Elimination of Equality via
Transformation with Ordering
Constraints

Leo Bachmair

Harald Ganzinger
Andrei Voronkov

MPI-I-97-2-012 December 1997

Authors’ Addresses

Leo Bachmair

Department of Computer Science, SUNY at Stony Brook,
Stony Brook, NY 11794, U.S.A.

email: 1eo@cs.sunysb.edu, web: www.cs.sunysb.edu/"1leo

Harald Ganzinger

Max-Planck-Institut fir Informatik

Im Stadtwald, D-66123 Saarbriicken, Germany

email: hg@mpi-sb.mpg.de, web: www.mpi-sb.mpg.de/ hg

Andrei Voronkov
Computing Science Department, Uppsala University,
Box 311, S 751 05 Uppsala, Sweden

email: voronkov@csd.uu.se, web: www.csd.uu.se/ voronkov

Publication Notes

A shorter version of this report has been submitted for publication elsewhere.

Acknowledgements

This research was supported in part by the National Science Foundation un-
der grants INT-9314412 and CCR-9510072, by the German Science Foun-
dation (Deutsche Forschungsgemeinschaft) under grants Ga 261/7-1 and
Ga 261/8-1, and by the ESPRIT Basic Research Working Group 22457 (Con-
struction of Computational Logics IT).

Abstract

We refine Brand’s method for eliminating equality axioms by (i) imposing
ordering constraints on auxiliary variables introduced during the transforma-
tion process and (ii) avoiding certain transformations of positive equations
with a variable on the right-hand side. The refinements are both of theoreti-
cal and practical interest. For instance, the second refinement is implemented
in Setheo and appears to be critical for that prover’s performance on equa-
tional problems. The correctness of this variant of Brand’s method was an
open problem that is solved by the more general results in the present pa-
per. The experimental results we obtained from a prototype implementation
of our proposed method for the model elimination prover Protein also show
some dramatic improvements of the proof search. Ordering constraints have
already been widely used in equational theorem provers based on paramodu-
lation. We prove the correctness of our refinements of Brand’s method by es-
tablishing a suitable connection to basic paramodulation calculi and thereby
shed new light on the connection between different approaches to equational
theorem proving.

Keywords

Automated Theorem Proving, Equality Handling, Ordering Constraints,
Model Elimination

Contents
1 Introduction
2 Preliminaries

3 Transformations

3.1 Elimination of Monotonicity L
3.2 Partial Elimination of Reflexivity o oo

3.3 Elimination of Symmetry
3.4 Elimination of Transitivity

4 Preservation of Satisfiablity
5 Variations

6 Experiments

7 Conclusions

A Basic Superposition

12

13

15

17

1 Introduction

Efficient techniques for handling equality are a key component of automated reasoning systems.
The most successful approaches to date are based on refinements of paramodulation, such as the su-
perposition calculus, but these are unfortunately not fully compatible with tableau-based provers or
model elimination methods. Various attempts have been made recently to improve the handling of
equality in such provers (Moser, Lynch & Steinbach 1995, Degtyarev & Voronkov 19966, Degtyarev
& Voronkov 1996a), but they usually require subtle interactions between paramodulation-based
and model elimination-based subcomponents and therefore are difficult to integrate into existing
provers. Most current model elimination provers rely instead on preprocessing steps that transform
formulas from logic with equality into logic without equality, see the survey (Schumann 1994).

The best-known transformation method is Brand’s modification method (Brand 1975), which
consists of three steps. First, terms are flattened by introducing new auxiliary variables, so that
only variables occur as arguments of functions symbols. The axioms expressing the monotonicity
properties of equality are not needed for the resulting flat clauses. Second, all symmetric variants
of a clause (which are obtained by switching the arguments of equations) are added to the given set
of clauses, so that the symmetry axioms of equality may be dispensed with. Third, the transitivity
axioms are internalized by splitting positive equations st into (clauses that represent) implications
t~x — s~z with a new auxiliary variable x, called a “link” variable.

