
Short and Smooth Polygonal Paths

James Abello1 and Emden Gansner2

1 Communication Information Systems Research, AT&T Labs-Research, USA
abello@research.att.com

2 Information Analysis and Display Research, AT&T Labs-Research, USA
erg@research.att.com

Abstract. Automatic graph drawers need to compute paths among ver-
tices of a simple polygon which besides remaining in the interior need to
exhibit certain aesthetic properties. Some of these require the incorpo-
ration of some information about the polygonal shape without being too
far from the actual shortest path. We present an algorithm to compute a
locally convex region that “contains” the shortest Euclidean path among
two vertices of a simple polygon. The region has a boundary shape that
“follows” the shortest path shape. A cubic Bezier spline in the region in-
terior provides a “short and smooth” collision free curve between the two
given vertices. The obtained results appear to be aesthetically pleasant
and the methods used may be of independent interest. They are elemen-
tary and implementable. Figure 7 is a sample output produced by our
current implementation.

1 Introduction

The problem of finding collision free paths has been studied in robotics, VLSI
layout and computational geometry. A host of shortest path based methods
have been proposed in the literature. In some cases, curvature constraints are
imposed and in others the physical constraints of robot cars or manipulators are
incorporated ([5], [6], [10], [11], [12], [16], [18]).

A different flavor of path routing is required by automatic graph drawers
specially in applications where the nodes are represented by single connected
shapes. In this case, once nodes are positioned the edges need to be placed and
the layouts are forced to use some form of curved edges to avoid collision with
non-incident nodes ([7], [17]). The described environment can be modeled as a
simple polygon P containing a collection of disjoint simple polygonal holes, cor-
responding to the node obstacles. The general edge placement problem consists
in drawing “natural-looking” curves between vertices in this environment. Ar-
guably, natural curves avoid obstacles, stay close to a shortest path, do not turn
too sharply, and avoid unnecessary inflections [4]. Robotics physical constraints
such as robot size, mass, acceleration, or turning radius do not seem to have a
clear interpretation in the context of natural-looking curves in graph drawings.
Recently, a heuristic has been proposed that produces curves which satisfy some
of the criteria mentioned above [4]. Unfortunately, the obtained curves are forced
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to touch the obstacles that lie on the shortest path and are not guaranteed to
be completely contained in the available free space. The authors of [4] comment
on the difficulty of producing an implementable solution that uses in an efficient
manner the available free space while keeping the curve in the proximity of the
shortest path. We offer an algorithmic solution to both of these problems for
the case of simple polygons without holes. Namely, for a given pair of vertices
x, y of a simple polygon P , the algorithm produces a “smooth” curve that is
completely contained in the interior of P and that lies on the proximity of the
shortest path from x to y. The methods used are visibility based and may be
of independent interest. They are elementary and implementable. Figure 7 is a
sample output produced by our current implementation of the algorithm. Fi-
nally, it is important to notice that the apparently more general edge placement
problem that considers polygons with holes in their interior can be handled using
similar methods to the ones presented here for simple polygons without holes.
We explain the overall idea in Sect. 4.

The second section of the paper contains the relevant definitions. The third
section is the bulk of the paper. It contains a description of the algorithm and the
main arguments justifying its correctness. The general problem, closing remarks
and further exploration avenues are presented in Sect. 4.

2 Problem Statement

2.1 Definitions

We consider simple polygons on the plane with an implicit counterclockwise la-
beling of the vertices from 1 to n. Given a pair of non-consecutive vertices x and
y on the boundary of P , consider their counterclockwise boundary successors
next(x) and next(y) respectively. The boundary is thus divided into two closed
chains [next(x), y] and [next(y), x]. Denote by CSP [x, y] the ordered shortest
path from x to y in the counterclockwise direction. Notice that CSP [x, y] is
not necessarily the shortest interior Euclidean path from x to y which we de-
note by SP [x, y]. It shall be clear then that any two nonconsecutive vertices
x and y determine a subpolygon R[x, y] whose counterclockwise boundary is
{x, CSP [next(x), y], next(y), CSP [next(y), x] }. The shortest Euclidean path
SP [x, y] is nowhere exterior to R[x, y] (see Fig. 1). There are however other
subpolygons “similar” to R[x, y] that not only contain SP [x, y] but that provide
in its proximity as much space as allowed by the boundary of the input poly-
gon. Our objective is then to find one such subpolygon on which we can draw
a smooth curve that is “close” to SP [x, y]. We refer to this subpolygon as the
drawing region.

