 
cept, addressed by the goal) and [Pa t i en t  Records and Reasoning] is the 
parameter (i.e., the subject) of the goal. (The entries within circles will be dis- 
cussed below.) Another main goal is to have fast response time for reasoning 
operations done by researchers, represented by Time [Research Reasoning]. 

- - _ Legend 
Time Time / - " x  

[Patient Records [Research ~ NFR Goal ~ . ~  Satifficed Goal 
and Reasoning] Reasoning] ~ 

/ ~  Cla_'nn_[" Aid Doctor" [ \ +  ,~--', Argument ~ Denied Goal 

/ \ �9 

~ p d a t e ]  ~[Predietion] ~ [Discovery] I _ --~ Corrdation link J + Positive Link 
t 

~ ~ ' ~ " > ~ a . ~ . /  I j " Very Negative Link 
, . . . . . . . . . . .  , . . . . . . . . . . . .  

No Partial Full 
Clustering Clustering Clustering 

Fig. 2. Dealing with Performance Requirements for Reasoning. 

Using methods and catalogues of knowledge (for performance, CBR, IVF, 
etc.), goals can be refined into more specialized goals. Here, the developer used 
knowledge of the IVF domain to refine the time goal for patient information into 
two goals, one for good response time for updating patient records and the other 
for good response time for the retrieval and decision making process. These two 
offspring goals are connected by an And link to the parent goal. This means that 
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if both the goal for fast updates and the goal for fast prediction are accomplished 
then we can say that the parent goal of fast access to patient records will in some 
sense be accomplished. The NFR Framework takes a qualitative, "satisficing" 
approach, in which goals are more-or-less met, although they may not be satisfied 
in an absolute sense [38]. 

Similarly, the goal of good response time for research reasoning can be refined 
into a goal of fast response for the "discovery" process which searches patient 
records for patterns. Here, the parent has one offspring, connected by a positive 
("§ link, which indicates that accomplishing the offspring will contribute pos- 
itively towards accomplishing the parent goal. Other types of relationships can 
be shown by other link types (see Figure 2). 

In building quality into a system, it is important to identify priorities. 
For the case of building performance in, we should identify time-critical op- 

erations as well as those which dominate the workload [39]. Here, we identify 
the prediction operation as being time-critical (indicated by "!"), and provide 
a reason using domain knowledge: it is important to aid the doctor by quickly 
suggesting a treatment. This is an example of recording design rationale [28] - 
the reasons for decisions - using the NFR Framework's arguments. As part of 
the development graph, arguments are available when making further decisions 
and changes. 

It is important to note that the developers use their expertise to determine 
what to refine, how to refine it, to what extent to refine it, as well as when to 
refine it. The NFR Framework and its associated tool help the developer, do 
some consistency checking, and keep track of decisions, but it is the developer 
who is in control of development process. 

Implementation Alternatives. 

In moving towards a target system, one must consider implementation al- 
ternatives for case base clustering, which appropriately groups attributes, their 
values, and relevant cases together. The main concern for clustering is with the 
storage of patient records, which besides general patient information (name, ad- 
dress, etc.) consist of attribute-value pairs describing the diagnosis of infertility, 
previous and current treatments, the result, etc. Effective storage of this in- 
formation facilitates the various CBR operations, because individual pieces of 
information have different importance and different effects on the treatment and 
on the overall outcome. Currently, the information is recorded in a paper-based 
form with general patient information being sent to a central hospital computer. 
A computerized IVF case base is populated in a batch process. 

Many of the implementation alternatives (shown as dark circles in Figure 2) 
will be drawn from appropriate catalogues. Implementation alternatives for the 
following clustering operations must be considered: 

- Storage and update. In the IVF application, data entry and updates have the 
form of filling in blanks, either selecting a value from a pick-lists or typing 
it. Considering the amount of data in one clinic, storage and update are 
not major problems. However, taking into account possible extensions, e.g., 
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linking several IVF clinics in a network to share their case bases, it is useful 
to note this requirement. 

