
Query Containment Checking
as a

View Updating Problem

(extended version)

Carles Farré
Ernest Teniente

Toni Urpí

Universitat Politècnica de Catalunya
LSI, Facultat d'Informàtica
Jordi Girona Salgado, 1-3

E-08034 Barcelona -- Catalonia

phone: +34 - 93 - 401 70 05
fax: +34 - 93 - 401 70 14

e-mail: [farre | teniente | urpi]@lsi.upc.es

Abstract

In this paper we present a new approach that handles query containment problems by
expressing them as a view updating problem. Since this approach is independent of
any particular view updating method, it provides a general framework that joins
research efforts in both the query containment checking and view updating fields. In
particular, the larger development of current view updating technology allows us to
check properly query containment when considering negative-derived literals or
integrity constraints. Existing methods for query containment checking that deal with
these cases do not check actually containment but another related property called
uniform containment, which is a sufficient but not necessary condition for
containment. Therefore, an important outcome of our proposal is that, to the best of
our knowledge, it is the first approach that checks “true” query containment instead of
uniform query containment in the presence of negation and integrity constraints.

1

1. Introduction

Query Containment [Ull89] is the problem concerned with checking whether the answers that a
query obtains against a database are a subset of the answers obtained by another query against the
same database, independently of the specific content of the database. Query containment is applied
in several contexts: query optimisation by removing redundant subexpressions [Ull89],
materialised view and cache reuse [LMSS95], integrity constraints redundancy checking
[GSUW94], etc.

An important amount of research has been devoted to query containment checking over the last
20 years [CM77, ASU79, JK83, Klu88, Sag88, Sar91, Ull89, CV92, LMSS93, LS93, ZO93,
Gup94, LS95, DS96, ST96, CR97]. In general, the methods that have been proposed so far differ
in several aspects such as the kind of databases they consider, the class of queries they can handle
or the approach they take. However all of them seem to share a common base: they are intended to
solve containment by first identifying and constraining themselves to a subclass of queries
according to some syntactic conditions on the language the queries are expressed with, and then
they propose an optimised solution using this syntactic knowledge. Following this approach,
methods have been released which achieve polynomial-time performance by paying the price of
covering rather small subclasses of queries.

Moreover, existing methods that deal with queries having negated-derived atoms in their rule
bodies [LS93, ST96] do not check actually query containment but another related property called
Uniform Containment [Sag88].

Consider, for instance, a deductive database consisting of two base predicates. Emp(x, d, s),
indicates that employee x works at department d with a salary s. Manager(x, d) indicates that x is a
manager of the department d. There are also two view predicates: Boss(x), which defines who is
manager of some department, and Chief(x), defining who is manager and employee at the same
department:

Boss(x) ← Manager(x, d)

Chief(x) ← Emp(x, d, s) ∧ Manager(x, d)

We define two queries, Q1 and Q2, with the same predicate query:

Q1: Subordinate(x) ← Emp(x, d, s) ∧ ¬Boss(x)

Q2: Subordinate(x) ← Emp(x, d, s) ∧ ¬Chief(x)

The intuition behind these queries is that the first query retrieves those employees that are not
managers anywhere, while the second one retrieves those employees that are not employees and
managers at some department at the same time. Clearly, the former query is more restrictive than
the latter one, that is, all the answers that can be obtained by Q1 are also answers to Q2. Thus we
say that Q1 is contained in Q2, written Q1 – Q2. In contrast, it also seems clear that the symmetric
case does not hold: the answers we can obtain with Q2 are not always a subset of the answers to
Q2. Hence we say in this case that Q2 is not contained in Q1, written Q2 « Q1.

This simple example without recursion nor built-in atoms cannot be solved in a satisfactory way
by the methods proposed in [LS93, ST96]. These methods would check whether Q1 is uniform
contained in Q2, written Q1 –

u Q2. Uniform containment is a sufficient but not necessary condition

2

for query containment: uniform containment implies containment, but the inverse is not true. In
this example, [LS93, ST96] would prove that Q1 is not uniform contained in Q2

1, but this result
serves neither to prove Q1 – Q2 nor Q1 « Q2. Moreover, since Q2 « Q1 is true in the example, it
implies that Q2 cannot be uniform contained in Q1, written Q2 «

u Q1. Therefore, [LS93, ST96]
would prove that Q2 «

u Q1, but again this result does not prove whether Q2 – Q1 is true or false.
When considering the integrity constraints defined in a database, the containment relationship

between two queries does not need to hold for any state (content) of the database but only for the
consistent ones, i.e. those that satisfy the integrity constraints. This idea is captured by the notion
of IC-compliant Query Containment. Again, the current methods that deal with such an alternative
containment concept [Sag88, ST96, DS96] take the uniform containment approach.

In this paper we present a new approach that reformulates the containment properties (both
query and IC-compliant query containment) in terms of a view updating problem. Intuitively, the
main idea of our approach is to express the accomplishment of the query containment relationship
between two queries in terms of a derived (view) predicate. Then, checking containment is
performed by requesting the insertion of that predicate. If some solution exists the predicate can be
satisfied and, therefore, the expressed relationship holds.

This new approach is based on the seminal work of [DTU96], which uses view updating to
perform database schema validation tasks, such as schema satisfiability or redundancy of integrity
constraints. The reformulation of the containment problem we propose is similar to that of
[LMSS93, LS95], which translates query containment to the problem of query satisfiability, i.e. a
query is satisfiable if there is some database state in which the answer to the query is not empty.
However, the query-satisfiability methods that are provided by [LMSS93, LS95] impose stronger
restrictions on the cases that they handle, and they do not consider IC-compliant query
containment.