In this article, we improve Brand’s modification in various ways. We systematically add ordering
constraints during the transformation process, so as to be able to better control the theorem proving
process on the transformed clauses. For example, a link variable z will be constrained via s > z
and t > x to terms smaller than s and smaller than or equal to ¢t. Ordering constraints intuitively
reflect assumptions about the form of equational proofs of s~t and are related to rewrite techniques
as used in paramodulation and superposition calculi. The rationale for transitivity elimination is
that a sequence of equational replacements

S=SIRSI~...XS, =1t

(using equations s; &~ s;11) can be simulated by a sequence of resolution inferences from the goal
clause s % z V t % z and (clauses representing the) equivalences s; ~ x; <> s;1 ~ z;, plus a final
resolution step with the reflexivity axiom x ~ x that instantiates the link variables. The ordering
constraints ensure that the variables x; can only be instantiated by minimal terms among the s;
and block the search for alternative equational proofs that apply the same equations but differ in
the instantiation of the link variables.

Aside from the ordering constraints, we also propose more subtle changes to the transforma-
tion process. In particular, we never split a positive equation ¢ ~ x where the right-hand side is
already a variable. This may seem to be a minor technical aspect, but the optimization (Moser
& Steinbach 1997) has been implemented in the Setheo model elimination theorem prover and is
crucial for that prover’s successful performance on many equational problems (Ibens & Letz 1997).!
The completeness of this optimization (without any ordering constraints) had been an open prob-
lem? that follows from the more general results in the present paper. Our completeness proof is
comparatively simple, but draws on rather non-trivial results about basic superposition, some of
which have been obtained only very recently (Bachmair & Ganzinger 1997b). In essence, we show

'The optimized transformation avoids the generation of negative equations z % y between two variables. Model
elimination or resolution inferences with such literals correspond to paramodulation inferences into or from variables,
most of which are redundant and ought to be avoided.

2The proof in (Moser & Steinbach 1997) contains a non-trivial gap which this paper closes.

how refutational proofs by strict basic superposition with flat clauses can be simulated by resolution
with the corresponding transformed clauses. In addition to the theoretical results, we also report
on experiments with model elimination theorem proving that provide encouraging evidence for the
practical usefulness of the proposed constrained equality elimination method.

The structure of the paper is as follows. The next section contains preliminary material. The
transformations are described in Section 3 and the main results about them in Section 4. In
Section 5 we discuss the connection with other transformation methods, while in Section 6 we
report on experiments with our method.

2 Preliminaries

The transformations described below will be applied to clauses with equality. We use the the symbol
~ to denote the equality predicate and assume, for simplicity, that this is the only predicate in the
original language.? A different symbol ~ is used to denote the predicate that replaces equality as
part of the transformation process. Semantically, the difference between the two symbols is that ~
is interpreted as a congruence relation, whereas no restrictions are imposed on the interpretation
of ~. In other words, the original formulas with &~ are interpreted in a logic with equality, whereas
the transformed formulas with ~ are interpreted in a logic without equality. The aim is to design
transformations so that the original clause set is satisfiable in an equality interpretation if, and
only if, the transformed clause set is satisfiable in general.

Formally, a clause is a disjunction of literals; a literal being either an atomic formula or the
negation thereof. Disjunction is associative and commutative, and hence clauses may be viewed as
multisets of literals. The empty clause is denoted by O. By an equational clause we mean a clause
that contains only ~, but not ~. Satisfiability and logical consequence (denoted by =) are defined
in the usual way, with the proviso that the interpretation of ~ has to be a congruence (while ~
may be interpreted as an arbitrary binary relation).*

Substitutions will be denoted by the letters o, 7 and p. The result of applying a substitution
o to an expression (e.g., a clause or term) F is denoted Fo. We write E[s] to indicate that s is a
subterm of E and write E[t] to denote the expression obtained from E by replacing one specified
occurrence of s by t. We also write E(s) to indicate that s occurs in E and denote by E(t) the
result of simultaneously replacing all occurrences of s in E by ¢.

