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Abstract

We re�ne Brand's method for eliminating equality axioms by (i) imposing

ordering constraints on auxiliary variables introduced during the transforma-

tion process and (ii) avoiding certain transformations of positive equations

with a variable on the right-hand side. The re�nements are both of theoreti-

cal and practical interest. For instance, the second re�nement is implemented

in Setheo and appears to be critical for that prover's performance on equa-

tional problems. The correctness of this variant of Brand's method was an

open problem that is solved by the more general results in the present pa-

per. The experimental results we obtained from a prototype implementation

of our proposed method for the model elimination prover Protein also show

some dramatic improvements of the proof search. Ordering constraints have

already been widely used in equational theorem provers based on paramodu-

lation. We prove the correctness of our re�nements of Brand's method by es-

tablishing a suitable connection to basic paramodulation calculi and thereby

shed new light on the connection between di�erent approaches to equational

theorem proving.

Keywords

Automated Theorem Proving, Equality Handling, Ordering Constraints,
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1 Introduction

E�cient techniques for handling equality are a key component of automated reasoning systems.

The most successful approaches to date are based on re�nements of paramodulation, such as the su-

perposition calculus, but these are unfortunately not fully compatible with tableau-based provers or

model elimination methods. Various attempts have been made recently to improve the handling of

equality in such provers (Moser, Lynch & Steinbach 1995, Degtyarev & Voronkov 1996b, Degtyarev

& Voronkov 1996a), but they usually require subtle interactions between paramodulation-based

and model elimination-based subcomponents and therefore are di�cult to integrate into existing

provers. Most current model elimination provers rely instead on preprocessing steps that transform

formulas from logic with equality into logic without equality, see the survey (Schumann 1994).

The best-known transformation method is Brand's modi�cation method (Brand 1975), which

consists of three steps. First, terms are 
attened by introducing new auxiliary variables, so that

only variables occur as arguments of functions symbols. The axioms expressing the monotonicity

properties of equality are not needed for the resulting 
at clauses. Second, all symmetric variants

of a clause (which are obtained by switching the arguments of equations) are added to the given set

of clauses, so that the symmetry axioms of equality may be dispensed with. Third, the transitivity

axioms are internalized by splitting positive equations s�t into (clauses that represent) implications

t� x! s� x with a new auxiliary variable x, called a \link" variable.

In this article, we improve Brand's modi�cation in various ways. We systematically add ordering

constraints during the transformation process, so as to be able to better control the theorem proving

process on the transformed clauses. For example, a link variable x will be constrained via s � x

and t � x to terms smaller than s and smaller than or equal to t. Ordering constraints intuitively

re
ect assumptions about the form of equational proofs of s�t and are related to rewrite techniques

as used in paramodulation and superposition calculi. The rationale for transitivity elimination is

that a sequence of equational replacements

s = s

0

� s

1

� : : :� s

n

= t

(using equations s

i

� s

i+1

) can be simulated by a sequence of resolution inferences from the goal

clause s 6� z _ t 6� z and (clauses representing the) equivalences s

i

� x

i

$ s

i+1

� x

i

, plus a �nal

resolution step with the re
exivity axiom x � x that instantiates the link variables. The ordering

constraints ensure that the variables x

i

can only be instantiated by minimal terms among the s

i

and block the search for alternative equational proofs that apply the same equations but di�er in

the instantiation of the link variables.

Aside from the ordering constraints, we also propose more subtle changes to the transforma-

tion process. In particular, we never split a positive equation t � x where the right-hand side is

already a variable. This may seem to be a minor technical aspect, but the optimization (Moser

& Steinbach 1997) has been implemented in the Setheo model elimination theorem prover and is

crucial for that prover's successful performance on many equational problems (Ibens & Letz 1997).

1

The completeness of this optimization (without any ordering constraints) had been an open prob-

lem

2

that follows from the more general results in the present paper. Our completeness proof is

comparatively simple, but draws on rather non-trivial results about basic superposition, some of

which have been obtained only very recently (Bachmair & Ganzinger 1997b). In essence, we show

1

The optimized transformation avoids the generation of negative equations x 6� y between two variables. Model

elimination or resolution inferences with such literals correspond to paramodulation inferences into or from variables,

most of which are redundant and ought to be avoided.

2

The proof in (Moser & Steinbach 1997) contains a non-trivial gap which this paper closes.

1



how refutational proofs by strict basic superposition with 
at clauses can be simulated by resolution

with the corresponding transformed clauses. In addition to the theoretical results, we also report

on experiments with model elimination theorem proving that provide encouraging evidence for the

practical usefulness of the proposed constrained equality elimination method.

The structure of the paper is as follows. The next section contains preliminary material. The

transformations are described in Section 3 and the main results about them in Section 4. In

Section 5 we discuss the connection with other transformation methods, while in Section 6 we

report on experiments with our method.

2 Preliminaries

The transformations described below will be applied to clauses with equality. We use the the symbol

� to denote the equality predicate and assume, for simplicity, that this is the only predicate in the

original language.

3

A di�erent symbol ' is used to denote the predicate that replaces equality as

part of the transformation process. Semantically, the di�erence between the two symbols is that �

is interpreted as a congruence relation, whereas no restrictions are imposed on the interpretation

of '. In other words, the original formulas with � are interpreted in a logic with equality, whereas

the transformed formulas with ' are interpreted in a logic without equality. The aim is to design

transformations so that the original clause set is satis�able in an equality interpretation if, and

only if, the transformed clause set is satis�able in general.