The main contributions of our approach are:

• To the best of our knowledge, it is the first approach that tackles broadly the containment-
checking problem for queries with negated-derived atoms in the rule bodies, by checking query
containment instead of uniform query containment.

• As far as we know, it is the first approach that handles Query Containment with respect to
integrity constraints, by checking query containment instead of uniform query containment.

• Our approach provides also a general framework that unifies research efforts in both the query
containment checking and view updating fields. In our case, the larger development of the
current view updating technology, with respect to the treatment of negation and integrity
constraints, has allowed us to obtain new results for containment checking.

• Moreover, this framework is generic enough to be independent of any particular view updating
method. In this way, any future advance in the view updating technology can be also applied in
the query containment checking field.

This paper is organised as follows. Next section reviews basic concepts needed in the rest of
the paper. Section 3 presents our approach to check query containment by view updating. Section
4 shows how to use view updating to check IC-compliant query containment. Section 5 reviews
some aspects of current view updating technology. Section 6 discuses related work. Finally,
section 7 presents our conclusions and points out further work.

1 For more details, see section 6 below.

3

2. Base Concepts

In this section, we briefly review some definitions related to Deductive Databases, Queries,
Query Containment and View Updating [Llo87, Ull88, Sag88, Ull89, TO95].

2. 1 Deductive databases

Throughout the paper, we consider a first order language with a universe of constants -a, b, c,
a1, b1, …-, a set of variables -x, y, z, x1, y1, …-, a set of predicate names -P, Q, V , P1, Q1, …-
and no function symbols. A term is a variable or a constant. If P is a n-ary predicate and t1, …, tn

are terms, then P(t1, …, tn) is an atom. The atom is ground if every ti = 1,…,n is a constant. A literal
is defined as either an atom or a negated atom.

A fact is a formula of the form: P(t1, …, tn) ←, where P(t1, …, tn) is a ground atom. A
deductive rule is a formula of the form:

P(t1, …, tn) ← L1 ∧ … ∧ Lm with n ≥ 0, m ≥ 1

where P(t1, …, tn) is an atom denoting the conclusion and L1, …, Lm are literals representing
conditions. P(t1, …, tn) is called the head and L1 ∧ … ∧ Lm the body of the deductive rule.
Variables in the conclusion or in the conditions are assumed to be universally quantified over the
whole formula. The definition of a predicate P is the set of all rules in the deductive database that
have P in their head.

An integrity constraint is a formula that every state of the deductive database is required to
satisfy. We deal with constraints in denial form:

← L1 ∧ … ∧ Lm with m ≥ 1

where the Li are literals and all variables are assumed to be universally quantified over the whole
formula. More general constraints can be transformed into this form by applying the procedure
described in [LT84].

For the sake of uniformity, we associate to each integrity constraint an inconsistency predicate
Icn, with or without terms, and thus they have the same form as the deductive rules. We call them
integrity rules. Then, we would rewrite the former denial as Ic1 ← L1 ∧ … ∧ Lm. We also define
an standard auxiliary predicate Ic with the following rules: Ic ← Ic1, …, Ic ← Icn, one integrity
rule for each integrity constraint of the database. A fact Ic will indicate that there is an integrity
constraint that is violated.

A deductive database D is a triple D = (EDB, DR, IC) where EDB is a finite set of facts, DR
a finite set of deductive rules, and IC a finite set of integrity constraints. The set EDB of facts is
called the extensional part of the deductive database and the set DR of deductive rules is called the
intensional part.

As usual, we also assume that deductive database predicates are partitioned into base and
derived predicates. A base predicate appears only in the extensional part and (eventually) in the
body of deductive rules. A derived (view) predicate appears only in the intensional part. Every
deductive database can be defined in this form [BR86]. Furthermore, predicates in the body of
deductive rules may be ordinary or evaluable (“built-in”). The former are base or view predicates,
while the latter are predicates such as the comparison or arithmetic predicates, that can be evaluated
without accessing the database.

4

A finite set of deductive rules (e.g. DR) is recursive if there is one ore more cycles in its
dependency graph, which is built by drawing one edge between each pair of ordinary predicates
appearing, respectively, in the head and the body of the same rule. As usual too, we do not admit
any negative literal of a derived predicate defined direct or indirectly in a recursive way (stratified
negation), and the variables appearing in negated atoms, as well as in evaluable ones, must also
appear in a ordinary positive literal in the same rule body (safeness).

2. 2 Queries, Query Containment and IC-compliant Query Containment

A query Q for a deductive database D is a finite set of deductive rules which defines a dedicated
n-ary query predicate Q. We assume without loss of generality that the only derived predicate
heading the deductive rules in Q is Q and that all predicates, base or derived, other than Q
appearing in the bodies of the rules belong to D.

The answer to the query is the set of all ground facts about Q obtained as a result of evaluating
the deductive rules from both Q and DR on EDB:

{Q(ai
1,...,a

i
n) | Q(ai

1,...,a
i
n) ∈ (Q ∪ DR)(EDB)}

where (Q ∪ DR)(EDB) is the smallest fixpoint of a bottom-up evaluation of the deductive rules in
Q ∪ DR on EDB. Notice that, in particular, Q could be a subset of DR, e.g., a derived predicate
defined in DR may also play the role of the query predicate.

A query Q1 is contained in an another query Q2 when the set of ground facts answering Q1 is a
subset of the set of ground facts answering Q2, regardless of the underlying EDB.