A constraint is a, possibly empty, conjunction of atomic formulas s = t (called an atomic
equality constraint) or s = t or s = t (called atomic ordering constraints). The empty conjunction
is denoted by T. The letters v and § are used to denote constraints. A constrained clause is a pair
of a clause C' and a constraint v, written as C' - vy. We call C' the clause part and v the constraint
part of C - .

A substitution o is said to be a solution of an atomic equality constraint s =t if so and to are
syntactically identical. It is a solution of an atomic ordering constraint s > t (with respect to a
reduction ordering > that is total on ground terms) if so > to; and a solution of s = ¢ if it is a
solution of s = ¢ or s > t. Finally, we say that o is a solution of a general constraint v if it is a
solution of all atomic constraints in . A constraint is satisfiable if it has a solution.

A ground instance of a constrained clause C-+ is any ground clause C'o such that the constraint
~o is satisfiable. A constrained clause C is more general than a constrained clause D, denoted D C C,
if every ground instance of D is also a ground instance of C. We call two constrained clauses C and

3The extension of the various transformation steps to non-equality literals is straightforward.
“On one or two occasions we will explicitly relax the restriction on the interpretation of .

D equivalent if C C D and D C C, i.e. when C and D have the same ground instances. A variable
renaming is a (not necessarily injective) subsitution mapping variables to variables. Two syntactic
expressions E and E' are said to have the same skeleton written E = E' whenever E'p = Ep, for
some renaming p.

Constraints ; and 7, are equivalent with respect to a set V' of variables if for every solution o
of «1 there exists a solution o2 of 5 such that o1 and o2 agree on the variables in V', and vice versa.
We shall identify constrained clauses C'-+; and C -7, when the constraints v; and 7, are equivalent
with respect to the variables in C'. In this case C' -+, and C - 4 are equivalent. We identify a
constrained clause C' - T with the unconstrained clause C. A contradiction is a constrained clause
O - v with an empty clause part such that the constraint v is satisfiable. A clause is called void if
its constraint is unsatisfiable. A void clause has no ground instances and therefore is redundant.

A set S of constrained clauses is satisfiable if the set of all its ground instances is satisfiable.
Evidently, removal of void clauses and replacement of clauses by equivalent ones preserves the
(un)satisfiability of S.

If 7 is an inference system and N is a set of clauses then Z(NN) denotes the set of clauses that
can be derived by applying an inference rule in Z to premises in N. Likewise, Z*(NN) denotes the
set of clauses that can be derived from N by repeated application of inferences in Z. In all calculi
of this paper the premises of inference rules are assumed to have disjoint variables, which can be
achieved by renaming.

3 Transformations

Given a set of equational clauses N, we apply various transformation rules and replace the equality
predicate ~ by the predicate ~ to obtain a modified clause set N’, such that the transformed set
N' is satisfiable if, and only if, the original set N is equationally satisfiable. Each part of the
transformation process is designed to eliminate certain equality axioms and can be described by a
set of (schematic) transformation rules to be applied to clauses. If R is a set of such transformation
rules, we say that a (constrained) clause is in R-normal form if no rule in R can be applied to it.
Most of the transformations described below define normal forms that are unique up to renaming
of variables. If N is a set of (constrained) clauses, we denote by R(N) the set of all R-normal forms
of clauses in N.

3.1 Elimination of Monotonicity

A clause is said to be flat if variables are the only proper subterms of terms. Thus, f(z)%y V h(z)xa
is flat, but f(f(z)) ~ x and f(a) ~ x are not. A constrained clause C - v is called flat if its clause
part C is flat (but the constraint part 4 may contain non-flat terms).

It is fairly straightforward to flatten clauses by abstracting subterms via introduction of new
variables. This can be described by a set M of (schematic) transformation rules

Cls)-y = (s#zV ()~

where x is a variable not occurring in C' and s is a non-variable term that occurs at least once as
an argument of a function symbol in C. The rules in M are called subterm abstraction rules.