Formally, a clause is a disjunction of literals; a literal being either an atomic formula or the

negation thereof. Disjunction is associative and commutative, and hence clauses may be viewed as

multisets of literals. The empty clause is denoted by 2. By an equational clause we mean a clause

that contains only �, but not '. Satis�ability and logical consequence (denoted by j=) are de�ned

in the usual way, with the proviso that the interpretation of � has to be a congruence (while '

may be interpreted as an arbitrary binary relation).

4

Substitutions will be denoted by the letters �, � and �. The result of applying a substitution

� to an expression (e.g., a clause or term) E is denoted E�. We write E[s] to indicate that s is a

subterm of E and write E[t] to denote the expression obtained from E by replacing one speci�ed

occurrence of s by t. We also write E(s) to indicate that s occurs in E and denote by E(t) the

result of simultaneously replacing all occurrences of s in E by t.

A constraint is a, possibly empty, conjunction of atomic formulas s = t (called an atomic

equality constraint) or s � t or s � t (called atomic ordering constraints). The empty conjunction

is denoted by >. The letters 
 and � are used to denote constraints. A constrained clause is a pair

of a clause C and a constraint 
, written as C � 
. We call C the clause part and 
 the constraint

part of C � 
.

A substitution � is said to be a solution of an atomic equality constraint s = t if s� and t� are

syntactically identical. It is a solution of an atomic ordering constraint s � t (with respect to a

reduction ordering > that is total on ground terms) if s� > t�; and a solution of s � t if it is a

solution of s = t or s � t. Finally, we say that � is a solution of a general constraint 
 if it is a

solution of all atomic constraints in 
. A constraint is satis�able if it has a solution.

A ground instance of a constrained clause C �
 is any ground clause C� such that the constraint


� is satis�able. A constrained clause C ismore general than a constrained clause D, denoted D � C,

if every ground instance of D is also a ground instance of C. We call two constrained clauses C and

3

The extension of the various transformation steps to non-equality literals is straightforward.

4

On one or two occasions we will explicitly relax the restriction on the interpretation of �.

2



D equivalent if C � D and D � C, i.e. when C and D have the same ground instances. A variable

renaming is a (not necessarily injective) subsitution mapping variables to variables. Two syntactic

expressions E and E

0

are said to have the same skeleton written E � E

0

whenever E

0

� = E�, for

some renaming �.

Constraints 


1

and 


2

are equivalent with respect to a set V of variables if for every solution �

1

of 


1

there exists a solution �

2

of 


2

such that �

1

and �

2

agree on the variables in V , and vice versa.

We shall identify constrained clauses C �


1

and C �


2

when the constraints 


1

and 


2

are equivalent

with respect to the variables in C. In this case C � 


1

and C � 


2

are equivalent. We identify a

constrained clause C � > with the unconstrained clause C. A contradiction is a constrained clause

2 � 
 with an empty clause part such that the constraint 
 is satis�able. A clause is called void if

its constraint is unsatis�able. A void clause has no ground instances and therefore is redundant.

A set S of constrained clauses is satis�able if the set of all its ground instances is satis�able.

Evidently, removal of void clauses and replacement of clauses by equivalent ones preserves the

(un)satis�ability of S.

If I is an inference system and N is a set of clauses then I(N) denotes the set of clauses that

can be derived by applying an inference rule in I to premises in N . Likewise, I

�

(N) denotes the

set of clauses that can be derived from N by repeated application of inferences in I. In all calculi

of this paper the premises of inference rules are assumed to have disjoint variables, which can be

achieved by renaming.

3 Transformations

Given a set of equational clauses N , we apply various transformation rules and replace the equality

predicate � by the predicate ' to obtain a modi�ed clause set N

0

, such that the transformed set

N

0

is satis�able if, and only if, the original set N is equationally satis�able. Each part of the

transformation process is designed to eliminate certain equality axioms and can be described by a

set of (schematic) transformation rules to be applied to clauses. If R is a set of such transformation

rules, we say that a (constrained) clause is in R-normal form if no rule in R can be applied to it.

Most of the transformations described below de�ne normal forms that are unique up to renaming

of variables. If N is a set of (constrained) clauses, we denote by R(N) the set of all R-normal forms

of clauses in N .

3.1 Elimination of Monotonicity

A clause is said to be 
at if variables are the only proper subterms of terms. Thus, f(x) 6�y _ h(x)�a

is 
at, but f(f(x))� x and f(a)� x are not. A constrained clause C � 
 is called 
at if its clause

part C is 
at (but the constraint part 
 may contain non-
at terms).

It is fairly straightforward to 
atten clauses by abstracting subterms via introduction of new

variables. This can be described by a set M of (schematic) transformation rules

C(s) � 
 ) (s 6� x _ C(x)) � 


where x is a variable not occurring in C and s is a non-variable term that occurs at least once as

an argument of a function symbol in C. The rules in M are called subterm abstraction rules.

For example, the unit clause i(x)�x� e contains one nested non-variable subterm, namely i(x).