Definition 2.1 Let Q1 and Q2 be two queries defining the same n-ary query predicate Q on a
deductive database D = (EDB, DR, IC). Q1 is contained in Q2, written Q1 – Q2, if

{Q(ai
1,...,a

i
n) | Q(ai

1,...,a
i
n) ∈ (Q1 ∪ DR)(EDB)}

∑ {Q(ak
1,...,a

k
n) | Q(ak

1,...,a
k

n) ∈ (Q2 ∪ DR)(EDB)}

for any EDB. Δ

When considering integrity constraints, the containment relationship between two queries must
not hold for any EDB but only for consistent EDB’s, i.e. those that satisfy the integrity
constraints. As stated before, we assume that the database contains an inconsistency predicate Ic
that holds whenever some integrity constraint is violated for a certain content of the EDB. Thus,
consistent EDB’s are those where the fact Ic does not hold.

Definition 2.2 Let Q1 and Q2 be two queries defining the same n-ary query predicate Q on a
deductive database D = (EDB, DR, IC). Q1 is IC-compliant contained in Q2, written Q1 –IC Q2,
if

{Q(ai
1,...,a

i
n) | Q(ai

1,...,a
i
n) ∈ (Q1 ∪ DR)(EDB)}

∑ {Q(ak
1,...,a

k
n) | Q(ak

1,...,a
k

n) ∈ (Q2 ∪ DR)(EDB)}

for any EDB such that Ic „ (IC ∪ DR)(EDB). Δ

Ic „ (IC ∪ DR)(EDB) means that we do not obtain the Ic fact when applying the rules from
both IC (integrity rules) and DR (deductive rules, since derived predicates may appear in the body
of the constraints in IC) on EDB.

5

2. 3 View Updating

For a deductive database D = (EDB, DR, IC), an update is a bipartite set U = Ins ∪ Del of
ground facts about base predicates which defines a new deductive database U(D) = (EDB’, DR,
IC) such that EDB’ = (EDB - Del) ∪ Ins.

View updating is concerned with determining how a request to update a view (i.e. derived) fact
should be appropriately translated into updates of the underlying base facts. For a deductive
database D = (EDB, DR, IC) and a n-ary derived (view) predicate V defined in DR, a view
update request is a formula of the form ← Insert(V(a1, …, an)) [or ← Delete(V(a1, …, an))]. An
update U is a translation satisfying the view update request if the ground derived fact V(a1, …, an)
is evaluated true [or false] in U(D). A view update request succeeds when there is at least one
translation, otherwise the view update request fails. In general, several translations may exist for a
given view update request.

3. Query Containment Checking by View Updating

As we have seen before, a database extension (EDB) can be updated and changed into a new
one by inserting or deleting base facts. Moreover, we can also request to update an EDB indirectly
in terms of an insertion or a deletion of a view (derived) fact. In this later case, we need a view
updating method that translates the view update request into insertions and/or deletions of base
facts. Thus, view predicates with its defining deductive rules describe new properties and
relationships over the underlying base predicates. Hence, we can see the request to insert some
view fact as an intent to change the underlying EDB in order to satisfy and make true the property
(or the relationship) expressed by that view fact.

Taking this into account, we may express the non-containment relationship between two queries
in terms of a derived predicate. We do this by defining a new derived predicate,
Not_Cont_Q1_in_Q2, such that its defining rule(s) expresses that the answers to the query Q1 are
not a subset of the answers to Q2. When we request to insert the Not_Cont_Q1_in_Q2 view fact on
an EDB we indeed want to find whether there is some EDB’ (reachable through some translation)
on which Q1 is not contained in Q2. If there is some translation that satisfies the view update
request ← Insert(Not_Cont_Q1_in_Q2), then Q1 is not contained in Q2. Otherwise, Q1 – Q2.

We use view updating to check whether Q1 is not contained in Q2, written Q1 « Q2, since non-
containment is proved by finding just one EDB on which the answers to Q1 are not a subset of the
answers to Q2. Since containment is a property that needs to be fulfilled on every EDB, this non-
containment test based on a view-updating formalism is nothing but a way to check containment
(whether Q1 – Q2 holds) by a refuting prove.

Therefore, and in contrast with the preceding “syntactic” methods and proposals, our approach
can be seen as a kind of simulation of how queries and the whole database behave, in the sense
that view updating traces explicit and implicit relationships among rules in their intend to obtain
translations leading to target database extensions, i.e. those on which the Not_Cont_Q1_in_Q2 is
true.

6

Lemma 3.1 Let Q1 and Q2 be two queries defining the same n-ary query predicate Q on a
deductive database D = (EDB, DR, IC).

Q1 – Q2 iff the view update request ← Insert(Not_Cont_Q1_in_Q2) fails on D’ = (Ø, DR’, Ø)

where
Ø stands for both empty EDB and IC
DR’ = DR ∪ Q1’ ∪ Q2’ ∪ {Not_Cont_Q1_in_Q2 ← Q1(x1,…,xn) ∧ ¬Q2(x1,…,xn)}
Q1’ is the result of changing the query-predicate name Q for Q1 in Q1

Q2’ is the result of changing the query-predicate name Q for Q2 in Q2 Δ

As we said before, we propose a view-updating based approach to prove the lack of
containment, i.e. whether there is an EDB such that