For example, the unit clause ¢(z) * z &~ e contains one nested non-variable subterm, namely i(z).
Subterm abstraction yields a clause i(x) % 2 V z * x = e that is unique up to renaming of the new
variable z. The unit clause i(z) * i(x) =~ i(z *) contains two nested non-variable terms, ¢(z) and

x * x, which are eliminated in two steps to yield a transformed clause
zxr e Vi(z)Zry Ve xxyxi(ry).

A (constrained) clause is flat if, and only if, it is in M-normal form. The M-normal forms of a
clause are unique up to renaming of the newly introduced variables (and hence we will speak of the
M-normal form). Our interest in flat clauses stems from the following result:

Proposition 3.1 (Brand 1975) Let N be a set of equational clauses and N’ be obtained from
N by replacing each clause by its M-normal form. Then N has an equality model if, and only if,
N' has a model in which the predicate & is interpreted as an equivalence (but not necessarily a
congruence) relation.

In other words, the monotonicity axioms are not needed for testing satisfiability of flat equational
clauses.

Note. We need not abstract all occurrences of a subterm at once. For instance, the multiple
occurrences of the nested term g(z) in

flg(z)) #h(x) V h(g(x)) =z

are eliminated all at once to yield the M-normal form

9(@) # 2V f(2) £ h(z) V h(z) = 2.

We may instead abstract the different occurrences separately to obtain a different flat clause,
9(@) # 21V g(@) # 22V f(21) # h(z) V h(22) = .

3.2 Partial Elimination of Reflexivity

We may use equality constraints to get rid of certain undesirable negative equality literals:

(xyvC)-y = C-(yANx=y)

where ¢ and y are variables. This transformation is called reflexivity resolution as it represents an
instance of resolution with the reflexivity axiom. We denote the corresponding set of transformation
rules by R.

3.3 Elimination of Symmetry

Next we replace the equality predicate = by the predicate ~ and eliminate the need for the symmetry
axioms. Positive equality literals are eliminated by positive symmetry elimination rules:

(CVvsxt)-y = (CVs~t)-vy

(CVsxt)-y = (CVtx~s) -y

If a clause C contains n positive equality literals, then clearly n transformation steps will eliminate
all positive occurrences of equality. There are 2" different normal forms, all of which need to be
retained to eliminate symmetry. For example, from the clause

g(x)# 2V f(2) #h(x) vV h(z)~

we obtain both
g(@) # 2V f(z) £ h(z) V h(z) >z
and
g(@) # 2V f(2) # h(x) V o~ h(2).
Negative occurrences of = can in principle be simply replaced by ~, but we prefer a slightly re-

fined transformation that moves variables to the right-hand side.> The following negative symmetry
elimination rules achieve this purpose:

(stVvC)- v = (s£tVC)-vy if s is not a variable
(s#tVvC)-v = (t#sVv(C)-y if s is a variable, but ¢ is not

The normal forms produced by these additional transformation rules are unique, as at most one
rule can be applied to any negative equality literal.®

We denote by S the set of all positive and negative symmetry elimination rules. If a clause
contains n positive equality literals, then 2™ different S-normal forms can be derived from it. T'wo
S-normal forms that can be derived from the same clause are said to be symmetric variants of each
other.

3.4 Elimination of Transitivity

The transitivity axioms are eliminated by splitting positive and negative equality literals via in-
troduction of so-called “link variables.” The idea is the same as in Brand’s method, but we
also introduce constraints on variables, which necessitates slightly different transformations from
Brand’s, as will be explained below.

We have both positive and negative splitting rules of the form:

(CVs~t)-y = (CVtEzVs~z)-(YAt=zAs=2z)
(CVs#t):y = (CVtEzVs#tz)-(YAt=zAs=z)

where t is not a variable and z is a variable not occurring in C, s or t. The variable z is called a
link variable (between s and t) and the corresponding constraints are called link constraints.