2.2 Visibility Notions

Two polygon vertices are called visible if the open line segment between them is
completely contained in the interior of the polygon or if they are consecutive on
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next(x)
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next(y)

Fig. 1. The shortest Euclidean path SP [x, y] is nowhere exterior to the subpoly-
gon R[x, y] determined by two nonconsecutive points x and y.

the polygon boundary. The set of vertices visible from a vertex x is denoted by
N(x). The visibility graph of a polygon is the graph whose vertices correspond
to the vertices of the polygon and edges correspond to visible pairs of polygon
vertices. It can be computed optimally [8]. A very large subclass of these graphs
has been studied in ([1], [2]) and a good overview of related research can be
found in [13].

If x and y are two visible vertices, (x smaller than y in the implicit coun-
terclockwise order), let fr(x, y) denote the first vertex to the right of y (if any)
that is visible from x. Similarly, let fl(x, y) be the first to the left of y (if any)
that is visible from x. The computation of fr(x, y) and fl(x, y) is a fundamental
operation in many visibility based algorithms. It is useful then to let T (x, y)
denote the time taken to compute either fr(x, y) or fl(x, y) for a given pair of
visible vertices x and y in a polygon P . With this in mind, for a subset S of
vertices of a polygon P , let

T (S) = max{ T (x, y): both x and y are visible vertices of S}.
One can define similar notions in terms of other computational resources but

we will not discuss these issues any further here.

3 The Algorithm

3.1 Algorithm Overview

Our general method can be viewed in three stages with the first two interleaved
for efficiency purposes as follows.



154 James Abello and Emden Gansner

Stage I. Find Local Pentagons

For every ordered triple of consecutive vertices (i,j,k) in
SP[x,y] where i and k are both different from x and y do
{
Compute an auxiliary point on each of the directed rays
r(i,j) and r(k,j) and call them a(i,j) and a(k,j)
respectively. The interior of the pentagon with
vertices i, j, k, a(i,j), a(k,j) must be contained in P.

}

Stage II. Find the boundary of the drawing region

For every four consecutive vertices (i,j,k,l) in SP[x,y]
where i and l are both different from x and y do
{
Use the local pentagons obtained in the previous stage
to obtain from them local heptagons and octagons that
surround the shortest path.

}

Stage III. Find a curve from x to y in the interior of the
drawing region that approximates SP[x,y].

3.2 Stage I: How to Find the Local Pentagons?

The first thing to notice is that if i, j and k are three consecutive vertices on
SP [a, b] then, by the Jordan closed curve theorem, the sequence (i, j, k, [k, i])
forms a subpolygon of P . This guarantees the existence of points on the directed
rays r(i, j) and r(k, j) within this subpolygon. The main idea is to find, in an
interleaved fashion, a sequence of points fe(k, j) on the ray r(k, j) which are
visible from i and a corresponding sequence fe(i, j) on the ray r(i, j) which
are visible from k. These two sequences satisfy the additional requirement of
being mutually visible. The farthest points in these two sequences are called
the auxiliary points a(k, j) and a(i, j) and they form with i, j, and k a pentagon
whose interior is contained in the interior of P . The sequences are determined by
intersections of the rays r(k, j) and r(i, j) with either, visibility rays emanating
from the vertices i and k or with certain special polygon boundary edges. We
describe next the major steps involved in these computations. For clarity of
exposition we present just the procedure rauxpoint (P,i,j,k) in charge of the
computation of a(k, j). Switching the roles of i and k and substituting fr(i, j)
for fl(k, j) we obtain the symmetric procedure lauxpoint(P,i,j,k) that computes
a(i, j). As previously indicated, interleaving these two procedures we obtain a
method to compute the auxiliary points. As a final notational convenience we
let closest(j, S) denote those vertices in a set S that are closest in Euclidean
distance to a vertex j.
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Computation of the Right Auxiliary Points. Assume that (i, j, k) are three
consecutive vertices on SP [x, y] which form a left turn and recall the definition
of fr(i, j) and fl(k, j) given in Sect. 2. It is a well known fact , proved using
standard visibility arguments, that there exists a unique boundary edge of P
which serves as the base of a funnel subpolygon with apex i that passes through
the vertices j and fr(i, j). We denote such boundary edge by fbase(i, j, fr(i, j))
(see Fig. 2). Similarly, there is a funnel subpolygon associated with k, j and
fl(k, j). The computation depends on the position of fr(i, j) and fl(k, j) with
respect to the lines l(k, j) and l(i, j) respectively. In one case, the intersection
of the funnel bases fbase(i, j, fr(i, j)) and fbase(k, j, f l(k, j)) with the rays
r(k, j) and r(i, j) are used in determining the auxiliary points. In the other, the
procedure is called recursively to look for other suitable funnel bases on a smaller
polygon P ’ whose interior is contained in P . Figs. 2, 3 and 4 illustrate the main
cases that need to be considered by the procedure rauxpoint(P,i,j,k).