{Q(ai
1,...,a

i
n) | Q(ai

1,...,a
i
n) ∈ (Q1 ∪ DR)(EDB)}

⊄ {Q(ak
1,...,a

k
n) | Q(ak

1,...,a
k

n) ∈ (Q2 ∪ DR)(EDB)}

which is equivalent to prove whether there is an EDB such that

{<ai
1,...,a

i
n> | Q1(a

i
1,...,a

i
n) ∈ (Q1’ ∪ DR)(EDB)}

⊄ {<ak
1,...,a

k
n> | Q2(a

k
1,...,a

k
n) ∈ (Q2’ ∪ DR)(EDB)}

that is, whether we can obtain some tuple <ax
1,...,a

x
n> such that Q1(a

x
1,...,a

x
n) and Q2(a

x
1,...,a

x
n)

are respectively true and false on some EDB.
Thus, the 0-ary derived predicate Not_Cont_Q1_in_Q2 that expresses the non-containment

relationship is defined

Not_Cont_Q1_in_Q2 ← Q1(x1,…,xn) ∧ ¬Q2(x1,…,xn),

so that Q1 « Q2 iff Not_Cont_Q1_in_Q2 holds on some EDB.
The next step is to request the view update ← Insert(Not_Cont_Q1_in_Q2) on an arbitrary

EDB. If the view update request succeeds using a concrete view updating method then it will
mean that there is at least one translation2 that leads to a new EDB’ where Not_Cont_Q1_in_Q2 is
evaluated true. Thus, it will be concluded that Q1 « Q2 is true from the definition of
Not_Cont_Q1_in_Q2. Otherwise, it will be said that Q1 – Q2 is true. For simplicity and without
loss of generality3, the view insertion is requested on the empty EDB, i.e. the EDB that does not
contain any base fact.

Note that we do not take into account the database integrity constraints -the IC set- to check
query containment from the view updating approach, because the definition itself of containment
requires such a property to be held on every EDB regardless of its consistency.

Example 3.1 Let us review the example we presented in the introduction, where we had a
database D = (EDB, DR, IC) where

EDB is a set of ground facts about two base predicates Emp(emp_name, department,
salary) and Manager(emp_name, department),

2 Note that, in particular, the “empty” translation, i.e. the one with no insertions nor deletions of base facts, is also
a valid result, meaning that the Not_Cont_Q1_in_Q2 fact is already true on the current EDB.
3 We can reach any EDB’ from any other EDB by doing the proper insertions and/or deletions of base facts on this
EDB.

7

DR = { Boss(x) ← Manager(x, d)
 Chief(x) ← Emp(x, d, s) ∧ Manager(x, d) }

and IC = Ø.

We define two queries with the same predicate query:

Q1: Subordinate(x) ← Emp(x, d, s) ∧ ¬Boss(x)

Q2: Subordinate(x) ← Emp(x, d, s) ∧ ¬Chief(x)

As we saw in the introduction, intuitively, Q1 is more restrictive than Q2, so we say that Q1 is
contained in Q2. In order to check that Q1 – Q2 actually holds within our new framework, we first
build the new database D’ = (Ø, DR’, Ø) where

DR’ = {Not_Cont_Q1_in_Q2 ← Subordinate1(x) ∧ ¬Subordinate2(x)
 Subordinate1(x) ← Emp(x, d, s) ∧ ¬Boss(x)
 Subordinate2(x) ← Emp(x, d, s) ∧ ¬Chief(x)
 Boss(x) ← Manager(x, d)
 Chief(x) ← Emp(x, d, s) ∧ Manager(x, d) }

The next step is to perform the view update request ← Insert(Not_Cont_Q1_in_Q2) on D’
using a view updating method. In this case, such a request fails to succeed. Hence, Q1 – Q2 is
true. Roughly, the main idea is that to satisfy Subordinate1(x) we have to insert Emp(x, d, s). This
insertion induces an insertion of Subordinate2(x), which can only be falsified by considering an
additional insertion of Manager(x, d). However, this new insertion falsifies at the same time
Subordinate1(x). Therefore, it is not possible to find a translation leading to an EDB where
Subordinate1(x) is true and Subordinate2(x) is false.

On the contrary, let us consider the opposite case: to check whether Q2 – Q1 holds. Again, we
first need to build a new database D’’ = (Ø, DR’’, Ø) where

DR’’ = {Not_Cont_Q2_in_Q1 ← Subordinate2(x) ∧ ¬Subordinate1(x)
 Subordinate1(x) ← Emp(x, d, s) ∧ ¬Boss(x)
 Subordinate2(x) ← Emp(x, d, s) ∧ ¬Chief(x)
 Boss(x) ← Manager(x, d)
 Chief(x) ← Emp(x, d, s) ∧ Manager(x, d) }

Now, the view update request ← Insert(Not_Cont_Q2_in_Q1) succeeds on D’’. A possible
translation might be: {Insert(Emp(joan, sales, 70000)), Insert(Manager(joan, accounting))}, so in
the new EDB Chief(joan) is not true (joan is manager at a department other than the department
where she is employee), but Boss(joan) is true. Therefore, we have found a translation that leads
to an EDB where Subordinate2(x) is true but Subordinate1(x) is not. Thus we conclude that Q2 «
Q1. Δ

4. IC-compliant Query Containment by View Updating

Due to the expressiveness of our approach, we can easily adapt it to take also into account the
integrity constraints defined on the database. As we stated in section 2.2, IC-compliant query
containment between two queries holds when the answers to one query are a subset of the answers
obtained by the other query on any consistent EDB, i.e. on every EDB where no integrity
constraint is violated. Translating this concept to our framework, we use view updating to check

8

whether Q1 is not IC-compliant contained in Q2, written Q1 «IC Q2, since non-containment is
proved by finding just one consistent EDB on which the answers to Q1 are not a subset of the
answers to Q2. As we stated in section 2, a consistent EDB is that where the fact Ic does not hold,
assuming that the database contains an inconsistency predicate Ic that holds whenever some
integrity constraint is violated. So now we define a new derived predicate,
Not_IC_Cont_Q1_in_Q2, such that its defining rule(s) expresses that the answers to the query Q1

are not a subset of the answers to Q2, enforcing that Ic does not hold at the same time. When we
request to insert the Not_IC_Cont_Q1_in_Q2 view fact on an EDB we indeed want to find whether
there is some EDB’ (reachable through some translation) on which Q1 is not contained in Q2 and
Ic is false. If there is some translation that satisfies the view update request ←
Insert(Not_IC_Cont_Q1_in_Q2), then Q1 is not IC-compliant contained in Q2. Otherwise, Q1 –IC

Q2.