Subterm abstraction yields a clause i(x) 6� z _ z � x� e that is unique up to renaming of the new

variable z. The unit clause i(x) � i(x) � i(x � x) contains two nested non-variable terms, i(x) and

3



x � x, which are eliminated in two steps to yield a transformed clause

x � x 6� x

1

_ i(x) 6� x

2

_ x

2

� x

2

� i(x

1

):

A (constrained) clause is 
at if, and only if, it is in M-normal form. The M-normal forms of a

clause are unique up to renaming of the newly introduced variables (and hence we will speak of the

M-normal form). Our interest in 
at clauses stems from the following result:

Proposition 3.1 (Brand 1975) Let N be a set of equational clauses and N

0

be obtained from

N by replacing each clause by its M-normal form. Then N has an equality model if, and only if,

N

0

has a model in which the predicate � is interpreted as an equivalence (but not necessarily a

congruence) relation.

In other words, the monotonicity axioms are not needed for testing satis�ability of 
at equational

clauses.

Note. We need not abstract all occurrences of a subterm at once. For instance, the multiple

occurrences of the nested term g(x) in

f(g(x)) 6� h(x) _ h(g(x)) � x

are eliminated all at once to yield the M-normal form

g(x) 6� z _ f(z) 6� h(x) _ h(z) � x:

We may instead abstract the di�erent occurrences separately to obtain a di�erent 
at clause,

g(x) 6� z

1

_ g(x) 6� z

2

_ f(z

1

) 6� h(x) _ h(z

2

)� x:

3.2 Partial Elimination of Re
exivity

We may use equality constraints to get rid of certain undesirable negative equality literals:

(x 6� y _ C) � 
 ) C � (
 ^ x = y)

where x and y are variables. This transformation is called re
exivity resolution as it represents an

instance of resolution with the re
exivity axiom. We denote the corresponding set of transformation

rules by R.

3.3 Elimination of Symmetry

Next we replace the equality predicate� by the predicate' and eliminate the need for the symmetry

axioms. Positive equality literals are eliminated by positive symmetry elimination rules:

(C _ s� t) � 
 ) (C _ s' t) � 


(C _ s� t) � 
 ) (C _ t' s) � 


If a clause C contains n positive equality literals, then clearly n transformation steps will eliminate

all positive occurrences of equality. There are 2

n

di�erent normal forms, all of which need to be

retained to eliminate symmetry. For example, from the clause

g(x) 6� z _ f(z) 6� h(x) _ h(z) � x

4



we obtain both

g(x) 6� z _ f(z) 6� h(x) _ h(z) ' x

and

g(x) 6� z _ f(z) 6� h(x) _ x' h(z):

Negative occurrences of � can in principle be simply replaced by ', but we prefer a slightly re-

�ned transformation that moves variables to the right-hand side.

5

The following negative symmetry

elimination rules achieve this purpose:

(s 6� t _ C) � 
 ) (s 6' t _ C) � 
 if s is not a variable

(s 6� t _ C) � 
 ) (t 6' s _ C) � 
 if s is a variable, but t is not

The normal forms produced by these additional transformation rules are unique, as at most one

rule can be applied to any negative equality literal.

6

We denote by S the set of all positive and negative symmetry elimination rules. If a clause

contains n positive equality literals, then 2

n

di�erent S-normal forms can be derived from it. Two

S-normal forms that can be derived from the same clause are said to be symmetric variants of each

other.

3.4 Elimination of Transitivity

The transitivity axioms are eliminated by splitting positive and negative equality literals via in-

troduction of so-called \link variables." The idea is the same as in Brand's method, but we

also introduce constraints on variables, which necessitates slightly di�erent transformations from

Brand's, as will be explained below.

We have both positive and negative splitting rules of the form:

(C _ s' t) � 
 ) (C _ t 6' z _ s' z) � (
 ^ t � z ^ s � z)

(C _ s 6' t) � 
 ) (C _ t 6' z _ s 6' z) � (
 ^ t � z ^ s � z)

where t is not a variable and z is a variable not occurring in C, s or t. The variable z is called a

link variable (between s and t) and the corresponding constraints are called link constraints.

We emphasize that equality literals are not split if the right-hand side is already a variable.

This is di�erent from Brand's method, where literals are split regardless of whether the right-hand

side is a variable or not.

We do not split equality literals with a variable on the right-hand side, but still may add cor-

responding ordering constraints, as expressed by the following positive and negative link constraint

rules:

(C _ s' x) � 
 ) (C _ s' x) � (
 ^ s � x)

(C _ s 6' x) � 
 ) (C _ s 6' x) � (
 ^ s � x)

where the constraints s � x and s � x, respectively, must not be contained in 
 already.

7

By T we denote the set of all splitting and link constraint rules. The T-normal form of a clause

is unique up to renaming of link variables.

The 
at clause (with empty constraint)

i(x) 6' x

1

_ x

1

� x' e

5

The advantage is that fewer splitting rules (described below) will be applicable.

6

Negative literals x 6� y, with variables x and y, are not eliminated by symmetry elimination, but by re
exivity

resolution.

7

There is no point in introducing the same constraint repeatedly.

5



is transformed by T to the constrained clause

(i(x) 6' x

1

_ e 6' y _ x

1

� x' y) � (i(x) � x

1

^ e � y ^ x

1

� x � y);

whereas its symmetric variant

i(x) 6' x

1

_ e' x

1

� x

is transformed to

(i(x) 6' x

1

_ x

1

� x 6' y _ e' y) � (i(x) � x

1

^ x

1

� x � y ^ e � y):

Observe that the constraint of the last clause is unsatis�able if e is a minimal ground term with

respect to the given ordering �. In other words, the clause is void in that case, and the constraint

e � y in the other clause can be simpli�ed to e = y.