r(i,j)

i

r(k,j)

fe(k,j)

f(k,j) a(k,j)

j

k

r(i, fr(i,j))

fr(i,j)

b

a

Fig. 2. The ray r(i, fr(i, j)) intersects the ray r(k, j) and i and fr(i, j) lie on
the same side of the line l(k, j)

procedure rauxpoint(P,i,j,k)

If (r(i, fr(i,j)) intersects the ray r(k,j)
then label such intersection f(k,j)
else f(k,j) := infinity;
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i

b

f(k,j)

r(k,j)

fe(k,j)

a(k,j)

j

k

r(i, fr(i,j))

fr(i,j)

a
r(i,j)

Fig. 3. The ray r(i, fr(i, j)) intersects the ray r(k, j) but i and fr(i, j) do not
lie on the same side of the line l(k, j)

If (i and fr(i,j) are not on different sides of the line l(k,j))
then { [a,b] := fbase(i,j,fr(i,j));

p1 := [a,b] intersection with r(k,j);
a(k,j) := closest(j,{p1, f(k,j)})

}
else {

Let P’ be the polygon with boundary
(i, f(k,j), j, fr(i,j), clockwisechain[fr(i,j),i]);

a(k,j) := rauxpoint(P’,i,f(k,j),j);
}

Lemma 1. The auxiliary points a(i,j) and a(k,j) are computed by interleaving
the procedures rauxpoint(P,i,j,k) and lauxpoint(P,i,j,k). These points together
with i, j and k form a pentagon whose interior is completely contained in the
interior of P (Fig. 5).

Proof. In the case that i and fr(i, j) do not lie on different sides of the line
l(k, j), straightforward properties of their associated funnel guarantee that the
procedure rauxpoint computes a point a(k, j) on the ray r(k,j) which is visible
from i. In the remaining case, the interior of the polygon P ’ with boundary
(i, f(k, j), j, fr(i, j), clockwisechain[fr(i, j), i]) is contained in the interior of P
and the shortest path in P ’ from i to j goes trough f(k, j). This allow us to
apply the procedure recursively to P ’. Similar analysis is true for the procedure
lauxpoint when the points involved are k and fl(k, j) and the computed point
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r(i,j)

i

r(k,j)

a(k,j)

fe(k,j)

fr(i,j)

r(i, fr(i,j))

b

k

j

a

Fig. 4. When the ray r(i, fr(i, j)) does not intersect the ray r(k, j), the funnel
base intersected with the ray r(k, j) determines the auxiliary point a(k, j)

is a(i, j) on the ray r(i, j). Finally, the invariant maintained by the interleaved
execution of these two procedures insure that the interior of the pentagon with
vertices i, j, k, a(i, j) and a(k, j) is completely contained in the interior of P . ut

Complexity of Finding the Auxiliary Points. In order to speed up the
computation of the auxiliary points and assuming that we are interested in
answering a series of shortest path queries it is worthwhile to precompute besides
the visibility graph of P an auxiliary bipartite graph AV(Vertices of P, Boundary
edges of P). AV gives for every vertex v of P , the ordered sequence of boundary
edges seen by v. This graph was implicitly defined in [2] and an efficient algorithm
for its computation has been recently proposed in [14]. It is of interest to notice
that the visibility graph of P determines completely the auxiliary graph AV but
not conversely. In any case the complexity is still O(Visibility graph of P). With
these two graphs at hand, it follows from the proof of the previous Lemma, that
the auxiliary points a(i, j) and a(k, j) can be found in O(|N(k)|) and O(|N(i)|)
respectively.