Lemma 4.1 Let Q1 and Q2 be two queries defining the same n-ary query predicate Q on a
deductive database D = (EDB, DR, IC).
Q1 –IC Q2 iff the view update request ← Insert(Not_IC_Cont_Q1_in_Q2) fails on D’ = (Ø, DR’,
IC), where

Ø stands for an empty EDB
DR’ = DR ∪ Q1’ ∪ Q2’ ∪

{Not_IC_Cont_Q1_in_Q2 ← Q1(x1,…,xn) ∧ ¬Q2(x1,…,xn) ∧ ¬Ic}
Q1’ is the result of changing the query-predicate name Q for Q1 in Q1

Q2’ is the result of changing the query-predicate name Q for Q2 in Q2 Δ

We use a view updating method to refute IC-query containment, i.e. to prove non- IC-query-
containment, by finding an EDB satisfying both:

{Q(ai
1,...,a

i
n) | Q(ai

1,...,a
i
n) ∈ (Q1 ∪ DR)(EDB)}

⊄ {Q(ak
1,...,a

k
n) | Q(ak

1,...,a
k

n) ∈ (Q2 ∪ DR)(EDB)} and

Ic „ (IC ∪ DR)(EDB)

which is equivalent to prove whether there is an EDB such that

{<ai
1,...,a

i
n> | Q1(a

i
1,...,a

i
n) ∈ (Q1’ ∪ DR)(EDB)}

⊄ {<ak
1,...,a

k
n> | Q2(a

k
1,...,a

k
n) ∈ (Q2’ ∪ DR)(EDB)} and

Ic „ (IC ∪ DR)(EDB)

So we define the predicate Not_IC_Cont_Q1_in_Q2 that expresses the non-IC-compliant-
containment relationship as follows:

Not_IC_Cont_Q1_in_Q2 ← Q1(x1,…,xn) ∧ ¬Q2(x1,…,xn) ∧ ¬Ic

meaning that the fact Not_IC_Cont_Q1_in_Q2 will be true when there is a tuple <ax
1,...,a

x
n> such

that Q1(a
x

1,...,a
x

n) is true and both Q2(a
x

1,...,a
x

n) and Ic are false.
Again, we request ← Insert(Not_IC_Cont_Q1_in_Q2) on the empty EDB to check whether

there is an EDB where Not_IC_Cont_Q1_in_Q2 is evaluated true.

Example 4.1 Let us consider again the example 3.1 with

9

EDB is a set of ground facts about two base predicates Emp(emp_name, department,
salary) and Manager(emp_name, department),

DR = { Boss(x) ← Manager(x, d)
 Chief(x) ← Emp(x, d, s) ∧ Manager(x, d) }

IC = { Ic1 ←Emp(x, d1, s) ∧ Manager(x, d2) ∧ d1 ≠ d2
 Ic ← Ic1 }

And the two queries that we have been defined before:

Q1: Subordinate(x) ← Emp(x, d, s) ∧ ¬Boss(x)

Q2: Subordinate(x) ← Emp(x, d, s) ∧ ¬Chief(x)

So, we have introduced an integrity constraint, Ic1, forbidding any person to be employee and
manager at different departments. If we do not take this integrity constraint into account, the query
containment results we obtained in example 3.1 also hold, i.e. Q1 – Q2 and Q2 « Q1.

Since the answers to Q1 are always a subset of the answers obtained by Q2 on any EDB
independently of its consistency, Q1 –IC Q2 also holds. On the contrary, although Q2 « Q1, we are
going to demonstrate that Q2 –IC Q1 is true.

We check whether Q2 –IC Q1 holds by making the view update request ←
Insert(Not_IC_Cont_Q2_in_Q1) on D’’ = (Ø, DR’’, IC) where

DR’’ = { Not_IC_Cont_Q2_in_Q1 ← Subordinate2(x) ∧ ¬Subordinate1(x) ∧ ¬Ic
 Subordinate1(x) ← Emp(x, d, s) ∧ ¬Boss(x)
 Subordinate2(x) ← Emp(x, d, s) ∧ ¬Chief(x)
 Boss(x) ← Manager(x, d)
 Chief(x) ← Emp(x, d, s) ∧ Manager(x, d) }

In this case the view update request fails and, then, Q2 –IC Q1 is true. Roughly, the fact is that
all possible translations obtained before when checking Q2 – Q1, {Insert(Emp(joan, sales,
70000)), Insert(Manager(joan, accounting))} for instance, are not valid translations now because
all of them require somebody to be manager of a department other that the department where she or
he is assigned as employee, and this requirement violates necessarily the integrity constraint Ic1. Δ

5. View Updating Methods for Containment Checking

A wealth of methods have been proposed in the view updating research area [KM90, Wüt93,
TO95, CHM95, Dec96, LT97, CTU97], just for mentioning some of them. These methods differ
in several aspects such as the kind of databases considered, the type of updates they can handle or
the approach taken to deal with the problem.

Our approach to handle query containment checking by using view updating is independent of
the particular method used to perform the requested view update. However, a method able to deal
with view updates in a certain class of deductive databases should satisfy the following
requirements in order to be used to check query containment:

10

1. The class of deductive databases considered by the method must allow, at least, to express the
declarative definitions of the non-containment relationships that we have defined in sections 3
and 4.