- Prediction. A doctor uses the system to suggest a hormonal therapy for 
the current patient (see Section 3.1). It is important that the accuracy of 
predicted information is within reasonable bounds and a solution is provided 
swiftly. There is a relationship between accuracy, time and space: the more 
cases are stored, the more accurate solutions can be provided, but the longer 
it takes to find cases relevant to a given problem. 

- Knowledge discovery. Treatment protocols can be improved by using knowl- 
edge discovery [24]. Discovered knowledge is used to organize attributes into 
categories, and cases into clusters (equivalence classes). 

The above considerations affect implementation alternatives ("satisficing 
goals") for case base clustering: (1) the system may not use any clustering; 
(2) it may use full clustering; or (3) an hybrid, a partial clustering scheme can 
be deployed; further variations of clustering from the methods catalogue can be 
considered (see Figure 1). Without clustering, updates are faster, as data need 
not be reorganized; however, prediction is slower as there is no clustering to 
aid the retrieval process. Thus, at the bottom left of Figure 2, No Clustering 
is shown to have a positive impact on update time, and a negative impact on 
prediction time. Full clustering is done by knowledge discovery: it speeds up 
prediction, but hinders update time. No and full clustering each slow down at 
least one of the three operations. The developer can formulate alternatives which 
reduce or avoid this problem. Partial clustering may start with cases clustered 
using domain knowledge, but may subdivide certain clusters into more detailed 
groups. Its main advantage is that it speeds up all three operations, instead 
of slowing any of them. However, no clustering is better ("++")  than partial 
for update, and full clustering is better than partial for retrieval. Thus, partial 
clustering offers intermediate performance for some operations, but avoids bad 
performance for all of them. As a result, partial clustering is selected ("v ~') 
over the unchosen ("x") alternatives. Note, that an IVF facility that does not 
support research may give low priority to performance for knowledge discovery. 
Since the hormonal therapy suggestion would have high priority, full clustering 
would be selected. 

Evaluating Goal Accomplishment. 

After decisions are made, the developer can determine their overall impact 
on the system's requirements. The developer is aided by the NFR Framework's 
semi-automatic evaluation algorithm, which examines the development graph, 
generally bottom-up. It starts with implementation decisions to accept ("x/~') or 
reject ("x") alternatives (shown in dark circles at the bottom of Figure 2), 

Results then propagate upward along evaluation links. Evaluation assigns 
values (e.g., "x/" or "x") to parent goals based on the values of offspring goals, 
and and the relationships (link types, e.g., "+" or %") between offspring and 
parent goals. For example, with a "+" link type, meeting ("~2') the offspring 
(e.g., Partial Clustering) helps meet ("x/") the parent; however, if the offspring 
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is denied ("• not achieved), the parent will be denied ("• The "-" link 
type can be thought of as giving the parent the "opposite" of the offspring's 
label. Values from all applicable offspring propagate to a parent. Here, partial 
clustering helps quickly accomplish updating, presentation and discovery. During 
the process, the developer may step in, to determine propagated values. For 
example, if a parent goal received positive and negative values from different 
offsprings, the developer is able to resolve the conflict using domain knowledge. 

It should be noted that not all goals can always be met, but performance can 
be enhanced if the priorities are accomplished [39]. As presented in Figure 2, 
the critical goal for prediction has been met. Since the update time goal was also 
met, the top goal for records and reasoning was met. As the discovery goal was 
met, the top goal for research reasoning was also met. 

Dealing with Changes in Priorities. 

Let's consider four imaginary IVF clinics with different priorities: (1)fast 
update of records, (2) fast prediction, (3) both fast prediction and fast update 
are important,~and (4)fast case base analysis (discovery). Depending on the 
priorities, we may adjust the solution of Figure 2 by choosing a different alter- 
native. As a result, the first clinic would not use clustering, the second would 
use full clustering, and the third and fourth clinics would achieve their require- 
ments by deploying partial (hybrid) clustering. This is an example of reusing an 
existing development graph, which uses the NFR Framework's components to 
capture decisions and rationale, as a resource for rapid analysis of the impact 
of change upon the achievement of NFRs [7]. In addition, we have used do- 
main knowledge, priorities and performance catalogues to produce customized 
solutions which meet needs of a particular organization. 

