
Comparator Networks for Binary Heap

Construction

�

Gerth St�lting Brodal

y

Max-Planck-Institut f�ur Informatik

Im Stadtwald, D-66123 Saarbr�ucken, Germany

M. Cristina Pinotti

z

Istituto di Elaborazione della Informazione

CNR

56126 Pisa, Italy

January 21, 1998

Abstract

Comparator networks for constructing binary heaps of size n are presented which

have size O(n log logn) and depth O(log n). A lower bound of n log log n � O(n) for

the size of any heap construction network is also proven, implying that the networks

presented are within a constant factor of optimal. We give a tight relation between the

leading constants in the size of selection networks and in the size of heap construction

networks.

Introduction

The heap data structure, introduced in 1964 by Williams [17], has been extensively investi-

gated in the literature due to its many applications and intriguing partial order. Algorithms

for heap management | insertion, minimum deletion, and construction | have been dis-

cussed in several models of computation. For the heap construction algorithm, Floyd has

given a sequential algorithm building the tree in a bottom-up fashion in linear time, which

is clearly optimal. On the weak shared memory machine model, EREW-PRAM, Olariu and

Wen can build a heap of size n in time O(log n) and optimal work [14]. On the powerful

�

This research was done while the �rst author was visiting the Istituto di Elaborazione della Informazione,

CNR, Pisa.

y

Supported by the Carlsberg foundation (Grant No. 96-0302/20). Partially supported by the

ESPRIT Long Term Research Program of the EU under contract No. 20244 (ALCOM-IT). Email:

brodal@mpi-sb.mpg.de.

z

Email: pinotti@iei.pi.cnr.it.

1

CREW-PRAM model, the best-known heap construction algorithm was given by Raman

and Dietz and takes O(log log n) time [6]. The same time performance holds for the parallel

comparison tree model [5]. Finally Dietz showed that O(�(n)), where �(n) is the inverse

of Ackerman's function, is the expected time required to build a heap in the randomized

parallel comparison tree model [5]. All the above parallel algorithms achieve optimal work

O(n), and the time optimality of the deterministic algorithms can be argued by reduction

from the selection of the minimum element in a set.

In this paper we address the heap construction problem for the simplest parallel model of

computation, namely comparator networks. Comparator networks perform only comparison

operations, which may occur simultaneously. The most studied comparator networks are

sorting and merging networks. In the early 1960's, Batcher proposed the odd-even merge

algorithm to merge two sequences of n and m elements, n � m, which can be implemented

by a merging network of size O((m+ n) logm). In the early 1970's Floyd [12] and Yao [18]

proved the asymptotic optimality of Batcher's networks. The lower bound has recently been

improved by Miltersen, Paterson and Tarui [13], closing the long-standing factor-of-two gap

between upper and lower bounds. It is noteworthy to recall, that merge can be solved in the

comparison tree model with a tree of depth m+ n� 1.

Batcher also showed how his merge algorithm could be used to implement sorting net-

works with size O(n log

2

n) and depth O(log

2

n) to sort n inputs [12]. For a long time,

the question remained open as to whether sorting networks with size O(n log n) and depth

O(log n) existed. In 1983, Ajtai, Koml�os and Szemer�edi [1] presented sorting networks with

size O(n log n) and depth O(log n) to sort n items. This result, although partially unsatisfy-

ing due to big constants hidden by the O-notation, reveals that the sorting problem requires

the same amount of work in both comparison tree and comparator network models.

Selection, sorting and merging are strictly related problems. Several sequential algorithms

with linear work have been discussed for selection. The �rst is due to Blum et al. [4] and

requires 5:43n comparisons. This result was later improved by Sch�onhage et al. to 3n [16]

and by Dor and Zwick to 2:95n [7, 8]. Bent and John proved a lower bound of 2n for this

problem [3]. Dor and Zwick [9] improved it to (2+ �)n [9]. For a survey of previous work on

lower bounds in the comparison tree model, see the paper by Dor and Zwick [9].

For comparator networks Alekseyev [2] proved that an (n; t)-selection network, which

selects the t smallest item in a set of n elements, has at least size (n � t)dlog(t + 1)e.