2. If there exists some translation that satisfies a given request, the method obtains one such
translation, but not necessarily several or even all of them. Otherwise, if no translation exists,
the method must terminate.

By translating containment checking in terms of a view updating problem, the potential of our

proposal relies on the capabilities of current view updating technology. The definition of the non-
containment predicates we provide already implies the negation of the containing query in the rule
body. Therefore the view updating methods we choose, as stated in point 1 above, should at least
be capable of performing view updates on derived predicates defined in such a way. The Events
Method [TO95], for instance, is a view updating method that fits well in these requirements. All
the examples we show in this paper are performed successfully by this method and, thus, the
containment problems they pose are solved in a satisfactory way.

Our independence of particular methods also allows us to take advantage of the future advances
of view updating technology. At this point, we want just to mention a new approach, [CTU97],
which is aimed at obtaining intensional translations for view updating requests. Intuitively, an
intensional translation characterises a set of possible values to be considered for the obtained base
fact updates, instead of enumerate all of them. This promising new technology can impact
favourably in our approach, in the sense that such intensional translations are more useful and
meaningful for the purposes of query containment.

6. Related Work

In general, existing containment checking methods are intended to solve containment problems
into well-defined subclasses of queries and databases, restricted according to some syntactic
conditions on the language that expresses them. For example, most research has been concerned
with containment checking of conjunctive queries [CM77, ASU79, JK83, Klu88, Ull89, Sar91,
ZO93, Gup94, CR97] and different results are obtained according to the syntactic features they
considered. However, our aims have not been addressed to provide more efficient algorithms for
these cases, but to set up a widespread framework where we can handle as many cases as
possible, including those cases that had never been dealt properly before.

 The main point is that our approach has allowed us to tackle containment in the presence of
negation and integrity constraints in a proper way. So in the next (sub-)sections we review the
related work according to these two topics.

6. 1 Query Containment with Safe Stratified Negation.

In this section we show how our approach handles queries with (safe stratified) negated-derived
literals and (safe) built-in atoms, i.e. covering entirely all the features of our data model as we have
defined it in section 2. We want to point out that our approach keeps checking “true” containment.
We remark the word “true” to refer to the concept of containment such as we have dealt with it in
the previous sections and it was defined in section 2, in contrast to the concept of uniform
containment that we will review below. To the best of our knowledge, our approach is the first one

11

that tackles broadly the containment-checking problem for datalog queries with negated-derived
atoms (and built-in atoms) in their rule bodies, without taking a uniform-containment approach.

Since we express the noncontainment relationship between two queries by defining a view
predicate with a deductive rule of the form Not_Cont_Q1_in_Q2 ← Q1(x1,…,xn) ∧
¬Q2(x1,…,xn), dealing with stratified negation is always a necessary requirement for our approach
and for the view updating methods we can use, even when no rule in Q1, Q2 or DR has negated
derived atoms.

As usual, safe stratified negation was first tackled inside well-defined boundaries: [LMSS93]
proves that containment for queries with only 1-ary base predicates and stratified negation is
decidable; and [LS95] provides an algorithm to check predicate satisfiability that can also be used
to check containment of a datalog query, i.e. without negation, in a union of conjunctive queries
having local negated-base and inequality atoms (a negated-base or inequality atom is local when all
its variables appear in at least one base atom). However, “true” containment has not gone beyond
these restrictive bounds until now.

In contrast, other research works tackle broadly datalog extensions from the “uniform-
containment” point of view: [LS93] provides an algorithm to check Uniform Query Equivalence
(i.e. whether both Q1 –

u Q2 and Q2 –
u Q1 hold) for datalog queries with stratified negation and

safe built-in atoms; and [ST96] propose a more efficient but incomplete algorithm to perform
Uniform Query Containment checking for queries with stratified negation.

Uniform query containment was coined in [Sag88] as an alternative concept to query
containment and proved it to be decidable for Datalog queries, even when both of them are
recursive. Let Q1 and Q2 be two queries defining the same n-ary query predicate Q on a deductive
database D = (EDB, DR, IC). Q1 is uniform contained in Q2, written Q1 –

u Q2, if

{Q(ai
1,...,a

i
n) | Q(ai

1,...,a
i
n) ∈ (Q1 ∪ DR)(I)}

∑ {Q(ak
1,...,a

k
n) | Q(ak

1,...,a
k

n) ∈ (Q2 ∪ DR)(I)}

for every I being an arbitrary set of ground facts about base and derived (query or view)
predicates. Note that derived facts in I are independent from and may not be related to the ones
computed by applying the rules in DR (and/or the ones from the queries) on the base facts only.

As pointed out in [Sag88], Uniform Query Containment provides a sufficient but not necessary
condition for Query Containment: Q1 –

u Q2 ⇒ Q1 – Q2. Hence if the Uniform Query
Containment test fails, i.e. Q1 «

u Q2, nothing can be said about whether Q1 – Q2 holds.
Although at first sight it seems more complex to take into account every possible combination of

base and derived facts, indeed the model-theoretic based algorithm to test Uniform Query
Containment for datalog queries is quite simple for the datalog case.

Example 6.1 Let us review again our working example. As we proved in the example 3.1, Q1 –
Q2 holds because no translation exists for the view update request ← Insert(Not_Cont_Q1_in_Q2)
that we performed on the database D’ such as we defined them according to our approach.

However, this simple example without recursion nor built-in atoms does not fall into the query
subclasses that handle [LMSS93] and [LS95], so their proposals cannot be applied to this
example.