3.3 Security Requirements 

Security is an important factor, especially in medicine, and IVF is a particularly 
sensitive application. Security includes such concepts as integrity, confidentiality 
and availability [4], whose combination is used in a generic methodology for 
medical data security [14]. 

For the IVF clinic, we identified two primary goals (top part of Figure 3): (1) 
The physical integrity of gametes of the patient is extremely crucial (indicated by 
"!!"). (2) The confidentiality of patient data should be maintained. A third goal 
is to maintain the professional integrity (reputation) of the doctor (researcher). 

Physical Integrity of Patient Material. 

The crucial concern is that a patient's gametes must not be mistaken for 
someone else's. Thus, accurate identification of gametes strongly contributes to 
physical integrity. This can be accomplished either by using patient's name or 
an identifying number. Using only a number might contribute to confidential- 
ity; for example, the lab technician, who deals with gametes, but not directly 
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Integrity Integrity Confidentiality 
[Patient] [Doctor] [Patient Info] 

++ 

Confidentiality 
/ [Identifying I n f o ~  ~ )  [Non-ldentifytng lnfo] 

Acc m:a. telD/~ Confidentiality ~ And ~ Confidentiality 
wauent ~ , ~ o  b] (!J) (! J ) ['Identifying lnfo Outside Lab] gametesl ~ .. 

Number Only Name in Lab Name Outside Lab Number Outside Lab 

Fig. 3. Dealing with Security Requirements for an IVF Clinic. 

with patients, could in principle use only numbered dishes without knowing pa- 
tient's name. However, this could increase the chance of confusing gametes of 
two patients, which must be avoided. Instead, the lab labels dishes with gametes 
using the patient's name, which is only made available to authorized personnel, 
including the technician. The analysis is shown in the lower left of Figure 3. 

It's interesting to note the interaction between the goals of physical integrity 
of gametes, and the confidentiality of patient information, and the resolution of 
the conflict to benefit the higher-priority goal. In addition, to help meet both 
goals, the lab has a system of physical security. While this is not shown in the 
figure, it is important to note that measures taken outside the computer system 
can have an impact on the NFRs being considered. 

Confidentiality of  Patient Information. 

The IVF clinic records some basic identifying information about a patient 
(name, age, hospital number, etc.), a record of the patient's visits during a treat- 
ment cycle, treatments made, and observations. In addition, the central hospital 
computer maintains accounting records, which do not have the details of IVF 
treatment. Patient information is used for both tracking individual patients for 
treatment, and for reviewing groups of patients for research purposes. This dual 
usage complicates confidentiality considerations. Furthermore, researchers some- 
times need to obtain further information about particular patients, hence the 
statistical research information must contain some patient identifiers. Clearly, 
access to medical data should be restricted to authorized persons, in relation to 
their status [13]. In the case of the IVF clinic, the mere fact that someone is an 
IVF patient is considered quite a personal matter, hence confidential [10]. 

The issue of security of statistical data is a complex one. According to [32]: 
"confusion still surrounds the question of whether privacy can be fundamentally 
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violated by statistics drawn from personal records". However, it was also shown 
that statistical information could provide detailed information about individuals 
[9]. The more information pieces are tied together the more identifiable the 
individual is. 

Confidentiality of patient information must handle two goals: (1) information 
that identifies a patient and (2) information that does not (see Figure 3). In 
IVF domain, data can be used both for clinical treatment and for research. 
Thus, the goal of confidentiality of identifying information can be refined by the 
developer to handle these situations. As discussed earlier, the patient's name 
will be used within the lab, to meet the overriding goal of integrity of gametes, 
which (along with the goal of confidentiality of records) will be aided by physical 
security measures. To reduce the risk of names being divulged to third parties, 
the patient's name should not be used outside the lab. Instead, an identification 
number (hospital number, sample number or user generated number [16]) is used. 