Note. The example indicates that it is not necessary to apply subterm abstraction to a minimal

constant c, as the corresponding constraint c � x associated with the abstraction of c can be

simpli�ed to x = c. Also, Skolem constants that occur only negatively need not be abstracted.

4 Preservation of Satis�ablity

The sets M, R, S, and T contain all the transformation rules we need. They eliminate all equal-

ity axioms, except re
exivity. Thus, for any set of clauses N , let CEE(N) be the clause set

T(S(R(M(N))) [ fx' xg. Our main result can then be stated as follows:

Theorem 4.1 A set N of unconstrained equational clauses is equationally unsatis�able if and only

if the transformed set CEE(N) is unsatis�able.

It is not di�cult to prove that if N is equationally satis�able, then the transformed set CEE(N) is

satis�able. (In other words, the transformations are all sound.) The di�cult part is to show that

CEE(N) is unsatis�able, whenever N is equationally unsatis�able.

It su�ces to establish this property for M(N) or, generally, for sets of 
at (unconstrained)

clauses. For that purpose we introduce a refutationally complete calculus for 
at equational clauses

(the \
at basic superposition calculus") and show that all inferences in this calculus are re
ected by

logical consequences on the transformed clauses. This will imply, in particular, that a transformed

set of clauses is unsatis�able whenever a contradiction can be derived from the original clauses by


at basic superposition.

The inference rules of the 
at basic superposition calculus are depicted in Figure 1. We should

point out that in the presentation of superposition calculi, one usually identi�es (as we have done

here) a literal s� t with t� s (and similarly for negative literals s 6� t).

This calculus is a slimmed-down version of a strict basic superposition calculus restricted to


at clauses, and the following theorem is a direct consequence of the results in (Bachmair &

Ganzinger 1997a); see the appendix.

Theorem 4.2 Let N be a set of 
at unconstrained equational clauses. The following statements

are equivalent:

1. N is equationally unsatis�able;

2. FBS

�

(N) contains a contradiction;

3. (R � FBS)

�

(R(N)) contains a contradiction.

Moreover, if N is a set of 
at clauses, then so are the sets FBS

�

(N) and (R � FBS)

�

(R(N)).

6



Positive 
at basic superposition

(C _ s� t) � 
 (D _ u� v) � �

(C _ D _ t� v) � (
 ^ � ^ s = u ^ s � v � t)

;

where neither s nor u is a variable.

Negative 
at basic superposition

(C _ s� t) � 
 (D _ u 6� v) � �

(C _ D _ t 6� v) � (
 ^ � ^ s = u ^ s � t ^ s � v)

;

where u is not a variable.

Re
exivity resolution

(C _ s 6� t) � 


C � (
 ^ s = t)

:

Factoring

(C _ s� t _ u� v) � 


(C _ s� t) � (
 ^ s = u ^ t = v)

;

where s � u and t � v.

Figure 1: Flat Basic Superposition FBS

The crucial advantage over previous formulations of basic superposition is that FBS has no equality

factoring inferences and no positive (top-level) superposition inferences from variables. Positive

top-level superposition inferences from variables can be avoided if the reduction ordering on terms

is lifted to literals in a way such that unshielded, maximal variables make a literal larger than literals

in which the same maximal term appears, but does not occur entirely within the substitution part

of the clause.

8

Also note that factoring is applied only when the terms which are uni�ed by the

inference have the same skeleton. In particular, if s is a variable, so is u, and vice versa, and

the same is true for the pair t and v. Since transitivity elimination is sensitive to variables this

uniformity will be helpful.

In the Lemma below we state a direct connection between 
at basic superposition and the

transformation system CEE, forming the core of our completeness proof.

Lemma 4.3 Let N be a set of 
at constrained equational clauses simpli�ed with respect to re
ex-

ivity resolution (so that R(N) = N). If D is a clause in R � FBS(N), then any T � S-normal form

of D is a logical consequence of T � S(N) [ fx' xg (see the diagram).

9

8

With this speci�c class of literal orderings, it should be possible to also close the main gap in the proof in (Moser

& Steinbach 1997). There are some more details that need to be checked as the latter paper assumes a slightly

di�erent calculus and analyses superposition inferences on clauses as they are obtained after transitivity elimination.

This causes additional problems which we avoid.

9

We use the symbol � to denote composition of operators. Thus, T � S(N) = T(S(N)).

7



�

T�S

//

R�FBS

��

�

j=

��
�

T�S

//
�

Proof. Let D be the simpli�ed (by R) conclusion of an inference in FBS from premises in N and

let C be in T � S(D). For demonstrating that C is logically implied by T � S(N) [ fx ' xg we will

usually apply resolution-based reasoning, followed by some strengthening of the constraint.

We prove the assertion by a case analysis over the inferences in FBS. Let

(C _ s� t) � 
 (D _ u� v) � �

(C _ D _ t� v) � (
 ^ � ^ s = u ^ s � t ^ u � v � t)

be an inference by positive 
at basic superposition from premises in N . Then neither s nor u is a

variable. Also, the conclusion D is already simpli�ed by R as any clause in N has this property by

assumption. Any T � S-normalform of D has the form

C = (C

0

_ D

0

_ E) � (
 ^ � ^ �

C

0

^ �

D

0

^ s = u ^ s � t ^ u � v � t ^ "):

where (i) C

0

� (
 ^ �

C

0

) and D

0

� (� ^ �

D

0

) are T � S-normalforms of C � 
 and D � �, respectively; (ii)

the subclause E and the link constraints " for the literals in E depend on (a) whether the the new

equation t�v has been oriented into t'v or v't during S normalization; and (b) on the result of T

normalization, depending on whether or not t or v are variables. In this structuring of the constraint,

we assume matching modulo associativity, commutativity, and idempotence of conjunction. That

is, we allow for an implicit duplication of atomic constraints to bring the constraint into the form

(
 ^ � ^ �

C

0

^ �

D

0

^ s = u ^ s � t ^ u � v � t ^ ") with conjuncts �

C

0

and �

D

0

as they would

be introduced during a separate T � S normalization of the subclauses C � 
 and D � �. We proceed

with an analysis of the variants of E.