1

For

t =
(n

�

) and 0 < � � 1, the existence of a work optimal selection network immediately

follows by the sorting networks of Ajtai et al.. However, since selection networks do not

need to do as much as sorting networks, and due to the big constant hidden by the sorting

networks in [1], selection networks with improved constant factors in both depth and size

have been developed. In particular, Pippenger proposes a (n; bn=2c)-selection network with

size 2n log n and depth O(log

2

n) [15]. More recently, Jimbo and Marouka have constructed

a (n; bn=2c)-selection network of depth O(log n) and of size at most Cn log n+O(n), for any

arbitrary C > 3= log 3 � 1:89, which improves Pippenger's construction by a constant factor

in size and at the same time by an order in depth [11].

The preceding summary shows that work optimal comparator networks have been studied

for merging, sorting, and selection. Although the heap data structure has historically been

1

All logarithms throughout this paper have basis 2

2

strictly related to these problems, we are not aware of any comparator network for the

heap construction problem. In this scenario, we show that heap construction can be done

by comparator networks of size O(n log log n) and depth O(log n), and that our networks

reach optimal size by reducing the problem of selecting the smallest log n elements to heap

construction. Finally, since �nding the minimum requires at least a network of size n � 1

and depth dlog ne, our heap construction networks also have optimal depth.

1 Preliminaries

Let us review some de�nitions, and agree on some notations used throughout the paper.

A binary tree of size n is a tree with n nodes, each of degree at most two. A node x of a

binary tree belongs to level k if the longest simple path from the root to x has k edges. The

height of the tree is the number of edges in the longest simple path starting at the root of

the tree. The subtree T

x

rooted at node x at level k is the tree induced by the descendants

of x.

A complete binary tree is a binary tree in which all the leaves are at the same level and

all the internal nodes have degree two. Clearly, it has height blog nc.

A heap shaped binary tree of height h is a binary tree whose h� 1 uppermost levels are

completed �lled and the h-th level is �lled from the left to the right.

In a heap ordered binary tree, each node contains one element which is greater or equal

to the element at its parent.

Finally, a binary heap is de�ned as a heap-shaped and heap-ordered binary tree [17],

which can be stored in an array H as an implicit tree of size n, as depicted in Figure 1.

The element of the root of the tree is at index 1 of the array, (i.e., root is stored in H[1]),

and given an index i of a node x, the indices of its left and right children are 2i and 2i+ 1,

respectively.

A comparator network with n inputs and size s is a collection of n horizontal lines, one for

each input, and s comparators. A comparator between line i and j, brie
y i : j, compares the

current values on lines i and j and is drawn as a vertical line connecting lines i and j. After

the comparison i : j, the minimum value is put on line i, while the maximum ends up on line

j. Finally, a comparator network has depth d, if d is the largest number of comparators that

any input element can pass through. Assuming that each comparator produces its output

in constant time, the depth of a comparator network is the running time of such a network.

From now on, let us refer to comparator networks simply as networks. For a comprehensive

account of comparator networks, see [12, pp. 220-246].

2 Sequential heap construction

It is well known that an implicit representation of a binary heap H of size n can be built

in linear sequential time by the heap construction algorithm of Floyd [10]. Because we base

our heap construction networks on Floyd's algorithm, we rephrase it as follows:

Assuming that the two binary trees rooted at the children of a node i are heaps, the

heap-order property in the subheap rooted at i can be reestablished simply by bubbling

3

2 5 13 6 7 25 14 12 8 9 10 26 32 15 42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

��

��

2

1

��

��

5

2

��

��

13

3

��

��

6

4

��

��

7

5

��

��

25

6

��

��

14

7

��

��

12

8

��

��

8

9

��

��

9

10

��

��

10

11

��

��

26

12

��

��

32

13

��

��

15

14

��

��

42

15

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

�

�

�

�

�

�

@

@

@

@

@

@

�

�

�

�

�

�

H

H

H

H

H

H

Figure 1: A binary heap of size 15 and its implicit representation.

down the element H[i]. We let the bubbling down procedure be denoted Siftdown. At each

step, Siftdown determines the smallest of the elements H[i];H[2i], and H[2i + 1]. If H[i]

is the smallest, then the subtree rooted at node i is a heap and the Siftdown procedure

terminates. Otherwise, the child with the smallest element and H[i] are exchanged. The

node exchanged with H[i], however, may violate the heap order at this point. Therefore, the

Siftdown procedure is recursively invoked on that subtree.