Eva lua t ing  the  Overal l  Impac t  of  Decisions.  

Using a name within the lab helps accurately identify gametes, and maintain 
its physical integrity. The selective use of name and number provides confiden- 
tiality of identifying information, both inside and outside the lab. Meeting this 
critical goal contributes to the overall confidentiality of patient information. In 
turn, meeting both that confidentiality goal and the goal for physical integrity 
of gametes contributes positively to maintaining the professional integrity of the 
doctor (researcher). While we did not initially identify professional integrity as 
a main goal, it is very interesting to see that the result of our analysis using 
the NFR Framework was in harmony with the observation that the integrity of 
researchers is paramount [2]. 

3.4 O t h e r  N F R s  

Additional NFRs for the presented system include: (1) Robustness: the ability 
to gracefully handle a variety of situations; (2) User friendliness: providing the 
right degree of assistance to users; and (3) Informativeness: providing the right 
amount of information, appropriately arranged. 

Robustness concerns for the CBR system include: (1) reducing the effect of 
irrelevant attributes on CBR so that the prediction accuracy does not degrade 
with an increased number of irrelevant attributes and presenting only attributes 
relevant to the task; (2) fault tolerance during data entry and reasoning. Thus, 
the goal for robustness of the system is refined into goals for data integrity, 
robustness of reasoning and robustness of presentation (Figure 4, top left). 

Data integrity is important [14]. As suggested in [13], verification and val- 
idation of data completeness and accuracy is an additional measure ensuring 
data integrity. Thus, especially in the early stages of system development, all 
attributes available should be used. This allows for correlating the attributes, 
which can lead to identifying data integrity violations: However, if all attributes 
are also used in later stages, this would lead to problems with reasoning and 
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User  
Robustness[System] Friendliness[System] Informativeness[System] 

Data Integrity \ \ [System] ~'~ Robustness ~ ~ Robustness ~ / / 

Use ++ + [AIIAttrib.~ / /  I ~ e U ~ ~ ~  i ~ C h e c  k 

RetypeData 
Early Later Early Later 

Fig. 4. Dealing with Several NFRs for the System. 

presentation. Thus, only relevant attributes should be used in later phases. As 
described in Section 2.1, knowledge-discovery techniques can be used to locate 
features relevant to the problem solving task [24]. Using only relevant features 
improves flexibility [20], accuracy [22], and efficiency [23]. The effect of this se- 
lective use of attributes contributes positively to the top goals of robustness and 
informativeness, both of which are accomplished, but user friendliness is not 
accomplished for the reasons described below. 

Generic relationships between NFRs and satisficing goals can be catalogued 
in advance as "correlation rules." These relationships can then be detected by 
the NFR assistant system, even if the developer has not explicitly linked the 
goals. Here, to syntactically verify data, the developer has the operator type it 
twice, which is helpful for data integrity. However, the NFR Assistant system 
detects that this is bad for user friendliness (the "correlation link," shown as a 
dashed line, is negative), which results in the user friendliness goal not being 
met. Correlation links (dashed lines) propagate values in the same way that 
evaluation links to. 

Selecting Different Implementation Alternatives. 

Recognizing that system friendliness is important for users, the developer 
may consider ways of achieving this goal, such as implementation alternatives 
presented in Figure 5 (an extension of the lower left part in Figure 4). These in- 
clude another user-oriented method - menu-driven input, and as system-provided 
checking - a dictionary of used terms, and using n-grams, which supports au- 
tomatic recognition of misspelled words. In the example, n-grams are selected, 
so that syntactic checking remains accomplished, albeit by a different method, 
which contributes positively to user friendliness. In addition, the chosen methods 
for displaying all attributes early and relevant attributes later remain unchanged 
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from Figure 4, hence continue to contribute positively to user friendliness, which 
is now accomplished. 