(i) Variant t' v, and v is a variable. Then C has the form

(C

0

_ D

0

_ t' v) � (
 ^ � ^ �

C

0

^ �

D

0

^ s = u ^ s � t ^ u � v � t ^ t � v)

Evidently, the constraint part of C is unsatis�able, that is, C is void, hence trivially follows from

T � S(N).

From now on, to simplify notation, we shall omit the \side-literals" C

0

and D

0

as well as the

respective \standard constraints" 
 ^ � ^ �

C

0

^ �

D

0

which are inherited from the C and D

subclauses of the respective premises and their T � S normalforms.

(ii) Variant t' v, and v is not a variable. Here, C has the form

(v 6' x _ t' x) � (s = u ^ s � t ^ u � v � t ^ v � x ^ t � x);

or, equivalently,

(v 6' x _ t' x) � (s = u ^ u � v � t � x) (1)

with x a fresh link variable. As neither s nor u is a variable, T � S(N) contains the clauses

(u 6' x _ v ' x) � (u � x ^ v � x) and (s 6' y _ t' y) � (s � y ^ t � y), with link variables x and

y. Consider the resolution inference

(u 6' x _ v ' x) � (u � x ^ v � x) (s 6' y _ t' y) � (s � y ^ t � y)

(v 6' y _ t' y) � (s � y ^ t � y ^ u � x ^ v � x ^ s = u ^ y = x) :

8



Since x and y are variables not occuring in s; t; u; v, the conclusion of this inference is equivalent to

(v 6' x _ t' x) � (t; v � x ^ s; u � x ^ s = u) (2)

The clause (2) is more general than (1) since the constraint s = u ^ u � v � t � x implies the

constraint t; v � x ^ s; u � x. We have shown, as was required, that (1) is a logical consequence of

T � S(N).

(iii) Variant v ' t, t is a variable. After simplifying the constraint, C has the form

(v ' t) � (s = u ^ s � t ^ u � v � t): (3)

In this case, consider the resolution inference

(s' t) � (s � t) (u 6' x _ v ' x) � (u � x ^ v � x)

(v ' x) � (s � t ^ u � x ^ v � x ^ s = u ^ t = x)

from premises in T � S(N). Since x does not occur in s; t; u; v, the conclusion of this inference is

equivalent to

(v ' t) � (u � t ^ s; v � t ^ s = u) (4)

which is more general than (3).

(iv) Variant v ' t, t is not a variable. In this case, C is equivalent to

(t 6' x _ v ' x) � (s = u ^ s � t ^ u � v � t � x); (5)

with a fresh variable x. C can be derived from T � S(N) via the inference

(t 6' y _ s' y) � (t � y ^ s � y) (u 6' x _ v ' x) � (u � x ^ v � x)

(t 6' y _ v ' x) � (t � y ^ s � y ^ u � x ^ v � x ^ s = u ^ y = x) :

Since x and y are variables not occuring in s; t; u; v, the conclusion of this inference is equivalent to

(t 6' x _ v ' x) � (t; u � x ^ s; v � x ^ s = u) (6)

which is more general than (5).

Next we prove the assertion for inferences by negative 
at basic superposition

(C _ s� t) � 
 (D _ u 6� v) � �

(C _ D _ t 6� v) � (
 ^ � ^ s = u ^ s � t ^ u � v)

from premises in N . Let D denote the conclusion of the inference. Then u is not a variable. Again

we need to conduct a case analysis according to whether or not one of the v and t are variables.

Here the various cases also determine as to whether the conclusion of the inference can be further

simpli�ed by re
exivity resolution. Without loss of generality we assume that t � v such that

symmetry elimination transforms t 6� v into t 6' v. Under this assumption, if t is a variable, so must

be v. We will again simplify the technical presentation by disregarding the side literals in C and

D and their associated constraints.
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(i) Suppose v is a variable, but t is not. Then D is in normalform with respect to R and the

(unique) T � S-normalform of D has the form

(t 6' v) � (s = u ^ s � t ^ u � v ^ t � v): (7)

Consider the resolution inference

(t 6' x _ s' x) � (t � x ^ s � x) (u 6' v) � (u � v)

(t 6' x) � (t � x ^ s � x ^ u � v ^ s = u ^ x = v):

Both premises are in T � S(N). Since x is a variable not occuring in s; t; u; v, the conclusion of this

inference is equivalent to

(t 6' v) � (t � v ^ s � v ^ u � v ^ s = u)

which is more general than (7).