3.3 Stage II. How to Find the Boundary of the Drawing Region?

Given four consecutive vertices (i, j, k, l) in SP [x, y] for which the auxiliary
points a(i, j), a(k, j), a(j, k) and a(l, k) have been computed, it is necessary to
check if they are “compatible” with each other in the sense of determining a
“locally convex” ordered set of points. Insuring that this compatibility require-
ment is satisfied amounts to a case analysis that depends on how the trian-
gles {j, a(i, j), a(k, j)} and {k, a(j, k), a(l, k)} are positioned with respect to each
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l

c(l,k) lt

a(k,j)

a(j,k)

a(l,k)

i

k

j

a(i,j)

c(i,j)

Fig. 5. The local pentagons around (i, j, k) and (j, k, l) described in Lemma 1
and the heptagon mentioned in one case of the proof of Lemma 2.

other. The proof of the following two lemmas can be turned into a procedure
findregion(i,j,k,l) that computes the desired locally convex regions.

A Useful Property of Successive Quadruples of Points in Shortest
Euclidean Paths.

Lemma 2 (The concave case). Let (i,j, k, l) denote four consecutive points
in a shortest Euclidean path between two vertices of a simple polygon. Assume
also that the path from i to j to k to l is concave. Under these conditions the
auxiliary points computed by the procedures of the previous section satisfy the
following property:

There exists a point lt (called hereafter local top) contained in the union
of the two triangles with vertices (k, j, a(i, j)) and (k, j, a(l, k)) which form with
the vertices i, j, k, l, a(j, k) and a(k, j), a heptagon whose interior is completely
contained in the interior of P (Fig. 5).

Proof. (Sketch.) The interior of the triangles (j, k, a(i, j)) and (j, k, a(l, k)) can
not contain vertices of P because that contradicts the way that a(i, j) and
a(l, k) were chosen by the procedures of the previous section. The result de-
pends completely on the relative position of these two triangles and on which
side of the directed line l(k, j) resides the intersection of the lines l(i, j) and
l(l, k). In some cases, the local top is defined to be either the intersection of the
segment [j, a(l, k)] with the segment [k, a(i, j)] or the intersection of the segment
[j, a(i, j)] with the segment [k, a(l, k)]. In the remaining cases, the local top is
defined to be either the intersection of the ray r(a(j, k), a(l, k)) with the segment
[a(k, j), a(i, j)] or the intersection of the ray r(a(k, j), a(i, j)) with the segment
[a(j, k), a(l, k)]. The described choice of the local top together with visibility
considerations determines the desired heptagon (Fig. 5). ut
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We point out that in many cases, depending on the local geometry, the local
heptagons can be enlarged without increasing the overall complexity. These local
optimizations will be explained in detail somewhere else.

Similar analysis to the one presented in the previous lemma give us the
following result.

Lemma 3 (The non-concave case). If (i, j, k, l) are four consecutive vertices
on a shortest Euclidean path between two vertices of a polygon P which do not
constitute a concave path then they together with the auxiliary vertices form an
octagon whose interior is completely contained in the interior of P (Fig. 6). ut

a(k,j)

i

j

a(l,k)

a(j,k)

l

k

a(i,j)

Fig. 6. The octagon associated with a non-concave subpath i, j, k, l as described
in Lemma 3.

Complexity of Finding the Locally Convex Region. The computations
described in the previous two lemmas are all local. We repeat them sliding a
window of size four over SP(x,y). Some care is necessary in preserving the lo-
cal convexity during the incremental region computation. This amounts to the
maintenance of the region boundary in a data structure that allow us to an-
swer ray shooting queries efficiently. At most a logarithmic cost is incurred here.
Figure 7 is a sample output of our current implementation.