Syntactic User Friendliness 
Check [System] + 
[1)~1 +-b ~ ~ ' r  

" N  /I / ~ [Rele~tAttribX~ ] 
BySystem ( ~ "  ~ )  ByUser / r /' Use~arly k 

Claim["User , ~ , t ~  z / f ,  JAil Attri[~tites] (x~ ( ~  
Friendliness I x/,L--~ / \ [ "N / / ~ 
Important"] _v_, / ~ I ~ "~/  Informativeness Robustness @ ~ )  ~ ~ )  [System] [Presentation] 

n-Grams Dictionary Menu RetypeData 

Fig. 5. A Re-examination of Methods for Syntactic Checking. 

This is another example of dealing with change - namely, a change in imple- 
mentation alternatives. The net result is that the developer's expertise was used 
to accomplish the remaining top goal of user friendliness, while maintaining ro- 
bustness and informativeness. This was done by reusing the information already 
captured in Figure 4, which dealt with several NFRs. 

4 C o n c l u s i o n s  

We are concerned with quality issues in decision support for complex information 
systems. We have presented an approach, called QualityCBR, for dealing with 
non-functional requirements for case-based reasoning systems. This integrates 
the NFR Framework's systematic process for building quality with the T.A3 CBR 
system, intended for decision support. In developing QualityCBR, catalogues 
have been organized to represent diverse knowledge concerning CBR, NFRs, 
IVF, and development techniques. By drawing on several axes (e.g., CBR and 
performance), we can focus on small groups of specific methods. This approach 
is similar to the organization of information system performance requirements 
issues [34]. We feel that the use of such catalogues is helpful in dealing with 
NFRs in medical computing and other complex domains, public and private. 

To demonstrate how a developer can use QualityCBR to deal with conflicting 
and changing requirements, we illustrated its use in a medical domain. A variety 
of NFRs (e.g., performance, security, informativeness), and tradeoffs between 
individual requirements have been considered. 

We also found that the NFR Framework's development graphs and change 
facilities [7] made the process of dealing with change easier. In this paper we have 
considered changes in priorities of NFRs and in implementation techniques. This 
is consistent with results of using the NFR Framework to deal with changes in 
requirements for a commercial system. 
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7-,43's performance evaluation has been conducted on several domains: pre- 
diction and knowledge mining in medicine [24], [24], control task in robotic do- 
mains [21], character recognition [22], iterative browsing and intelligent retrieval 
[20]. Each domain has different characteristics; this helps evaluation of differ- 
ent aspects of the system. We have evaluated both the competence [24] and 
scalability [23] of the system. 

It would be interesting to see if QualityCBR could be used to use other goal- 
oriented approaches to requirements engineering, e.g., [8, 11, 12]. This would 
draw on several facilities, such as representation of goals, priorities, and positive 
and negative links. 

We would like to conduct fuller studies of applying T.A3 to a variety of 
areas, both public and private, such as medicine, engineering and commerce, 
which require a variety of NFRs. Notably, we plan to explore the capability 
of using QualityCBR during building engineering applications, such as robotics 
[21], where real time response is critical. For example, the use of an "any time 
system" (which must produce a valid answer at any time) entails flexible and 
adaptive procedures to meet accuracy and safety requirements [19]. These steps 
will help us to better asses the generality of the approach and proposed combined 
tools to evaluate its costs and benefits. Studies should use a methodology, such 
as [27] which allows us to have the kind of confidence in the results that one 
would have in using the scientific method. 

An important direction for future work is to apply CBR to the NFR Frame- 
work and its associated tool. For example, sets of development graphs for a 
variety of systems could be examined and analyzed to find patterns (templates) 
of sequences of method applications. This could be aided by facilities for cri- 
tiquing and rationalizing specifications [11]. Such templates could then be used 
as larger building blocks when using the NFR Framework to develop a variety of 
systems. Thus, CBR would provide underlying technology for a reuse assistant 
for the NFR Framework. 

We trust that building quality into CBR, and using CBR in tools for dealing 
with NFRs, will aid the development of complex information systems for a variety 
of public and private domains. 2 
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