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Abs t rac t .  In this paper, we develop data driven registration algorithms, 
relying on robust pixel similarity metrics, that enable an accurate (sub- 
pixel) rigid registration of dissimilar single and multimodal 2D/3D im- 
ages. A "soft redescending" estimator is associated to a top down stochatic 
multigrid relaxation algorithm in order to obtain robust, data driven mul- 
timodal image registrations. With the stochastic multigrid strategy, the 
registration is not affected by local minima in the objective function and 
a manual initialization near the optimal solution is not necessary. The 
proposed robust similarity metrics are compared to the most popular 
standard similarity metrics, on synthetic as well as on real world image 
pairs showing gross dissimilarities. Two case-studies are considered: the 
registration of single and multimodal 3D medical images and the match- 
ing of multispectral remotely sensed images showing large overcast areas. 

1 I n t r o d u c t i o n  

Although a large variety of image registration methods have been proposed in 
the literature, only a few techniques have a t tempted  to address the registration 
of images showing gross dissimilarities. If  the case of single modal  dissimilar im- 
ages has been considered in [1], to our knowledge, no specific model has been 
proposed to handle multimodal images exhibiting large dissimilarities. The prob- 
lem is indeed particularly difficult for mult imodal  images, showing both localized 
changes that  have to be detected [2] and an "overall" difference (due to differ- 
ences in the characteristics of the scene observed by multiple sensors). Medical 
imaging, with its wide variety of sensors (thermal, ultrasonic, X-Ray, MRI and 
nuclear) is probably one of the first application field, as are remote sensing, 
mil i tary imaging (visible, IR or radar) and multisensor computer  vision. 

In the present paper, we develop data  driven registration methods, relying on 
pixel (or voxel) similarity metrics, that  enable an accurate (subpixel) rigid reg- 
istration of dissimilar single or mult imodal  2D/3D images. Gross dissimilarities 
are handled by considering similarity measures related to robust M-estimators.  
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In particular, a novel pixel similarity metric is proposed for the multimodal case. 
This metric has shown very efficient for the registration of highly dissimilar im- 
ages, on which conventional techniques fail. An example of such a multimodal 
image pair is given Fig. 5, showing two satellite images of France, taken at 
different optical wavelengths and at different dates. Gross dissimilarities, due 
to the presence of large overcast areas may be observed (Fig. 5(b)). Subpixel 
registrations have been obtained in this case (see Section 4). 

The remainder of this paper is organized as following. Background and re- 
lated approaches are presented in Section 2. In Section 3, we introduce two ro- 
bust similarity metrics for the registration of single and multimodal images. The 
data-driven registration algorithm, based on these robust similarity measures, is 
described in the same section. In Section 4, the robust similarity metrics are com- 
pared to the most popular standard similarity metrics, on synthetic as well as on 
real world image pairs showing gross dissimilarities. The registration accuracy 
is evaluated for two case-studies: the registration of single modal (MRI/MRI) 
and multimodal (MRI/SPECT) 3D medical images and the matching of multi- 
spectral (visible/IR) satellite images showing large overcast areas. The proposed 
robust similarity measures compare favourably with all standard (non robust) 
techniques (including the quadratic similarity measure and the multimodality 
registration criterion devised by Woods et al. [3]). The multimodal robust simi- 
larity metrics shows also (excepted for one particular case) better performances 
than the recently proposed mutual information criterion [4,5], that  has been 
recognized as the most efficient method in several recent studies. 

2 B a c k g r o u n d  a n d  S t a n d a r d  S i m i l a r i t y  M e a s u r e s  

A complete review of standard registration techniques may be found in [6], a 
classification in [7] and a comparison in [8]. Similarity measure-based approaches 
rely on the minimization of cost functions that  express the pixel or voxel sim- 
ilarity of the images to be aligned. They have been proposed for both single 
and multimodal image registration [4, 5, 9-12]. Similarity metrics for the regis- 
tration of 2D single modal images, that are to a certain extent robust to image 
changes have been described by Herbin et al. in [1]. Herbin et al. make use of 
deterministic and stochastic sign change criteria to obtain robust registrations 
of medical image sequences in critical situations corresponding for instance to 
lesion evolutions [1]. Contrary to the metrics described below, this method does 
not handle the case of multimodal images. 

In this section we briefly present the most popular similarity metrics and 
describe their limitations. These similarity metrics will be compared, in Section 
4, to the robust metrics we propose. 