We emphasize that equality literals are not split if the right-hand side is already a variable.
This is different from Brand’s method, where literals are split regardless of whether the right-hand
side is a variable or not.

We do not split equality literals with a variable on the right-hand side, but still may add cor-
responding ordering constraints, as expressed by the following positive and negative link constraint

rules:
(CVs~z)-y = (CVs~z) - (yNs=zx)
(CVs#z)- v = (CVsEz)-(yANsrxuwx)
where the constraints s > x and s > x, respectively, must not be contained in + already.”
By T we denote the set of all splitting and link constraint rules. The T-normal form of a clause

is unique up to renaming of link variables.
The flat clause (with empty constraint)

i(z)txy Ve xsx~e

®The advantage is that fewer splitting rules (described below) will be applicable.

SNegative literals % y, with variables = and y, are not eliminated by symmetry elimination, but by reflexivity
resolution.

"There is no point in introducing the same constraint repeatedly.

is transformed by T to the constrained clause
(i(z) 2y VeryVaoxz~y) (i(r) mx1 ANe=y Azy*xz > y),

whereas its symmetric variant
i(z)try Vex~zy xx

is transformed to
(i(z) 2y VeyxxFtyVe~y) (i(z) mxy Az xxz =y Ae > y).

Observe that the constraint of the last clause is unsatisfiable if e is a minimal ground term with
respect to the given ordering . In other words, the clause is void in that case, and the constraint
e = y in the other clause can be simplified to e = y.

Note. The example indicates that it is not necessary to apply subterm abstraction to a minimal
constant ¢, as the corresponding constraint ¢ > x associated with the abstraction of ¢ can be
simplified to z = ¢. Also, Skolem constants that occur only negatively need not be abstracted.

4 Preservation of Satisfiablity

The sets M, R, S, and T contain all the transformation rules we need. They eliminate all equal-
ity axioms, except reflexivity. Thus, for any set of clauses N, let CEE(INV) be the clause set
T(S(RIM(N))) U{z ~z}. Our main result can then be stated as follows:

Theorem 4.1 A set N of unconstrained equational clauses is equationally unsatisfiable if and only
if the transformed set CEE(V) is unsatisfiable.

It is not difficult to prove that if N is equationally satisfiable, then the transformed set CEE(N) is
satisfiable. (In other words, the transformations are all sound.) The difficult part is to show that
CEE(N) is unsatisfiable, whenever N is equationally unsatisfiable.

It suffices to establish this property for M(N) or, generally, for sets of flat (unconstrained)
clauses. For that purpose we introduce a refutationally complete calculus for flat equational clauses
(the “flat basic superposition calculus”) and show that all inferences in this calculus are reflected by
logical consequences on the transformed clauses. This will imply, in particular, that a transformed
set of clauses is unsatisfiable whenever a contradiction can be derived from the original clauses by
flat basic superposition.

The inference rules of the flat basic superposition calculus are depicted in Figure 1. We should
point out that in the presentation of superposition calculi, one usually identifies (as we have done
here) a literal s ~ ¢ with ¢t &~ s (and similarly for negative literals s % t).

This calculus is a slimmed-down version of a strict basic superposition calculus restricted to
flat clauses, and the following theorem is a direct consequence of the results in (Bachmair &
Ganzinger 1997a); see the appendix.

Theorem 4.2 Let N be a set of flat unconstrained equational clauses. The following statements
are equivalent:

1. N is equationally unsatisfiable;

2. FBS*(N) contains a contradiction;

3. (RoFBS)*(R(IN)) contains a contradiction.
Moreover, if N is a set of flat clauses, then so are the sets FBS*(N) and (R o FBS)*(R(N)).