On the other hand, any uniform-containment based method, either [LS93] or [ST96], would
have to demonstrate that Q1 –

u Q2 holds in order to prove that Q1 – Q2 is true. However, the fact
is that Q1 –

u Q2 does not hold, since it can be found an I such that (Q1 ∪ DR)(I) ⊄ (Q2 ∪

12

DR)(I). For example, let us consider I = { Emp(rose, sales, 9000), Chief(rose) }, according to
the definition of uniform containment that allows I to contain also ground facts about derived
predicates. Computing the answers for each query on I we obtain4:

• (Q1 ∪ DR)(I) = { Emp(rose, sales, 9000), Chief(rose), Subordinate(rose) }, from applying

 DR = {Boss(x) ← Manager(x, d)
 Chief(x) ← Emp(x, d, s) ∧ Manager(x, d) }

 and Q1: Subordinate(x) ← Emp(x, d, s) ∧ ¬Boss(x)

 so the answer to Q1 on I is Subordinate(rose). Note that the single rule from Q1 produces the
fact Subordinate(rose) because Boss(rose) does not appear in I.

• (Q2 ∪ DR)(I) = { Emp(rose, sales, 9000), Chief(rose) }, from applying

DR = {Boss(x) ← Manager(x, d)
Chief(x) ← Emp(x, d, s) ∧ Manager(x, d) }

and Q2: Subordinate(x) ← Emp(x, d, s) ∧ ¬Chief(x)

 so the answer to Q2 on I is Ø. Note that here the fact Chief(rose) in I does not allow the query
rule from Q2 to produce Subordinate(rose).

Therefore any uniform-containment based method would fail to prove that Q1 –
u Q2 and, thus,

it would not be able to show that Q1 – Q2 in this example. On the contrary, we have shown how
our approach deals successfully with this case in the example 3.1. Δ

6. 2 IC-compliant Query Containment

Integrity constraints as the so called tuple generating dependencies (TGD’s) were already
considered in [Sag88] to check IC-compliant query containment for datalog queries. Moreover,
[ST96] extends [Sag88] by taking also equality generating dependencies into account and [DS96]
provides a method to check IC-compliant query containment for conjunctive queries and
disjunctive-datalog integrity rules. However, all those proposals tackle the problem from the
uniform-containment approach, i.e. they do not check IC-compliant query containment but “IC-
compliant uniform query containment”. In section 6.1 we have already discussed the
“weaknesses” of the uniform-containment approach, so our major contribution is that our proposal
checks actually IC-compliant query containment in contrast to the other related work.

7. Conclusions and Further Work

We have presented a new approach for checking query containment that is based on the use of
view updating. The idea is to define a view expressing the non-containment relationship between
two queries. Then, a request to insert that view allows us to determine whether the non-
containment relationship holds.

4 Note that it is not an example that shows how a particular uniform-containment based method works, but it proves

that Q1 –
u Q2 does not hold by using a counter-example following the definition of uniform containment.

13

Our approach is independent of any particular method for view updating and, in this way, we
can take advantage of the current and future advances in the view updating research area.
Moreover, it handles in a uniform way all query subclasses that have been identified up to now in
the literature of deductive databases. Hence, we set up a new framework that unifies both
containment checking and view updating research areas.

The application of the advances of the current view updating technology in this framework
yields to another main contribution of our approach, which is that of checking properly “true”
query containment in the presence of negation and integrity constraints for the first time. Existing
methods either cannot cover broadly these cases or they do not check query containment but
uniform query containment.

As further work, we are going to implement a new view updating method according to the
approach proposed in [CTU97], in order to use it efficiently for containment checking. Hopefully,
the intensional orientation of this method will also improve the meaningfulness of the containment
checking tests and extend our framework to the field of constraint databases.

Other possible extensions of our work would be to consider query containment in the presence
of aggregate functions, queries over bags, or in object oriented databases as addressed in [LS97,
CV93, BH97, BJNS94], to mention some previous work.

Acknowledgements
This work has been partially supported by PRONTIC CICYT program project TIC97-1157.

References

 [ASU79] A.V. Aho, Y. Sagiv, J.D. Ullman: “Efficient Optimization of a Class of Relational Expressions”.
ACM Transactions on Database Systems, Vol. 4, No. 4, 1979, pp. 435-454.

[BH97] N.R. Brisaboa, H.J. Hernández: “Testing Bag-Containment of Conjunctive Queries”. Acta
Informatica, Vol. 34, No.7, 1997, pp. 557-578.

[BJNS94] M. Buchheit, M.A. Jeusfeld, W. Nutt, M. Staudt: “Subsumption of queries in object-oriented
databases”. Information Systems, Vol. 19, No. 1, 1994, pp. 33-54.

[BR86] F. Bancilhon, R. Ramakrishnan: “An amateur's introduction to recursive query processing strategies”.
Proceedings of the 1986 ACM SIGMOD International Conference on Management of Data.
SIGMOD Record, Vol. 15, No. 2, 1986, pp. 16-52.

[CHM95] I.A. Chen, R. Hull, D. McLeod: "An Execution Model for Limited Ambiguity Rules and Its
Application to Derived Data Update". ACM Transactions on Database Systems,, Vol. 20, No. 4,
1995, pp. 365-413.

[CM77] A.K. Chandra, P.M. Merlin: “Optimal Implementation of Conjunctive Queries in Relational Data
Bases”, Proceedings of the 9th ACM SIGACT Symposium on Theory of Computing. 1977, pp. 77-
90.

[CR97] C. Chekuri, A. Rajaraman: “Conjunctive Query Containment Revisited”. Proceedings of the 6th

International Conference on Database Theory (ICDT’97). Lecture Notes in Computer Science, Vol.
1186, Springer, 1997, pp. 56-70.