We can now apply Siftdown in a bottom-up manner to convert an array H storing n

elements into a heap. Since the elements in the subarray H[(bn=2c + 1) ::n] are all leaves,

each is a 1-element heap to begin with. Then, the remaining nodes of the tree are visited

to run the Siftdown procedure on each one. Since the nodes are processed level by level in

a bottom up fashion, it is guaranteed that the subtrees rooted at the children of the node i

are heaps before Siftdown runs at that node.

In conclusion, observe that the Siftdown routine invoked on a subheap of height i per-

forms 2i comparisons in the worst case, and that the worst case running time of the heap

construction algorithm of Floyd described above is

P

blognc

i=0

n

2

i

� 2i = O(n), which is optimal.

3 Heap construction networks of size n logn

In this section we present heap construction networks which have size at most nblog nc and

depth 4blog nc�2. Notice that any sorting network could also be used as a heap construction

network. The networks presented in this section are used in Section 4 to construct improved

heap construction networks of size O(n log log n), and in Section 5 to give a reduction from

selection to heap construction.

Lemma 1 gives a network implementation of the sifting down algorithm used in the heap

construction algorithm by Floyd [10].

4

Lemma 1 Let T be a binary tree of size n and height h. If the subtrees rooted at the children

of the root satisfy heap order, then the elements of T can be rearranged to satisfy heap order

with a network of size n � 1 and depth 2h. At depth 2i + 1 and 2i + 2 of the network the

comparators are only between nodes at level i and i+ 1 in T . All comparators correspond to

edges of T , and for each edge there is exactly one comparator.

Proof. If the tree has height zero, no comparator is required. Otherwise let r be the root

and u and v the children of r. If u or v is not present, the steps below which would involve

v or u are skipped.

First we apply the comparators r : u and r : v. Because T

u

and T

v

were assumed to be

heap ordered subtrees, r now has the minimum. After the two comparators the heap order

can be violated at the roots of both T

u

and T

v

. We therefore recursively apply the above to

the subtrees T

u

and T

v

. Notice that the two recursively constructed networks involve disjoint

nodes and therefore can be performed in parallel. If r only has one child we still charge the

network depth two to compare r with its children to guarantee that all comparisons done in

parallel by the network correspond to edges between nodes at the same levels in T .

The depth of the network is two plus the depth of the deepest recursively constructed

network. By induction it follows that the depth of the network is 2h, and that the network

at depth 2i + 1 and 2i+ 2 only performs comparisons between nodes at level i and i+ 1 in

T . Furthermore, the network contains exactly one comparator for each edge of T . 2

Notice that the network has n � 1 comparators while the corresponding algorithm of

Floyd only needs h comparisons. By replacing the sifting down algorithm in Floyd's heap

construction algorithm by the sifting down networks of Lemma 1, we get the following lemma.

Lemma 2 Let T be a binary tree of size n and height h which does not satisfy heap order,

and let n

i

be the number of nodes at level i in T . Then a network exists of size

P

h

i=0

i � n

i

and depth 4h� 2 which rearranges the elements of T to satisfy heap order. All comparators

correspond to edges of T .

Proof. Initially all nodes at level h of T by de�nition are heap ordered binary trees of height

zero. Iteratively for each level i = h�1; : : : ; 0 we apply the sifting down networks of Lemma 1

in parallel to the 2

i

subtrees rooted at level i of T , to make these subtrees satisfy heap order.

The resulting tree then satis�es heap order. By Lemma 1 all comparators correspond to

edges of T .

The edge between a node v at level i and its parent corresponds to a set of comparators

in the resulting network. These comparators are performed exactly when we apply the

sifting down networks of Lemma 1 to an ancestor of v, i.e., there are exactly i comparators

corresponding to this edge. The total number of comparators is

P

h

i=0

i � n

i

.

By Lemma 1 the depth of the network is

P

h

i=0

2i = h

2

+ h. But because the networks

constructed by Lemma 1 proceeds top-down on T , having exactly depth two for each level

of T , the applications of Lemma 1 can be pipelined. After the �rst two comparators of

the applications of Lemma 1 to subtrees rooted at level i, the applications of Lemma 1 to

subtrees rooted at level i � 1 can be initiated. The application of Lemma 1 to the root of

the tree can therefore be initiated at depth 2(h� 1)+1 of the network, i.e., the network has

depth 2(h � 1) + 2h = 4h � 2. 2

5

x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

x

9

x

10

x

11

x

12

x

13

x

14

x

15

1 2 3 4 5 6 7 8 9 10

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

Figure 2: A heap construction network for n = 15. All comparators are of the form i : j,

where i < j.