Positive flat basic superposition

(CVs=t)-y (DVu=xv)- -0
(CVDVt=v)-(YAIANS=uAs=v=t)

)

where neither s nor w is a variable.
Negative flat basic superposition

(CVs=t)-y (DVuzv)- -0
(CVDVtgv)-(YAIAs=uAs>=tAs>v)

b

where u is not a variable.

Reflexivity resolution
CVs#t)-y
C-(yANs=t)

Factoring
(CVs=tVuxv)- vy

(CVsxt)-(yANs=uAt=0v)

)

where s = v and t = v.

Figure 1: Flat Basic Superposition FBS

The crucial advantage over previous formulations of basic superposition is that FBS has no equality
factoring inferences and no positive (top-level) superposition inferences from variables. Positive
top-level superposition inferences from variables can be avoided if the reduction ordering on terms
is lifted to literals in a way such that unshielded, maximal variables make a literal larger than literals
in which the same maximal term appears, but does not occur entirely within the substitution part
of the clause.® Also note that factoring is applied only when the terms which are unified by the
inference have the same skeleton. In particular, if s is a variable, so is u, and vice versa, and
the same is true for the pair ¢ and v. Since transitivity elimination is sensitive to variables this
uniformity will be helpful.

In the Lemma below we state a direct connection between flat basic superposition and the
transformation system CEE, forming the core of our completeness proof.

Lemma 4.3 Let N be a set of flat constrained equational clauses simplified with respect to reflex-
ivity resolution (so that R(N) = N). If D is a clause in R o FBS(N), then any T o S-normal form
of D is a logical consequence of T o S(N) U {z ~ z} (see the diagram).®

8With this specific class of literal orderings, it should be possible to also close the main gap in the proof in (Moser
& Steinbach 1997). There are some more details that need to be checked as the latter paper assumes a slightly
different calculus and analyses superposition inferences on clauses as they are obtained after transitivity elimination.
This causes additional problems which we avoid.

®We use the symbol o to denote composition of operators. Thus, T o S(N) = T(S(NV)).

Proof. Let D be the simplified (by R) conclusion of an inference in FBS from premises in N and
let C be in T o S(D). For demonstrating that C is logically implied by T o S(N) U {z ~ z} we will
usually apply resolution-based reasoning, followed by some strengthening of the constraint.

We prove the assertion by a case analysis over the inferences in FBS. Let

(CVsx~t)-y (DVuxwv)-6
(CVDVt=v)-(yAIAsS=uAs=tAu=v>1t)

be an inference by positive flat basic superposition from premises in N. Then neither s nor u is a
variable. Also, the conclusion D is already simplified by R as any clause in IV has this property by
assumption. Any T o S-normalform of D has the form

C=(C'"VD'VE)- (Y AGAXc ANAp As=uAs=tAu>=v>=tAe).

where (1) C"- (y A A¢r) and D'+ (6 A Apr) are T o S-normalforms of C' -+ and D - §, respectively; (ii)
the subclause E and the link constraints ¢ for the literals in F depend on (a) whether the the new
equation t~v has been oriented into ¢t ~v or v~t during S normalization; and (b) on the result of T
normalization, depending on whether or not ¢ or v are variables. In this structuring of the constraint,
we assume matching modulo associativity, commutativity, and idempotence of conjunction. That
is, we allow for an implicit duplication of atomic constraints to bring the constraint into the form
(YASAAr ANApr As=uAs>=tAu>uv>tAe) with conjuncts Acr and Apr as they would
be introduced during a separate T o S normalization of the subclauses C -+ and D -§. We proceed
with an analysis of the variants of E.

(i) Variant t ~v, and v is a variable. Then C has the form
(C'"VD'Vtxv)-(YASAA AAD AS=uAs=tAu=v>=tAt=0)

Evidently, the constraint part of C is unsatisfiable, that is, C is void, hence trivially follows from
ToS(N).

From now on, to simplify notation, we shall omit the “side-literals” C' and D’ as well as the
respective “standard constraints” ¥ A § A Acr A Apr which are inherited from the C' and D
subclauses of the respective premises and their T o S normalforms.