(ii) If both v and t are variables then D is normalized by the R-step in R � FBS to

2 � (s = u ^ t = v ^ s � t ^ u � v) (8)

which is in T � S-normalforms. A more general clause can also be derived from T � S(N) by

(s' t) � (s � t) (u 6' v) � (u � v)

2 � (s � t ^ u � v ^ s = u ^ t = v):

(iii) Suppose that neither v nor t is a variable. Then D is in normalform with respect to R and

the (unique) T � S-normalform of D has the form

(t 6' x _ v 6' x) � (s = u ^ s � t ^ u � v ^ t; v � x); (9)

where x is a fresh variable. Consider the resolution inference

(t 6' x _ s' x) � (t � x ^ s � x) (u 6' y _ v 6' y) � (u; v � y)

(t 6' x _ v 6' y) � (t � x ^ s � x ^ u; v � y ^ s = u ^ x = y)

from premises in T � S(N). Since x is a variable not occuring in s; t; u; v, the conclusion of this

inference is equivalent to

(t 6' x _ v 6' x) � (t; u; v � x ^ s � x ^ s = u)

which is more general than (9).

Next we treat re
exivity resolution

(C _ s 6� t) � 


C � (
 ^ s = t)

from a clause in N . Its conclusion C is in normalform with respect to R. As N is simpli�ed with

respect to R not both s and t can be variables. Let us assume, without loss of generality, that s is

not a variable. Any T � S-normalform D of C has the form

C

0

� (
 ^ �

C

0

^ s = t); (10)

where C

0

� (
 ^ �

C

0

) is a T � S-normalform of C � 
. We need to distinguish two cases:
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(i) t is not a variable: Consider the following derivation in T � S(N)

z ' z

y ' y (C

0

_ t 6' x _ s 6' x) � (
 ^ �

C

0

^ s; t � x)

(C

0

_ s 6' x) � (
 ^ �

C

0

^ s; t � x ^ y = t ^ y = x)

C

0

� (
 ^ �

C

0

^ s; t � x ^ y = t ^ y = x ^ z = s ^ z = x)

by two resolution steps with (variants of) x ' x. Since x; y and z are variables not appearing

elsewhere, the conclusion of this inference is equivalent to

C

0

� (
 ^ �

C

0

^ s 6' t)

which is precisely (10).

(ii) t is a variable: This case is similar, considering the following single-step derivation from

T � S(N) by resolution with a variant of x' x

y ' y (C

0

_ s 6' t) � (
 ^ �

C

0

^ s � t)

C

0

� (
 ^ �

C

0

^ s � t ^ y = s ^ y = t)

yielding a clause which is equivalent to (10).

Factoring inferences take the form

(C _ s� t _ u� v) � 


(C _ s� t) � (
 ^ s = u ^ t = v)

where s � u and t � v. Let again D denote the conclusion of the inference. We have to consider

four possible cases, depending on whether or not s and t (and, hence, u and v) are variables. In

the analysis we again omit side-literals and their constraints.

(i) Neither s nor t is a variable. Then none of the four terms s; t; u; v is a variable. Therefore,

any T � S normalform of D has the form

(v 6' x _ u' x) � (s = u ^ t = v ^ v � x ^ u � x); (11)

where x is a fresh variable. By applying positive and negative factoring to the T � S normalform

(v 6' x _ t 6' y _ u' x _ s' y) � (t � y ^ s � y ^ v � x ^ u � x)

of the premise of the factoring inference, we obtain the clause

(v 6' x _ u' x) � (v = t ^ x = y ^ u = s ^ t � y ^ s � y ^ v � x ^ u � x)

which (y does not occur elsewhere) is equivalent to

(v 6' x _ u' x) � (v = t ^ u = s ^ v � x ^ u � x)

which is precisely (11). For the variant u 6' x _ v ' x we may construct a similar derivation.

(ii) s is a variable, and t is not a variable. Then also v is not a variable. We need to derive

clauses of the form t 6' x _ s' x and t' s with the appropriate constraints. This can be achieved

by applying appropriate factoring inferences to t 6' x _ v 6' y _ s ' x _ u ' y and t ' s _ v ' u,

respectively, where the latter, since u is not a variable, can be obtained by a resolution step with

re
exivity from t' s _ u 6' x _ v ' x. The case in which s is not a variable, but t is, is similar.
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(iii) Both s and t are variables. Then we may derive clauses of the form s' t and t's with the

required constraints by factoring from s' t _ u' v and t' s _ v ' u, respectively. These clauses,

in turn, are either T-modi�cations of symmetric variants of the premise of the factoring inference,

or else may be obtained from these by re
exivity resolution.

2

By inductive application of this lemma we obtain the desired property for 
at clauses:

Theorem 4.4 Let N be a set of 
at equational clauses without constraints. ThenN is equationally

satis�able if and only if T � S � R(N) [ fx' xg is satis�able.

Proof. It can easily be shown that T � S � R(N)[ fx' xg is satis�able whenever N is equationally

satis�able. Suppose that N is equationally unsatis�able, and let N

0

denote R(N). By the com-

pleteness of 
at basic superposition, we may infer that (R � FBS)

�

(N

0

) contains a contradiction.