Theorem 3 There exists a heap construction network of size at most nblog nc and depth

4blog nc � 2. All comparators correspond to edges of T .

Proof. Let the n input lines represent a heap shaped binary tree of height blog nc. The

theorem then follows from Lemma 2. 2

In Figure 2 we show the network of Theorem 3 for n = 15. The network has size 34 and

depth 10. Notice that the �rst two comparators of the application of Lemma 1 to the root

of the tree (1 : 2 and 1 : 3) are done in parallel with the third and fourth comparator of the

applications of Lemma 1 to the subtrees rooted at nodes 2 and 3.

4 Heap construction networks of size O(n log logn)

In the following we give improved heap construction networks of sizeO(n log log n) and depth

O(log n). The improved networks are obtained by combining the networks of Theorem 3 with

e�cient selection networks.

An arbitrary sorting network is obviously also an (n; t)-selection network, e.g., the sorting

network of size O(n log n) by Ajtai et al. [1]. Due to the large constants involved in the

sorting network of Ajtai et al., Pippenger [15] and Jimbo and Maruoka [11] have developed

specialized (n; bn=2c)-selection networks of size O(n log n) where the involved constants are

of reasonable size. The following lemma was developed by Jimbo and Maruoka [11].

Lemma 4 (Jimbo and Maruoka) For an arbitrary constant C > 3= log 3 � 1:89, there

exist (n; bn=2c)-selection networks of size at most Cn log n +O(n) and depth O(log n).

Unfortunately, neither Pippenger [15] or Jimbo and Maruoka [11] state bounds for general

(n; t)-selection networks. The following lemma is a consequence of Lemma 4, and is su�cient

for our purposes.

6

Lemma 5 For an arbitrary constant C > 6= log 3 � 3:79, there exist (n; t)-selection net-

works of size Cn log t+O(n) and depth O(log n � log t).

Proof. The n input lines are partitioned into dn=te blocks B

1

; : : : ; B

dn=te

of size t each.

By applying the selection networks of Lemma 4 to B

1

[B

2

we �nd the t least elements of

B

1

[B

2

. By combining the dn=te blocks in a treewise fashion with dn=te � 1 applications of

Lemma 4 to 2t elements, we �nd the t least elements of the n inputs. The resulting network

has size (dn=te � 1)(C � 2t log 2t+ O(2t)) = 2Cn log t+O(n) and depth O(log n � log t), for

C > 3= log 3. 2

We need the following de�nition. Let P be an arbitrary connected subset of nodes of a

binary tree T which contains the root of T . Let x

1

� x

2

� � � � � x

jPj

be the set of elements

in P, and let x

0

1

� x

0

2

� � � � � x

0

jPj

be the set of elements in P after applying a network N to

T . We de�ne a network N to be heap-convergent, if N for all possible inputs, all connected

subsets P of nodes of T containing the root of T , and i = 1; : : : ; jPj satis�es x

0

i

� x

i

. Notice

that sorting networks are not heap-convergent. If P is the path to the rightmost node in the

lowest level of a tree, then P always contains the maximum element after applying a sorting

network, but the maximum element could initially be anywhere in the tree.

Lemma 6 A comparator corresponding to an edge in a binary tree T is a heap-convergent

network.

Proof. Let the comparator be u : v, where v is a child of u in T . If P does not contain u it

does not contain v either, implying that the elements in P are unchanged. If P contains both

u and v, the set of elements is also unchanged. If P contains u but not v, the comparator

u : v can only replace the element at u with a smaller element from v in which case x

0

i

� x

i

for all i = 1; : : : ; jPj. 2

Because the networks constructed by Theorem 3 only contain comparators corresponding

to tree edges and heap convergence is a transitive property we immediately have the following

corollary:

Corollary 7 The networks constructed by Theorem 3 are heap-convergent.

Theorem 8 If for some constants C and d, there exist (n; t)-selection networks of size

Cn log t + O(n) and depth O(log

d

n), then there exist heap construction networks of size

Cn log log n +O(n log log log n) and depth 4 log n+O(log

d

log n).

Proof. Assume without loss of generality that n � 4. Let the n input lines represent a heap

shaped binary tree T of height h = blog nc, and let k = dlog he � 1. The heap construction

network proceeds in three phases.

