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Abs t rac t .  It is well known that the problem of matching two relational 
structures can be posed as an equivalent problem of finding a maximal 
clique in a (derived) "association graph." However, it is not clear how 
to apply this approach to computer vision problems where the graphs 
are hierarchically organized, i.e. are trees, since maximal cliques are not 
constrained to preserve the partial order. Here we provide a solution to 
the problem of matching two trees, by constructing the association graph 
using the graph-theoretic concept of connectivity. We prove that in the 
new formulation there is a one-to-one correspondence between maximal 
cliques and maximal subtree isomorphisms, and show how to solve the 
matching problem using simple "replicator" dynamical systems devel- 
oped in theoretical biology. Such continuous solutions to discrete prob- 
lems can motivate analog and biological implementations. We illustrate 
the power of the approach by matching articulated and deformed shapes 
described by shock trees. 

1 I n t r o d u c t i o n  

The matching of relational structures is a classic problem in computer vision and 
pat tern recognition, instances of which arise in areas as diverse as object recog- 
nition, motion and stereo analysis. A well-known approach to solve this problem 
consists of transforming it into the equivalent problem of finding a maximum 
clique in an auxiliary graph structure, known as the association graph [2, 3]. The 
idea goes back to Ambler et al. [1], and has since been successfully employed in a 
variety of different problems, e.g., [5, 13, 21, 29, 28, 34, 36]. This framework is at- 
tractive because it casts relational structure matching as a pure graph-theoretic 
problem, for which a solid theory and powerful algorithms have been devel- 
oped. Although the maximum clique problem is known to be NP-comple te  [10], 
powerful heuristics have been developed which efficiently find good approximate 
solutions [22]. 

In many computer  vision problems, however, relational structures are orga- 
nized in a hierarchical manner,  i.e., axe trees (see, for example, [17, 30, 32, 33, 
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37]). Since in the standard association graph formulation the solutions are not 
constrained to preserve the required partial order, it is not clear how to apply 
the framework in these cases. The extension of association graph techniques to 
tree matching problems is therefore of considerable interest. To illustrate the 
difficulties with the standard formulation, consider the problem of finding the 
largest subtree in the left tree of Figure 1 which is isomorphic to a subtree in the 
right tree. Up to permutations, the correct solution is clearly given by 3 --+ a, 
4 -+ b, 5 -+ c, 6 -~ d, 7 -~ f, and 8 --+ g. In other words, the subtree rooted 
at node 3 is matched against that rooted at node a in the tree on the right. 
However, using the standard association graph formulation (cfr. [2, p. 366]), it 
is easily verified that the solutions induced by the maximum cliques correspond 
(up to permutations) to the following: 2 -+ h, 3 --+ a, 4 --+ b, 5 --+ c, 6 -+ d, 7 --+ f, 
and 8 --+ g, which, while perfectly in accordance with the usual subgraph isomor- 
phism constraints, does violate the requirement that the matched subgraphs be 
trees (note, in fact, that nodes 2 and h are isolated from the rest of the matched 
subtrees). 

In this paper, we introduce a solution to this problem by providing a novel 
way of deriving an association graph from two (rooted) trees, based on the 
graph-theoretic notions of connectivity and the distance matrix. We prove that 
in the new formulation there is a one-to-one correspondence between maximal 
(maximum) cliques in the derived association graph and maximal (maximum) 
subtree isomorphisms. As an obvious corollary, the computational complexity 
of finding a maximum clique in such graphs is therefore the same as the sub- 
tree isomorphism problem, which is known to be polynomial in the number of 
nodes [10]. 

Following the development in [25], we use a recent generalization of the 
Motzkin-Straus theorem [20] to formulate the maximum clique problem as a 
quadratic programming problem. To (approximately) solve it we employ replica- 
for equations, a class of simple continuous- and discrete-time dynamical systems 
developed and studied in various branches of biomathematics [12, 35]. We illus- 
trate the power of the approach via several examples of matching articulated 
and deformed shapes described by shock trees [33]. 