The set N

0

, and all sets (R � FBS)

k

(N

0

) are simpli�ed (with respect to R) 
at equational clauses to

which we may (inductively) apply the above lemma. Therefore, all clauses in T � S((R�FBS)

�

(N

0

))

are logical consequences of T � S � R(N) [ fx' xg. As the T � S normal form of a contradiction is

also a contradiction, T � S � R(N) [ fx' xg must be unsatis�able. 2

5 Variations

Let us now brie
y discuss the connection of our method to other transformation methods. Brand's

original method is not directly comparable to our method. The main di�erence (aside from the

fact that we use constraints) is that Brand uses only a positive splitting rule,

(C _ u' v) ) (C _ v 6' z _ u' z);

but no negative splitting rule. However, the positive splitting rule is applied even if the right-hand

side v of an equality literal is a variable. With Brand's method the clause

f(g(x)) 6� h(x) _ h(g(x)) � x

is transformed into two clauses

g(x) 6' z _ f(z) 6' h(x) _ x 6' y _ h(z) ' y

and

g(x) 6' z _ f(z) 6' h(x) _ h(z) 6' y _ x' y;

whereas our transformation would result in di�erent (constrained) clauses

(g(x) 6' z _ f(z) 6' z

1

_ h(x) 6' z

1

_ h(z) ' x) � (g(x) � z ^ f(z); h(x) � z

1

^ h(z) � x)

and

(g(x) 6' z _ f(z) 6' z

1

_ h(x) 6' z

1

_ h(z) 6' y _ x' y) � (g(x) � z ^ f(z); h(x) � z

1

^

h(z) � y ^ x � y):

It is not possible, though, to simply add link constraints to Brand's original transitivity elimination

rule.
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For example, Brand's transitivity elimination with link constraints, when applied to the unsat-

is�able set of unit clauses a� b, a� c and b 6� c (with an ordering in which c � b � a) yields a set

of constrained clauses

(b 6' x _ a' x) � (b � x ^ a � x)

(a 6' x _ b' x) � (a � x ^ b � x)

(c 6' x _ a' x) � (c � x ^ a � x)

(a 6' x _ c' x) � (a � x ^ c � x)

b 6' c

that is satis�able (in combination with the re
exivity axiom x ' x)! (The �rst and third clause

contain the unsatis�able constraint a � x and hence are void. The remaining clauses, along with

x'x, are satis�able even without the constraints.) In short, ordering constraints are not compatible

with Brand's original transformations.

The method implemented in the Setheo prover (Moser & Steinbach 1997) can be described with

our transformation rules, except that no link constraints are introduced. Positive equations with

a variable on the right-hand side are not split, and hence negative equations with a non-variable

right-hand side must be split also.

For example, the three unit clauses f(x)�x, g(x)�x and f(x) 6�g(x) are unsatis�able. However,

if negative equality literals are not split, we obtain a satis�able set of clauses f(x)'x, f(x)6'y _ x'y,

g(x)' x, g(x) 6' y _ x' y, f(x) 6' g(x), and x' x.

Let us conclude this section with an example. The presentation of group theory by three

equations, x � e� x, x � i(x)� e, and (x � y) � z � x � (y � z), is transformed with our method into

the following set of constrained clauses:

x � e' x

x � e 6' u _ x' u � x � u

i(x) 6' u _ x � u' e � i(x) � u

x � y 6' u _ y � z 6' v _ u � z 6' w _ x � v ' w � u � z � w ^ x � v � w ^ x � y � u ^ y � z � v

x � y 6' u _ y � z 6' v _ x � v 6' w _ u � z ' w � x � v � w ^ u � z � w ^ x � y � u ^ y � z � v

where � refers to a lexicographic path ordering induced by the precedence relation i > � > e and

constraints have been simpli�ed accordingly. Note that with Brand's modi�cation or with equality

elimination as used in Setheo one gets an additional clause,

i(x) 6' z _ x � z 6'w _ e'w:

This clause can be omitted, as its associated constraint e � w is unsatis�able in the given ordering.

6 Experiments

In Figure 6 we show some experimental results with the Protein prover (Baumgartner & Furbach

1994) on certain simple problems in group theory. \L" means that the goal was attempted in

the presence a previously proved lemma. In the table we list runtimes and number of computed

inferences (\K" denotes kilo, and \M" denotes mega inferences) for four kinds of transformation.

The \B" column depicts the results for Brand's original modi�cation. \S" refers to the method

that is implemented in Setheo with splitting of both positive and negative equations that have

no variable right-hand side, without attaching ordering constraints. \Ss" is like \S" except that

Skolem constants in the goals have not been abstracted. Compared with Brand's method, the Setheo
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number of inferences time [sec]

Problem ord B S Ss C B S Ss C

x � e� x { 1.3M 21.4K 1.5K 578 123 2.1 0.16 0.1

i(i(x)) � x 1 4.7M 1 83.6M 15.5K 508 1 10191 4.8

i(i(x)) � x 2 1 1 1 178K 1 1 1 84

i(i(x)) � x 3 4.7M 1 83.6M 15.5K 502 1 10191 4.8

x � i(x)� e 1 4.1K 288K 288K 461 0.4 30 30.4 0.1

x � i(x)� e 2 2.4M 17.5M 17.6M 671 272 2204 2204 0.2

i(x) � (x � y)� y L 1 19.5K 267K 267M 3.8K 1.9 28 28.3 0.9

i(x) � (x � y)� y L 2 1 1 1 12.2M 1 1 1 3235

i(x) � (x � y)� y 1 9.1M 1 1 24M 950 1 1 10574

i(x) � (x � y)� y 2 1 1 1 1 1 1 1 1

Figure 2: Experimental results on a 167MHz UltraSparc for simple problems in group theory

method avoids more of those inferences which correspond to superposition into or from variables.

However, it comes at the expense of also splitting negative equations. The experiments show that

the price to pay is indeed very high so that in some of our experiments, \S" performs much worse

than Brand's original method. However, if disequations s' t in which t is a Skolem constant of the

goal are not split we obtain a uniform and more signi�cant improvement. This variant is denoted

by \Ss" below. Finally, \C" is CEE transformation, using the presentation of group theory as

presented in Section 5. We implemented constraint inheritance and checking in a straightforward

manner. Ordering constraints are collected through additional arguments of predicate symbols.