1. To each subtree T

v

rooted at level h � 2k + 1, apply in parallel (jT

v

j; 2

k

� 1)-selection

networks, such that all elements at the upper k levels of T

v

become less than or equal

to all elements at the remaining levels of T

v

.

2. Apply the heap construction networks of Theorem 3 to the uppermost h� k levels of

T .

7

3. In parallel apply Theorem 3 to each subtree T

v

rooted at level h � 2k + 1.

It follows immediately from Step 2 that the uppermost h � 2k levels of the tree satisfy

heap order and from Step 3 that each subtree rooted at level h� 2k+1 satis�es heap order.

What remains to be proven for the correctness of the algorithm is that for all nodes v at

level h � 2k + 1, the subtree T

v

only contains elements which are greater or equal to the

elements on the path from the root to v.

After Step 1, the 2

k

�1 least elements e

0

� � � � � e

2

k

�2

of T

v

are at the uppermost k levels

of T

v

, which are exactly the levels of T

v

which overlap with Step 2. Let p

0

� � � � � p

h�2k

denote the elements on the path from the root to v (excluding v) after Step 2. Because

the network applied in Step 2 is heap-convergent and 2

k

� 2 � h � 2k, we have p

i

� e

i

for

i = 0; : : : ; h� 2k by letting P consist of the path from the root to v together with the upper

k levels of T

v

. We conclude that after Step 2 all elements on the path from the root to v are

smaller than or equal to all the elements in T

v

, and that after Step 3, T satis�es heap order.

From Theorem 3 we get the following upper bound on the size and depth of the resulting

network. The size is bounded by

�

Cn log 2

k

+O(n)

�

+O

�

n

2

k

log

n

2

k

�

+

�

n log 2

2k

+O(n)

�

;

which is (C + 2)n log log n +O(n), and the depth is bounded by

O

�

log

d

2

2k

�

+ (4(h � k)� 2) + (4(2k � 1)� 2) ;

which is 4 log n+O(log

d

log n).

The \+2" in the size bound comes from the application of the heap construction networks

of Theorem 3 in Step 3. If we instead apply the above construction recursively in Step 3, we

get heap construction networks of size Cn log log n+(C+2)n log log log n+O(n) and depth

4 log n+O(log

d

log n). 2

Notice that in Steps 1 and 3 we could have used arbitrary sorting networks, but in Step 2

it is essential that the heap construction network used is heap-convergent. By applying the

construction recursively O(log

�

n) times the asymptotic size could be slightly improved, but

the constant in front of n log log n would still be C. From Lemma 5 we get the following

corollary:

Corollary 9 For an arbitrary constant C > 6= log 3 � 3:79, there exist heap construction

networks of size Cn log log n+O(n log log log n) and depth 4 log n +O(log

2

log n).

5 A lower bound for the size of heap construction net-

works

We now prove that the construction of the previous section is optimal. Let S(n; t) denote

the minimal size of (n; t)-selection networks, and let H(n) denote the minimal size of heap

construction networks on n inputs. The following lower bound on S(n; t) is due to Alek-

seyev [2].

8

Lemma 10 (Alekseyev) S(n; t) � (n� t)dlog(t+ 1)e.

Theorem 11 H(n) � S(n; blog nc)�O(n).

Proof. The theorem is proven by giving a reduction from (n; t)-selection to heap construc-

tion. We prove that (n; t)-selection can be done by networks with size H(n) + 2

t+1

� 2t� 2.

First we construct a heap over the n inputs with a network of size H(n), and make the

observation that the t least elements can only be at levels 0; : : : ; t� 1 of the heap.

The minimum is at the root, i.e., at output line one. To �nd the second least element we

consider the implicit heap given by the lines n; 2; 3; : : : ; 2

t

� 1. Notice that the root is now

line n. By applying the sifting down network of Lemma 1 to the levels 0; : : : ; t�1 of this tree

the remaining t�1 least inputs are at levels 0; : : : ; t�2 of this tree. The second least element

is now at output line n. By iteratively letting the root be lines n�1; n�2; : : : ; n� t�2, and

by applying Lemma 1 to trees of decreasing height, the t least elements will appear in sorted

order at output lines 1; n; n� 1; n� 2; : : : ; n� t+ 2. If the t smallest inputs are required to

appear at the �rst t output lines, the network lines are permuted accordingly.