2 T r e e  I s o m o r p h i s m  a n d  M a x i m a l  C l i q u e s  

2.1 N o t a t i o n s  and de f in i t i ons  

Before going into the details of the proposed framework, we need to introduce 
some graph-theoretical notations and definitions. More details can be found in 
standard textbooks of graph theory, such as [11]. Let G = (V, E) be a graph, 
where V is the set of nodes and E is the set of (undirected) edges. The order 
of G is the number of nodes in V, while its size is the number of edges. Two 
nodes u, v E V are said to be adjacent (denoted u ,~ v) if they are connected 
by an edge. A path is any sequence of distinct nodes UoUl . . .  un such that for 
all i -- 1 . . . n ,  ui-1 "~ ui; in this case, the length of the path is n. If Uo = u~ 
the path is called a cycle. A graph is said to be connected if any pair of nodes is 



Fig. 1. An example of matching two trees. In the standard formulation of the associa- 
tion graph, the maximum cliques do not preserve the hierarchical structure of the two 
trees. 

joined by a path. The distance between two nodes u and v, denoted by d(u, v), 
is the length of the shortest path joining them (by convention d(u, v) = 0% if 
there is no such path).  Given a subset of nodes C C V, the induced subgraph 
G[C] is the graph having C as its node set, and two nodes are adjacent in G[C] 
if and only if they are adjacent in G. 

A connected graph with no cycles is called a tree. A rooted tree is one which 
has a distinguished node, called the root. The level of a node u in a rooted 
tree, denoted by lev(u), is the length of the path  connecting the root to u. Note 
that  there is an obvious equivalence between rooted trees and directed trees, 
where the edges are assumed to be oriented. We shall therefore use the same 
terminology typically used for directed trees to define the relation between two 
adjacent nodes. In particular, i f u  ~ v and lev(v) - l e v ( u )  = +1, we say that  u is 
the parent of v and, conversely, v is a child of u. Trees have a number of interesting 
properties. One which turns out to be very useful for our characterization is tha t  
in a tree any two nodes are connected by a unique path. 

2.2 Deriving the association g r a p h  

Let T1 = (V1,E1) and T2 = (V2,E2) be two rooted trees. Any bijection ~b : 
HI --+ /-/2, with /-/1 C 1/1 and /-/2 C_ V2, is called a subtree isomorphism if 
it preserves the adjacency and hierarchical relations between the nodes and, 
in addition, the induced subgraphs TI[H1] and T2[H2] are trees. The former 
condition amounts to stating that ,  given u, v E / / 1 ,  we have u ~ v if and only if 
r  ,~ r and u is the parent of v if and only if r  is the parent of r 
A subtree isomorphism is maximal if there is no other subtree isomorphism 
r : H i --~ H~ w i t h / / 1  a strict subset of H i ,  and maximum if/-/1 has largest 
cardinality. The maximal (maximum) subtree isomorphism problem is to  find a 
maximal (maximum) subtree isomorphism between two rooted trees. 

We now introduce the notion of a path-string, which turns out to be of pivotal 
importance for our subsequent development. 



D e f i n i t i o n  1. Let u and v be two distinct nodes of a rooted tree T ,  and let 
u = XOXl . . .  x,~ = v be the (unique) path joining them. The path-string of u and 
v, denoted by str(u,v),  is the string s l s 2 . . . s n  on the alphabet { - 1 , + 1 }  where, 
for all i = 1 . . . n ,  s~ = lev(xi) - lev(xi_l). 

The path-string concept has a very intuitive meaning. Suppose that  you stand 
on a particular node in a rooted tree and want to move to another adjacent node. 
Because of the orientation induced by the root, only two types of moves can be 
done, i.e., going down to one of the children (if one exists) or going up to the 
parent (if you are not on the root). Let us assign to the first move the label +1, 
and to the second the label -1 .  Now, suppose that  you want to move from node 
u to v, following the unique path joining them. Then, the path-string of u and 
v is simply the string of elementary moves you have to do in order to reach v, 
starting from u. It may be thought of as the degree of relationship between two 
relatives in a "family" tree. 

The association graph of two rooted trees T1 = (V1, El)  and T2 = (V2, E2) is 
the graph G = (V, E) where 

y = Yl x v2 (1) 

and, for any two nodes (u, w) and (v, z) in V, we have 

(u, w) ,,~ (v, z) r str(u, v) = str(w, z) . (2) 

Intuitively, two nodes (u, w) and (v, z) are adjacent in G, if and only if the 
relationship between u and v in T1 is the same as tha t  between w and z in 
T2. Note tha t  this definition of association graph is stronger than the standard 
one used for matching arbitrary relational structures [2, 3]. A subset of vertices 
of G is said to be a clique if all its nodes are mutually adjacent. A maximal 
clique is one which is not contained in any larger clique, while a max imum clique 
is a clique having largest cardinality. The maximum clique problem is to find 
a maximum clique of G. The following result, which is the basis of the work 
reported here, establishes a one-to-one correspondence between the maximum 
subtree isomorphism problem and the maximum clique problem. 