(As to what extent the additional predicates a�ect Protein's proof strategy, we do not know.) The

�rst subgoal of any (non-unit) clause �rst calls upon a satis�ability check (implemented in Prolog)

for the accumulated constraint at this point. Constraint solving was implemented incompletely by

simply checking independent satis�ability of each inequality in any conjunction of inequalities. A

complete constraint solving which is available for large classes of lexicographic path orderings, is

very expensive and does not seem to reduce the number of inferences by another order of magnitude.

Protein is extremely sensitive to how the clauses and the literals in a clause, respectively, are

ordered. In the examples we have experimented with three di�erent orderings of the subgoals in

the goal clause. In ordering 1 the variable de�nitions for inner subterm positions precede those of

the outer positions. This ordering seems to work better with Protein most of the time. Ordering

2 is the inverse of ordering 1. Ordering 3 is some mixture of orderings 1 and 2. Orderings 2 and

3 coincide for the CEE transformation. For ordering 2, the speedups obtained from the optimiza-

tion are much more dramatic. This seems to indicate that with the constraints the performance

of model elimination is somewhat less dependent on subgoal selection strategies. In particular

upon backtracking, ordering constraints prevent one from searching redundant alternative proofs

of subgoals.

Although these experiments are far from being conclusive, it appears as if the CEE transforma-

tion can have a dramatic e�ect on proof search. Except for one case, proofs using CEE transforma-

tion were found much faster, usually by several orders of magnitude. With the rather incomplete

method of constraint satis�ability checking, the price paid on each single inference seems a�ordable.

As said before, Protein proof search is too much dependent on the ordering of clauses and of

subgoals within clauses. It would be interesting to see the e�ect of our improvements on Setheo

where dynamic goal selection strategies result in a more predictable behavior and �nd proofs more
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often, also for less trivial problems than the ones studied in our experiments (Ibens & Letz 1997).

7 Conclusions

We have described a re�ned variant of Brand's modi�cation method via ordering constraints that

also improves equality elimination as implemented in the prover Setheo. Our theoretical results im-

ply that equality handling in Setheo is indeed refutationally complete (which was an open problem).

The completeness proof draws on recent results about basic superposition and thus establishes a

connection between the theory underlying local saturation-based methods, such as paramodulation

and superposition, and optimizations of equality handling in global theorem proving methods, such

as model elimination and semantic tableau-methods.

Our experiments seem to indicate that with the ordering constraints the search space is indeed

drastically reduced. However, our results in this regards are not conclusive yet. An implementation

of the method in a more advanced model elimination prover, like Setheo, should allow one to draw

more de�nite conclusions in this regard.
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Positive basic superposition

(C _ s� t) � 
 (D _ w[u]� v) � �

(C _ D _ w[t]� v) � (
 ^ � ^ s = u ^ s � t ^ w � v ^ (w; v) �

lex

(s; t) ^ �)

where (i) u is not a variable and (ii) either s is not a variable or else u is a proper subterm

of w.

Negative basic superposition

(C _ s� t) � 
 (D _ w[u] 6� v) � �

(C _ D _ w[t] 6� v) � (
 ^ � ^ s = u ^ s � t ^ w � v ^ �)

where u is not a variable.

Re
exivity resolution

(C _ s 6� t) � 


C � (
 ^ s = t ^ �)

Factoring

(C _ s� t _ u� v) � 


(C _ s

0

� t

0

) � (
 ^ s = u ^ t = v ^ �)

where s � u and t � v.

Figure 3: Strict Basic Superposition BS

A Basic Superposition

The 
at basic superposition calculus is derived from one of the strict basic superposition calculi

described in (Bachmair & Ganzinger 1997a), see Figure 3.

In all cases, � refers to inference-speci�c ordering constraints that are irrelevant for our purposes

and hence have been deleted in the 
at versions of the inference rules. (Such constraints may always

be deleted without impairing the soundness or refutational completeness of the calculus.)

Moreover, the remaining constraints in the 
at inference rules have been simpli�ed. For instance,

if the second premise of a (positive or negative) basic superposition rule is a 
at clause, then the

two terms w and u must be identical, as any proper subterm in a 
at clause is a variable, yet u

is required to be a non-variable subterm of w. Using the facts that w = u and s = u, one may

then simplify the ordering constraints as indicated. In particular, the constraint (w; v) �

lex

(s; t) in

positive superpositions reduces to s � v � t in the 
at case. The instance v = t can also be ignored.

In that case the conclusion contains t� t positively, hence, is a direct tautology which is redundant.

Direct tautologies are a strict subclass of all tautologies, cf. (Bachmair & Ganzinger 1997a) for the

exact de�nition.

Basic superposition calculi are also compatible with other various mechanisms for eliminating

redundancies and simplifying clauses. For the present paper it su�ces to point out that, in addi-

tion to direct tautologies, void clauses are redundant, as are inferences with a void conclusion. The

former can be deleted, while the latter may be ignored. Furthermore, the special case of re
ex-
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ivity resolution as represented by the transformation R is a simpli�cation rule. That is, a clause

(x 6� y _ C) � 
 with variables x and y, is redundant in the presence of a clause C � (
 ^ x = y) and,

hence, can be deleted. Summarizing these observations, we obtain the Theorem 4.2 stated above.
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