[CTU97] D. Costal, E. Teniente, T. Urpí: “An Approach to Obtain Intensional Translations for Consistent
View Updating”. Proocedings of the 5th International Conference on Deductive and Object-Oriented
Databases (DOOD’97). Montreux, Switzerland, 1997, pp. 175-192.

[CV92] S. Chaudhuri, M.Y. Vardi: “On the Equivalence of Recursive and Nonrecursive Datalog Programs”,
Proceedings of the 11th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PoDS’92). ACM Press, 1992, pp. 55-66.

14

[CV93] S. Chaudhuri, M. Vardi: “Optimizing real conjunctive queries”. Proceedings of the 14th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PoDS’93). ACM
Press, 1993, pp. 59-70.

[DS96] G. Dong, J. Su: “Conjunctive query containment with respect to views and constraints”. Information
Processing Letters, No. 57, pp. 95-102, 1996.

[DTU96] H. Decker, E. Teniente, T. Urpí: “How to tackle schema validation by view updating”, Proceedings
of the 5th International Conference on Extending Database Technology (EDBT’96). Lecture Notes in
Computer Science, Vol. 1057, Springer, 1996, pp. 535-549.

[GSUW94] A. Gupta, Y. Sagiv, J.D. Ullman, J. Widom: “Constraint Checking with Partial Information”,
Proceedings of the 13th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
System (PoDS’94). ACM Press, 1994 s, pp. 45-55.

[Gup94] A. Gupta: Partial Information Based Integrity Constraint Checking. PhD. Thesis, Stanford
University, 1994.

[JK83] D.S. Johnson, A. Klug: “Optimizing conjunctive queries that contain untyped variables”. SIAM
Journal on Conputing, Vol. 12, No. 4, pp. 616-640, 1983.

[Klu88] A. Klug: “On Conjunctive Queries Containing Inequalities”. Journal of the ACM, Vol. 35, No. 1,
1988, pp. 146-160.

[KM90] A. Kakas, P. Mancarella: “Database Updates through Abduction”, Proceedings of the 16th Very Large
Data Bases Conference (VLDB’90). Morgan Kaufmann, 1990, pp. 650-661.

[Llo87] J.W. Lloyd: Foundations of Logic Programming, Springer, 1987.

[LMSS93] A. Levy, I.S. Mumick, Y. Sagiv, O. Shmueli: “Equivalence, query-reachability and satisfiability in
Datalog extensions”. Proceedings of the 12th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PoDS’93). ACM Press, 1993, pp. 109-122.

[LMSS95] A. Levy, A. Mendelzon, Y. Sagiv, D. Srivastava: “Answering Queries Using Views”. Proceedings of
the 14th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PoDS’95). ACM Press, 1995, pp. 95-104.

[LS93] A. Levy, Y. Sagiv: “Queries Independent of Updates”, Proceedings of the 19th Very Large Data Bases
Conference (VLDB’93). Morgan Kaufmann, 1995, pp. 171-181.

[LS95] A. Levy, Y. Sagiv: “Semantic Query Optimization in Datalog Programs”. Proceedings of the 14th

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PoDS’95).
ACM Press, 1995, pp. 163-173.

[LS97] A. Levy, D. Suciu: “Deciding Containment for Queries with Complex Objects”. Proceedings of the
14th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PoDS’97).
ACM Press, 1995, pp. 20-31

[LT84] J.W. Lloyd, R.W. Topor: “Making Prolog More Expressive”. Journal of Logic Programming, 1984,
No. 3, pp. 225-240.

[LT97] J. Lobo, G. Trajcevski: “Minimal and consistent evolution of knowledge bases”. Journal of Applied
Non-Classical Logics. Vol. 7, No. 1-2, 1997, pp. 117-146.

[Oli91] A. Olivé: “Integrity Checking in Deductive Databases”. Proceedings of the 17th Very Large Data
Bases Conference (VLDB’91). Morgan Kaufmann, 1991, pp. 513-523.

[Sag88] Y. Sagiv: “Optimizing Datalog Programs”. In J. Minker (Ed.): Foundations of Deductive Databases
and Logic Programming. Morgan Kaufmann, Los Altos, CA, 1988, pp. 659-698.

[Sar91] Y. Saraiya: Subtree elimination algorithms in deductive databases. PhD. Thesis, Stanford University,
1991.

[ST96] M. Staudt, K.v. Thadden: “A Generic Subsumption Testing Toolkit for Knowledge Base Queries”.
Proceedings of the 7th International Conference on Database and Expert Systems Applications
(DEXA’96). Lecture Notes in Computer Science, Vol. 1134, Springer, 1996, pp. 834-844.

15

[TO95] E. Teniente, A. Olivé: “Updating Knowledge Bases while Maintaining their Consistency”. The
VLDB Journal, Vol. 4, No. 2, 1995, 193-241.

[Ull88] J.D. Ullman: Principles of Database an Knowledge-Base Systems, Volume 1. Computer Science
Press, Rockville, MD, 1988.

[Ull89] J.D. Ullman: Principles of Database an Knowledge-Base Systems, Volume 2: The New
Technologies. Computer Science Press, Rockville, MD, 1989.

[Wüt93] B. Wüthrich: “On Updates and Inconsistency Repairing in Deductive databases”. Proceedings of the
International Conference on Data Engineering (ICDE’93). IEEE Computer Society Press, 1993, pp.
608 - 615.

[ZO93] X. Zhang, M.Z. Ozsoyoglu: “On efficient reasoning with implication constraints”. Proocedings of
the 3th International Conference on Deductive and Object-Oriented Databases (DOOD’93). Lecture
Notes in Computer Science, Vol. 760, Springer, 1993, pp. 236-252.