T h e o r e m  1. Any  maximal (maximum) subtree isomorphism between two rooted 
trees induces a maximal  (maximum) clique in the corresponding association 
graph, and vice versa. 

Proof (outline). Let r :/-/1 --+//2 be a maximal subtree isomorphism between 
rooted trees T1 and T2, and let G = (V, E) denote the corresponding association 
graph, as defined above. The maximal clique induced by r is simply the set of 
vertices C~ C_ V defined as: 

C~ = {(u , r  u E/-/1}.  

Intuitively, the fact that  Cr is a clique follows from the observation that  r 
maps the path between any two nodes u and v onto the path joining r and 
r Trivially, Cr is maximal because r is, and this proves the first part of the 
theorem. 



Suppose now that  C = { (ul, Wl ) , - . . ,  (un, wn)}  is a maximal clique of G, and 
define H1 = {Ul , - - - ,un}  _C V1 a n d / / 2  = {Wl , ' " ,W n }  C_ V2. Define r : H1 -+ 
//2 as r = wi ,  for all i = 1 . . .  n. From the definition of the association graph 
and the hypothesis tha t  C is a clique, it simple to see that  r is a one-to-one 
and onto correspondence between H1 and //2, which trivially preserves both 
the adjacency and the hierarchical relations between nodes. The fact tha t  r is 
maximal is a straightforward consequence of the maximality of C. 

To conclude the proof we have to show that  the induced subgraphs TI[H1] 
and T2[H2] are trees, and this is equivalent to showing that  they are connected. 
Suppose by contradiction that  this is not the case, and let u i , u j  �9 H i  be two 
nodes which are not joined by a path in TI[H1]. Since both ui and u I are nodes 
of T1, however, there must exist a path ui = xox l  . . .  xm  = u j  joining them in 
T1. Let x* = Xk, for some k = 1 . . . m ,  be a node on this path which is not in H1. 
Moreover, let y* = Yk be the k-th node on the path wi = YoYl . . .  Ym = w j  which 
joins wi and wj in T2. It  is easy to show that  the set {(x*,y*)} U C C V is a 
clique, and this contradicts the hypothesis that  C is a maximal clique. This can 
be proved by exploiting the obvious fact that  if x is a node on the path  joining 
any two nodes u and v, then str(u, v) can be obtained by concatenating str(u, x) 
and str(x, v). 

The "maximum" part  of the statement is proved similarly. [] 

The next  proposition provides us with a straightforward criterion to construct 
the association graph. 

P r o p o s i t i o n  1. Let  7"1 = (V1,E1) and T2 = (V2,E2) be two rooted trees, u , v  E 
]/'1, and w,  z �9 rer2. Then,  str(u, v) = str(w, z)  i f  and only i f  the fol lowing two 
conditions hold: 

(a) d(u,v)  = d(w,z)  
(b) lev(u) - lev(v) = lev(w) - lev(z) 

Proof. The proposition is a straightforward consequence of the following 
two observations. Let u and v be any two nodes in a tree, and let str(u, v) = 
s i s 2 . . ,  sn be the corresponding path-string. Then we have: (1) lev(u) - l e v ( v )  = 
~ i  si, and (2) si = +1 implies sj = +1 for all j > i. [] 

This results allows us to efficiently derive the association graph by using 
a classical representation for graphs, i.e., the so-called distance ma t r i x  (see, 
e.g., [11]) which, for an arbi t rary graph G = (V, E)  of order n, is the n • n 
matr ix  D = (dij) where dij = d(ui ,  u j ) ,  the distance between nodes ui and uj. 



3 Tree  M a t c h i n g  R e p l i c a t o r  E q u a t i o n s  

Let G = (V, E)  be an arbi t rary graph of order n, and let Sn denote the standard 
simplex of IRn: 

Sn -= { x e ]l~ n : e~x = l and xi > O, i = l . . . n  } 

where e is the vector whose components equal 1, and a prime denotes transpo- 
sition. Given a subset of vertices C of G, we will denote by x c its characteristic 
vector which is the point in Sn defined as 

c [ 1/ICI, if i e C 
xi = ~ 0, otherwise 

where ICI denotes the cardinality of C. 
Now, consider the following quadratic function 

1 I 
f ( x )  = x ' A x  + ~x  x (3) 

where A = (aij) is the adjacency matr ix  of G, i.e., the n • n symmetric matr ix 
defined as 

1, if vi ~ vj 
aij = O, otherwise 

A point x* E Sn is said to be a global maximizer of f in S~ if f (x*)  _> f (x ) ,  
for all x E Sn. It is said to be a local maximizer if there exists an ~ > 0 such 
that  f (x*)  _> f ( x )  for all x E Sn whose distance from x* is less than c, and if 
f (x*)  = f ( x )  implies x* = x, then x* is said to be a strict local maximizer. 