3.4 Stage III. Embed a Smooth Curve Within the Computed
Drawing Region

The collection of points computed in the previous stage defines a subpolygon
that contains the shortest Euclidean path from x to y. This subpolygon is the
region on which the shortest path approximating curve will be drawn. As one
approach to embed a smooth curve in its interior we can limit ourselves to cubic
Bezier splines [3]. This family of curves is general enough to give pleasing results,
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Fig. 7. Sample output produced by the current implementation. The drawing
region is highlighted

is computational simple, and most importantly for our purposes, satisfies the
convex hull property, i.e., a Bezier curve determined by four points lies within
the convex hull of those four points. To exploit this property we observe that
the drawing region computed in the previous stage can be viewed as a chain of
triangles and convex polygons. Each convex polygon contains two vertices on
the shortest path where bends occur. We can pick these points as the first and
last control points p0 and p3. The control point p1 is chosen to lie on the ray
based at p0 that bisects the two edges of the polygon meeting at p0, and in the
interior of the polygon. The control point p2 is chosen similarly with respect to
p3. For aesthetic reasons, it is desirable that p1 and p2 roughly equally divide
the distance between p0 and p3, and that path p0, p1, p2, p3 mimic any change
in curvature of the shortest path from p0 to p3. For example, if the bends on
the shortest path at p0 and p3 have the same sign of curvature, we expect p2

not to cross the ray (p0, p1) and p1 not to cross the ray (p3, p2). This solution
is adequate, but causes the curve to coincide with the shortest path on turns
and makes no use of the additional space provided by the triangles anchored at
the bends. We can improve the situation by generalizing this technique. Namely,
using the triangle at each bend, we pick p0 and p3 to lie on the two sides of the
triangle meeting at the bend, each one-third along the side away from the bend.
The change in angle at the bend can be divided proportionally between p0 and
p3, defining rays based at these points on which we can pick p1 and p2 inside
the polygons and satisfying the needed local convexity or concavity properties.
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Another approach is to use subdivision methods like Chaikin’s algorithm [3].
We are currently experimenting with these techniques and the obtained results
will be reported in the final paper version. For now, we let O(SP [x, y], Drawing
Region) denote the complexity of embedding a “smooth” curve in a drawing
region.

4 Overall Complexity and Concluding Remarks

A polygonal hole is a simple planar polygon together with its interior. In the
general edge placement problem, the collection H of polygonal holes are disjoint
and we assume that they are completely contained in the interior of a large
bounding simple polygon P . The forbidden space forb(H) is the union of the
interiors of the polygons in H and the free configuration space free(P,H) is equal
to P\forb(H). Given two points x and y in free(P,H), any Euclidean shortest
path from x to y is a polygonal path whose inner vertices are vertices of H .
This path can be constructed in O(hlog(h)) time, where h is the total number
of boundary edges of the polygons in H ([9]). Assuming that we are answering a
collection of shortest path queries, it is more effective to precompute the visibility
graph of P ∪ H where two vertices are considered visible if the segment joining
them is completely contained in free(P,H). This computation can be done in
O(h′log(h′)+k) where h′ is the number of vertices in P ∪H and k is the number
of edges in its visibility graph([8]). When x and y are not vertices of P ∪ H we
consider the extended visibility graph of (H∪P )∗ = vertices of (H∪P )∪{x, y}. In
either case, after having a shortest path from x to y we can proceed to compute
in its vicinity a locally convex region on which a spline curve will be drawn.
The methods discussed here are adaptable to this more general case but their
correctness proofs become more intricate. Due to space limitations we defer the
details to the journal version of this report.

The overall complexity of the proposed approach is O(Visibility graph of ver-
tices in free space) + O(SP [x, y], Drawing Region). The second term depends on
the quality of the desired approximation and we believe the first term is optimal
in the amortized sense. An interesting related issue for further exploration is how
to deal with the presence of collinearities. Currently, we can prove that, under
the real arithmetic model, most of the steps to determine the drawing region
are insensitive to the presence of collinearities. However, in certain situations
where the shortest path contains a subsequence of “almost” collinear points, the
resulting drawing region may exhibit subregions which are locally very small.
To overcome this difficulty we have developed a parametrized version of the al-
gorithm. The basic idea is to reapply the algorithm to those internal convex
segments of the obtained boundary region as long as they satisfy a prespecified
curvature constraint. This version, produces “better” results in the sense that it
depends more heavily on the topology of the input polygon that on the presence
of collinearities.
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