Pixel (or voxel) similarity metric-based registration consists in estimating 
the parameters O of the rigid transformation To minimizing a cost function 
E (Ire/(.), Ireg(To(.))), that  expresses the similarity between the single or mul- 
timodal image pair: 

O* = a rgn~n[E (Ir~l(.), Ir~g(To(.)))] , (1) 
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where O = ( tx , ty , t z ,  Ox,~y, OZ) T i s  a vector containing the 3D translation 
parameters, ( tx , ty , t z )  with respect to the X , Y  and Z axis and the Euler 
rotation angles (Ox, OY, Oz), I~](.) represents the reference image and I~g(.) 
the image to be registered. 

The classical quadratic similarity metric assumes that the two registered 
images differ only by an additive Gaussian noise [11], leading to the following 
least squares cost function: 

E(lref(.), I~g(To(.))) = E[I~ef(x)-Ireg(Te(x))] 2 . (2) 
X 

where x designates the pixel (or voxel) coordinates. Quadratic similarity metrics 
are related to gaussian sensor models [11], which do not take into account the 
interimage dissimilarities that may occur in real world applications. 

A popular similarity measure for the registration of multimodal image pairs 
(widely used in medical imaging) is the multimodality similarity metric devised 
by Woods et al. [3]. The fundamental assumption related to Woods criterion 
is that a uniform region in the reference image corresponds, after registration, 
to a region that is also uniform in the second image (inter-image uniformity 
hypothesis). 

The reference image is thus first partitioned into G grey level classes, where 
G denotes the number of grey levels of this image. The resulting spatial partition 
is projected on the image to be registered, yielding the same partition of this 
second image. The expected values pg, g : 1 ,  . . . ,  G and the standard deviations 
ag, g : 1, ..., G of each segmented region in the second image are then computed. 
If the two images are correctly registered, Woods assumes that the normalized 
variance ~ is minimum over the entire image [3]. The following inter-zmage ttg 
uniformity cost function is thus defined: 

E (Z, j (.), 

where: 

and: 

G 

g = l  

(3) 

og(Te(.)) = / x ~ [Ir~a(Te(x))-#g(Te('))]2' (4) 
V,I ~ (  )=g 

1 
= Irog(T (x)). (5) 

In (3), N represents the number of voxels in the images and Ng stands for 
the population of voxels having the value g in the reference image. 

As pointed out by Woods [3], the inter-image uniformity hypothesis may 
only be a crude approximation when gross dissimilarities are present in the 
multimodal image pair. This is always the case when the multimodal pair is 
used for the complementary and non redundant information one image provides 
with respect to the other. 
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We finally consider the criterion based on the maximization of the mutual 
information proposed recently and independently in [4, 5]. This criterion is based 
on the same partitioning as in equation (3). The assumption is that  the the 
mutual information is maximum when the two images are correctly registered, 
yielding the following mutual information cost function [4, 5]: 

G K 

= _ E E p ( g , k ) l o g  p(g,k) 
v(glv(k) 

9=1  k = l  

(6) 

where G and K stand for the number of grey levels of Ir~] and Ir~g. The 
joint probabilities p(g, k) are the elements of the cooccurrence matrix of I,.cf (.) 
and I~g(To(.)) and p(g) and p(k) are the marginal probabilities of I~r (.) and 
I~r (.)), both computed from the normalized histograms of the two images. 

This criterion has been recognized, in several recent studies, as yielding the 
best results in multimodal medical image registration. It will be compared to 
our robust multimodal registration criterion in Section 4. 

3 R o b u s t  S imi lar i ty  M e t r i c s - B a s e d  R e g i s t r a t i o n  

3.1 Robust similarity measures 

Standard similarity-based approaches do not model the information differences 
between images in a single or multimodal pair and, as a consequence, are not 
robust with respect to them. To increase robustness, the cost function must thus 
be forgiving about outlying measurements. 

Robust estimators have become popular in computer vision applications be- 
cause they have proven effective in tolerating gross outliers in data  [13, 14]. A 
review on robust estimators in computer vision may be found in [13]. A col- 
lection of non linear robust estimators, including least median of squares, least 
tr immed squares, M-estimators, Hough transforms, RANSAC and MINPRAN 
algorithms are presented in [15, 14]. The robustness of these estimators to situ- 
ations in which mixture of data from multiple (coherent) structures plus gross 
outliers are to be handled is studied in depth in [14]. Stewart [14] shows that  
the estimated parameters may be heavily skewed in such situations. 

In the following we consider the class of M-estimators [16] that  has shown 
attractive properties (i.e., satisfactory breakdown points and moderate compu- 
tational cost) in computer vision applications [15, 17]. This class of robust esti- 
mators reduces the optimization problem to a simple, low cost, weighted least 
squares problem, as explained in [15, 13]. A robust M-estimator of parameters 
O is obtained by introducing a robust error norm ("loss" function) p in the 
similarity metrics (2) and (3)[13]. 