The following theorem, recently proved by Bomze [6], expands on the Motzkin- 
Strans theorem [20], a remarkable result which establishes a connection between 
the maximum clique problem and certain s tandard quadratic programs. This 
has an intriguing computat ional  significance in that  it allows us to shift from 
the discrete to the continuous domain in an elegant manner. 

T h e o r e m  2. Let C be a subset of vertices of a graph G, and let x c be its char- 
acteristic vector. Then the following statements hold: 

(a) C is a maximum clique of G if  and only if x c is a global maximizer of the 
function f in s , .  In this case, ICl = 1/2(1 - y(xC)). 

(b) C is a maximal clique of G if and only if  x ~ is a local maximizer of f in 
S.. 

(c) All local (and hence global) maximizers of f in Sn are strict. 

Unlike the original Motzkin-Straus formulation, which is plagued by the pres- 
ence of "spurious" solutions [26], the previous result guarantees us tha t  all maxi- 
mizers of f on Sn are strict, and are characteristic vectors of maximal /maximum 
cliques in the graph. In a formal sense, therefore, a one-to-one correspondence 



exists between maximal cliques and local maximizers of f in Sn on the one hand, 
and maximum cliques and global maximizers on the other hand. 

We now turn our attention to a class of simple dynamical systems that  we 
use for solving our quadratic optimization problem. Let W be a non-negative 
real-valued n x n matrix, and consider the following dynamical system: 

J:i(t) = xi(t)  [ (Wx( t ) ) i  - x ( t ) ' W x ( t ) ] ,  i = 1 . . . n  (4) 

where a dot signifies derivative w.r.t, t ime t, and its discrete-time counterpart 

x~(t + 1) = x.rt~ (Wx(t))~ 
~' J x ( t ) ' W x ( t ) '  i =  l . . . n .  (5) 

It is readily seen that  the simplex Sn is invariant under these dynamics, which 
means that  every trajectory starting in Sn will remain in Sn for all future times. 
Moreover, it turns out that  their stationary points, i.e. the points satisfying 
2i(t) = 0 for (4) or xi( t  + 1) = xi( t)  for (5), coincide and are the solutions of the 
equations 

x i [ (Wx) i  - x'Wx] = 0, i = 1 . . . n .  (6) 

A stationary point x is said to be asymptotically stable if every solution to (4) or (5) 
which starts close enough to x, will converge to x as t -+ oo. 

Both (4) and (5) are called replicator equations in theoretical biology, since 
they are used to model evolution over time of relative frequencies of interact- 
ing, self-replicating entities [12]. The discrete-time dynamical equations turn 
out to be a special case of a general class of dynamical systems introduced by 
Banm and Eagon [4] in the context of Markov chains theory. They also represent 
an instance of the original heuristic Rosenfeld-Hummel-Zucker relaxation label- 
ing algorithm [31], whose dynamical properties have recently been clarified [24] 
(specifically, it corresponds to the 1-object, n-label case). 

We are now interested in the dynamical properties of replicator dynamics; it 
is these properties that  will allow us to solve our original tree matching problem. 

T h e o r e m  3. I f  W = W '  then the function x ( t ) ' W x ( t )  is strictly increasing 
with increasing t along any non-stationary trajectory x(t) under both continuous- 
time (4) and discrete-time (5) replicator dynamics. Furthermore, any such tra- 
jectory converges to a stationary point. Finally, a vector x E Sn is asymptotically 
stable under (4) and (5) if and only if x is a strict local maximizer of x~Wx  on 
S.. 

The previous result is known in mathematical  biology as the Fundamental 
Theorem of Natural Selection [8, 12, 35] and, in its original form, traces back to 
Fisher [9]. As far as the discrete-time model is concerned, it can be regarded 
as a straightforward implication of the more general Baum-Eagon theorem [4]. 
The fact that  all trajectories of the replicator dynamics converge to a stationary 
point has been proven more recently [15, 16]. 