(ii) Variant t ~ v, and v is not a variable. Here, C has the form

(vEzVi~z) - (s=uAs=tAu=-v>=tAv=zAt>zx),
or, equivalently,
(vEzVi~z)-(s=uAu>=v>=t=uzx) (1)

with z a fresh link variable. As neither s nor w is a variable, T o S(IV) contains the clauses
(ugzVov~e) - (u=xzAv=z)and (sEyVi~y)- (s>=yAt>y), with link variables z and
y. Consider the resolution inference

(uFzrzVov~r) - (u-zAv=x) (sEyVixy) -(s=yAt>y)
(vEyVit~y) - (s=yAt=yAur-zAv=czAs=ulAy==z).

Since x and y are variables not occuring in s, ¢, u, v, the conclusion of this inference is equivalent to
(v Vi~e) (bv-zAs,u=xAs=u) (2)

The clause (2) is more general than (1) since the constraint s = u A u = v > t > z implies the
constraint t,v > = A s,u > x. We have shown, as was required, that (1) is a logical consequence of
ToS(N).

(iii) Variant v ~t, t is a variable. After simplifying the constraint, C has the form

(vt)-(s=uAs=tAu>v>t). (3)
In this case, consider the resolution inference

(s~t)-(s=t) (ugzVov~z) - (u-xAv =)
(vez)-(s-tAurmzAv=zAs=ulNt=uz)

from premises in T o S(N). Since x does not occur in s,t,u, v, the conclusion of this inference is
equivalent to

(vt) - (u=tAs,v>=tAs=u) (4)

which is more general than (3).
(iv) Variant v ~t, t is not a variable. In this case, C is equivalent to

(tEezVov~z) - (s=uAs=tAu=v>=truz), (5)
with a fresh variable z. C can be derived from T o S(N) via the inference

(tEyVs~y)-(t=yAs=y) (uEzVo~z) - (urxzAv>z)
(tryVo~e) - t-ryAs-yAu=zAv=xAs=ulAy=uz)

Since x and y are variables not occuring in s, ¢, u, v, the conclusion of this inference is equivalent to
(tEzVov~e) (bu=zAs,v>=xAs=u) (6)

which is more general than (5).

Next we prove the assertion for inferences by negative flat basic superposition

(CVsx~t)-y (DVugv)-o
(CVDVt#v)-(YAIAs=uAs=tAu>v)

from premises in N. Let D denote the conclusion of the inference. Then u is not a variable. Again
we need to conduct a case analysis according to whether or not one of the v and ¢ are variables.
Here the various cases also determine as to whether the conclusion of the inference can be further
simplified by reflexivity resolution. Without loss of generality we assume that ¢ > v such that
symmetry elimination transforms ¢ % v into ¢ 22 v. Under this assumption, if ¢ is a variable, so must
be v. We will again simplify the technical presentation by disregarding the side literals in C and
D and their associated constraints.

(i) Suppose v is a variable, but t is not. Then D is in normalform with respect to R and the
(unique) T o S-normalform of D has the form

(tEv)-(s=uAs=tAu>=vAt=uv). (7)
Consider the resolution inference

(tFxVs~z)-(t=zAs>z) (u®v)-(ux=wv)
(tEz)-(t-zANs-zANur-vAs=uAz=nuv).

Both premises are in T o S(N). Since z is a variable not occuring in s, ¢, u, v, the conclusion of this
inference is equivalent to

(tEv)-t-vAs=vAu=vAs=u)

which is more general than (7).
(ii) If both v and t are variables then D is normalized by the R-step in R o FBS to

O-(s=uAt=vAs=tAu>uv) (8)

which is in T o S-normalforms. A more general clause can also be derived from T o S(IV) by

(s~t)-(s=t) (uzv)-(u=wv)
O-(s=tAu=vAs=uAlAt=nwv).