The total number of comparators for the t� 1 applications of Lemma 1 is

t�1

X

i=0

(2

i+1

� 2) = 2

t+1

� 2t� 2 :

We conclude that the resulting (n; t)-selection network has sizeH(n)+2

t+1

�2t�2, implying

H(n) � S(n; t)� 2

t+1

+ 2t+ 2. By letting t = blog nc the theorem follows. 2

By combining Lemma 10 and Theorem 11, we get the following corollary.

Corollary 12 H(n) � n log log n�O(n).

6 Conclusion

The parallel construction of heaps has been addressed for several parallel models of compu-

tation: EREW-PRAM [14], CRCW-PRAM [6], the parallel comparison tree model and the

randomized parallel comparison tree model [5]. These algorithms all achieve optimal O(n)

work. In this paper we have addressed the problem for the most simple parallel model of

computation, namely comparator networks.

Opposed to merging and selection, which both can be solved in sequential linear time but

require networks of size �(n log n), we have shown that heap construction can be done by

networks of size O(n log log n) and depth O(log n), and that this is optimal. By combining

the results of Theorem 8 and Theorem 11, we get the following characterization of the leading

constant in the size of heap construction networks compared to the leading constant in the

size of (n; t)-selection networks.

Theorem 13 If for constants C

1

and C

2

,

C

1

n log t�O(n) � S(n; t) � C

2

n log t+O(n) ;

then

C

1

n log log n�O(n) � H(n) � C

2

n log log n+O(n log log log n) :

9

Acknowledgment

Thanks to Peter Sanders for his comments on an earlier draft of this paper.

References

[1] Mikl�os Ajtai, J�anos Koml�os, and Endre Szemer�edi. Sorting in c log n parallel steps.

Combinatorica, 3:1{19, 1983.

[2] Vladimir Evgen'evich Alekseyev. Sorting algorithms with minimum memory. Kiber-

netika, 5(5):99{103, 1969.

[3] Samuel W. Bent and John W. John. Finding the median requires 2n comparisons. In

Proc. 17th Ann. ACM Symp. on Theory of Computing (STOC), pages 213{216, 1985.

[4] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert Endre

Tarjan. Time bounds for selection. Journal of Computer and System Sciences, 7:448{

461, 1973.

[5] Paul F. Dietz. Heap construction in the parallel comparison tree model. In Proc. 3rd

Scandinavian Workshop on Algorithm Theory (SWAT), volume 621 of Lecture Notes in

Computer Science, pages 140{150. Springer Verlag, Berlin, 1992.

[6] Paul F. Dietz and Rajeev Raman. Very fast optimal parallel algorithms for heap con-

struction. In Proc. 6th Symposium on Parallel and Distributed Processing, pages 514{

521, 1994.

[7] Dorit Dor and Uri Zwick. Selecting the median. In Proc. 6th ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 28{37, 1995.

[8] Dorit Dor and Uri Zwick. Finding the alpha n-th largest element. Combinatorica,

16:41{58, 1996.

[9] Dorit Dor and Uri Zwick. Median selection requires (2+ �)n comparisons. In Proc. 37th

Ann. Symp. on Foundations of Computer Science (FOCS), pages 125{134, 1996.

[10] Robert W. Floyd. Algorithm 245: Treesort3. Communications of the ACM, 7(12):701,

1964.

[11] Shuji Jimbo and Akira Maruoka. A method of constructing selection networks with

O(log n) depth. SIAM Journal of Computing, 25(4):709{739, 1996.

[12] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Search-

ing. Addison-Wesley, Reading, MA, 1973.

[13] Peter Bro Miltersen, Mike Paterson, and Jun Tarui. The asymptotic complexity of

merging networks. Journal of the ACM, 43(1):147{165, 1996.

10

[14] Stephan Olariu and Zhaofang Wen. Optimal parallel initialization algorithms for a class

of priority queues. IEEE Transactions on Parallel and Distributed Systems, 2:423{429,

1991.

[15] Nicholas Pippenger. Selection networks. SIAM Journal of Computing, 20(5):878{887,

1991.

[16] Arnold Sch�onhage, Michael S. Paterson, and Nicholas Pippenger. Finding the median.

Journal of Computer and System Sciences, 13:184{199, 1976.

[17] John William Joseph Williams. Algorithm 232: Heapsort. Communications of the ACM,

7(6):347{348, 1964.

[18] Andrew C. Yao and Frances F. Yao. Lower bounds on merging networks. Journal of

the ACM, 23:566{571, 1976.

11