In light of their dynamical properties, replicator equations naturally suggest 
themselves as a simple heuristic for solving the maximal subtree isomorphism 
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problem. Let T1 = (V1,E1) and T2 = (V2,E2) be two rooted trees, and let A 
denote the N-node adjacency matrix of the corresponding association graph G, 
as defined in Section 2. By letting 

1 I W = A + - ~  N 

where IN is the N x N identity matrix, we know that the replicator dynamical 
systems (4) and (5), starting from an arbitrary initial state, will iteratively max- 
imize the function f defined in (3) over SN and will eventually converge with 
probability 1 to a strict local maximizer which, by virtue of Theorem 2, will 
then correspond to the characteristic vector of a maximal clique in the associa- 
tion graph. As stated in Theorem 1, this will in turn induce a maximal subtree 
isomorphism between T1 and T2. 

Clearly, in theory there is no guarantee that the converged solution will be 
a global maximizer of f ,  and therefore that it will induce a maximum isomor- 
phism between the two original trees. Previous experimental work done on the 
maximum clique problem [7, 23], and also the results presented in the next sec- 
tion, however, suggest that the basins of attraction of optimal or near-optimal 
solutions are quite large, and very frequently the algorithm converges to one of 
them, despite its inherent inability to escape from local optima. 

Since the process cannot leave the boundary of SN, it is customary to start 
out the relaxation process from some interior point, a common choice being the 
barycenter of SN, i.e., the vector (~ , - -  1 , �9 , ~ )  . This prevents the search from 
being initially biased in favor of any particular solution. 

4 A n  E x a m p l e :  M a t c h i n g  S h o c k  T r e e s  

We illustrate our framework with numerical examples of shape matching. We use 
a shock graph representation based on a coloring of the shocks (singularities) of a 
curve evolution process acting on simple closed curves in the plane [14]. Shocks 
are grouped into distinct types according to the local variation of the radius 
function along the medial axis. Intuitively, the radius function varies monoton- 
ically at a type 1, reaches a strict local minimum at a type 2, is constant at a 
type 3 and reaches a strict local maximum at a type 4. The shocks comprise 
vertices in the graph, and their formation times direct edges to form a basis 
for subgraph isomorphism; see [33] for details. An illustrative example appears 
in Figure 2. Each graph can be reduced to a unique rooted tree, providing the 
requisite hierarchical structure for our matching algorithm. The ability of shock 
trees to discriminate between classes of shapes, using both their topologies as well 
as metric/label information has been examined in [33]. Here we address the un- 
labeled version of the problem, and examine matching based on topology alone. 
We stress that our goal is to illustrate the power of the hierarchical structure 
matching algorithm. 

We selected 22 silhouttes representing eight different object classes (Table 1, 
first column); the tools shapes were taken from the Rutgers Tools database. Each 



11 

F ig .  2. An il lustrative example of the shocks obtained from curve evolution (from [33]). 
ToP: The notat ion associated with the locus of shock points is of the form shock_type- 
identifier. BOTTOM: The tree has the shock_type on each node, and the identifier is 
adjacent.  The  last shock to form during the curve evolution process is the most "sig- 
nificant," and this appears  under the root node labeled ~ .  
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Fig. 3. Maximal subtree isomorphisms found for three illustrative examples. 
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entry was then matched against all entries in the database, and the size of the 
maximal clique found, normalized by the average number of nodes in the two 
trees, was recorded. Figure 3 shows the maximal subtree isomorphisms (each in 
one-to-one correspondence with a maximal clique) for three examples. The top 
5 matches for each query shape, along with the associated scores, are shown in 
Table 1. The matching algorithm generally takes only two to three seconds to 
converge on a Sparc 10. 

Note that despite the fact that metric/label information associated with 
nodes in the shock trees was discounted altogether, all exemplars in the same 
class as the query shape are within the top5  matches, and typically in the top 3. 
It is evident that such a structural matching process for indexing into a database 
of shapes has great potential; with the addition of geometric information perfor- 
mance can only improve. 

5 C o n c l u s i o n s  

We have developed a formal approach for matching hierarchical structures by 
constructing an association graph whose maximal cliques are in one-to-one cor- 
respondence with maximal subtree isomorphisms. The framework is general and 
can be applied in a variety of computer vision domains: we have demonstrated 
its potential for shape matching. The solution is found by using a dynamical 
system, which makes it amenable to hardware implementation and offers the 
advantage of biological plausibility. In particular, the relaxation labeling equa- 
tions are related to putative neuronal implementations [18, 19]. In [27] we extend 
the present framework to the problem of matching hierarchical structures with 
attributes. The attributes result in weights being placed on the nodes of the as- 
sociation graph, and a conversion of the maximum clique problem to a maximum 
weight clique problem. 
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