(iii) Suppose that neither v nor t is a variable. Then D is in normalform with respect to R and
the (unique) T o S-normalform of D has the form

(tFzVoveke)- (s=uAs>=tAu>vAtv=zx), (9)

where z is a fresh variable. Consider the resolution inference

(tErezVs~z) - (t-zAs=2) (uryVoity): (u,v=y)
(tFrzVovrty)-trzAs=zANu,v=yAs=uAz=y)

from premises in T o S(NV). Since z is a variable not occuring in s,t¢,u,v, the conclusion of this
inference is equivalent to

(tteVovite) (Lbu,v=xAs=xAs=u)

which is more general than (9).

Next we treat reflexivity resolution
(CVs#t) -y
C-(yANs=t)

from a clause in N. Its conclusion C is in normalform with respect to R. As N is simplified with
respect to R not both s and ¢ can be variables. Let us assume, without loss of generality, that s is
not a variable. Any T o S-normalform D of C has the form

C'-(yANAor As=t), (10)

where C' - (y A A¢r) is a T o S-normalform of C' - 4. We need to distinguish two cases:

10

(1) t is not a variable: Consider the following derivation in T o S(V)
y~y (C'VtgaoVste) (YA As,t=x)
z~z (C'Vs#z)-(WANXeg As;it =z ANy=tAy=u)
C' - (yANXar As,t=zANy=tANy=xzAz=8ANz=ur)

by two resolution steps with (variants of) z ~ x. Since z,y and z are variables not appearing
elsewhere, the conclusion of this inference is equivalent to

C'-(yANAor A st)

which is precisely (10).
(ii) t s a variable: This case is similar, considering the following single-step derivation from
T o S(N) by resolution with a variant of z ~ x

y~y (C'Vs#t)-(yANAor ANs=t)
C' - (YANXcr As=tANy=sAy=t)

yielding a clause which is equivalent to (10).

Factoring inferences take the form

(CVs=tVumv)- v
(CVsxt)-(YANs=uAt=0v)

where s = u and t = v. Let again D denote the conclusion of the inference. We have to consider
four possible cases, depending on whether or not s and ¢ (and, hence, v and v) are variables. In
the analysis we again omit side-literals and their constraints.

(i) Neither s nor t is a variable. Then none of the four terms s, ¢, u, v is a variable. Therefore,
any T oS normalform of D has the form

(vEzVu~z) (s=uAt=vAvrzzAu>zx), (11)
where x is a fresh variable. By applying positive and negative factoring to the T o S normalform
(vErzVittyVuxzeVs~y) - (t=yAs=yAv=zAu>z)
of the premise of the factoring inference, we obtain the clause
(vtzVu~z)-(v=tAz=yANu=sAt=-yAs-yAv=zAu>uzx)
which (y does not occur elsewhere) is equivalent to
(vEzVu~z) - (v=tAu=sAvzzAu>z)

which is precisely (11). For the variant u % z V v ~ x we may construct a similar derivation.

(ii) s is a variable, and t is not a variable. Then also v is not a variable. We need to derive
clauses of the form ¢t 2z V s ~ x and t ~ s with the appropriate constraints. This can be achieved
by applying appropriate factoring inferences tot 2z Vv 2y V s~ax Vu~yandt~sV v~u,
respectively, where the latter, since v is not a variable, can be obtained by a resolution step with
reflexivity from ¢t ~ s V u %2 ¢ V v ~ x. The case in which s is not a variable, but ¢ is, is similar.

11

(iii) Both s and t are variables. Then we may derive clauses of the form s~t and ¢~ s with the
required constraints by factoring from s ~¢V u~ v and t ~ s V v >~ u, respectively. These clauses,
in turn, are either T-modifications of symmetric variants of the premise of the factoring inference,
or else may be obtained from these by reflexivity resolution.

O

By inductive application of this lemma we obtain the desired property for flat clauses:

Theorem 4.4 Let N be a set of flat equational clauses without constraints. Then N is equationally
satisfiabl