For the single modality case, we consider the now standard robust least 
squares cost functwn: 

e = - C}. (7) 
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where C is a scale (noise) parameter and p is a non quadratic error norm (penalty 
function) associated with the M-estimator. Variants of this robust cost function 
have been used with success in image processing and computer vision problems 
such as surface reconstruction [15], image segmentation, computed imaging, op- 
tical flow measurement [18, 17], etc. 

For multimodal images, we define a robust inter-~mage uniformzty cost func- 
tion: G 

E(lre](.), Ireg(TO(.))) = ~ - ~ ( T e ( . ) )  (8)  
g = l  

where: 

and 

f 

~g(Te(.)) = argmin 1 

Let us notice that  the non robust cost functions (2) and (3) correspond to the 
special case p(x, C) = x ~ (for defining (8) we consider a non normalized version 
of (3), which has shown more efficient than the original Woods' criterion). In the 
single modal case (7), the cost function is simply defined as a robust error norm 
of the residual differences between the two registered images. In the multimodal 
case (8), a "robust variance" ~ is computed for each region of the image to 
be registered, according to (9). This robust variance does take into account 
gross outliers in the registered image, thanks to the robust error norm p. A 
robust estimation of the expected value ~ (10) of the region is simultaneously 
computed by the same M-estimator. 

For the experiments presented in this paper we have tested two "hard re- 
descending" M-estimators [14] (namely the truncated quadratic p-function [15] 
and the Tukey "biweight"p-function), as well as a "soft redescending" estima- 
tor (the Geman-McClure p-function [15]). We privileged the Geman-McClure 
estimator because it required less calculations for almost the same accuracy as 
the Tukey "biweight"estimator. It showed less sensitive to initialization than the 
truncated quadratic. The Geman-McClure p-function [15] is defined by: 

x 2 

p(x, C) - C2 + z2 . 

As the magnitude of the residuals increases and grows beyond a point, its in- 
fluence on the solution begins to decrease and the value of p(x) approaches a 
constant. The scaling parameter C affects the point at which the influence of 
outliers begins to decrease. 

The calculation of the registration parameters 19 involves the minimization 
of the non-linear cost functions (7) or (8) which depend on the scale parameter 
C. A good strategy [14] consists in starting the optimization procedure with 
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a high value for C. The value of C decreases during the minimization process 
following the formula C = cr.C with 0.8 < ~ < 1 until C reaches a predefined 
value. The effect of this procedure is that initially no data are rejected as outliers 
and a first, crude solution is obtained. During the following optimization steps 
the influence of the outliers is gradually reduced by decreasing C, leading to a 
reliable estimation of the rigid transformation parameters, which is robust to 
gross image differences. In other experiments we have also estimated C as the 
noise variance computed on homogeneous regions of the original images (other 
statistical methods for estimating C from the data  may be found in [14]). These 
different strategies provided us with almost the same qualitative results. 

3.2 The Multiresolution Stochastic Registration Algorithm 

The robust estimators and the registration criteria considered previously are 
highly non linear, involving non convex cost functions having multiple local 
minima [19]. In most image registration methods based on the minimization 
of a cost function, deterministic optimization algorithms are applied. They are 
known to be very sensitive to local minima, unless they are initialized close to 
the optimal solution. 

In order to increase robustness to local minima of the similarity function and 
to obtain data  driven registrations, the parameter space has been discretized and 
a fast stochastic optimization algorithm has been applied. Stochastic optimiza- 
tion, based on random sampling, is far less sensitive to local minima, yielding 
better, often close to the optimal solutions [14]. The optimization technique used 
in our implementation is based on the Gibbs sampler [20]. A high value is adopted 
for the initial temperature in a simulated annealing procedure and a fast expo- 
nentially decreasing temperature schedule is considered instead of the optimal 
logarithmic descent [20]. The solution obtained after a given number of steps 
is further refined by a deterministic extension of the above algorithm, known 
as Iterated Conditional Modes (ICM). ICM is a deterministic Gauss-Seidel like 
algorithm, that  only accepts configurations decreasing the cost function. It has 
fast convergence properties and local minima are not a problem, since the first 
stochastic optimization step provides a good initialization. 

The optimization algorithm was applied on a sequence of multiresolution 
grids, using a standard top-down approach starting from the coarsest resolution 
level [17, 21]. The solution obtained at a given resolution level is interpolated 
and forwarded to the next, finer resolution. The algorithm first carries out the 
calculations for every 81 ~t (16 ta) voxel (pixel) in the 3D (2D) images. After the 
algorithm has converged, the resulting registration parameters represent the ini- 
tial estimate for the next level, where every 27 th (8 th) voxel is processed, then 
every 9 th (4th), every 3 rd (2 rid) and finally every voxel (pixel) in the image. The 
search space and the visited configurations were reduced while the resolution 
increases in order to gradually fine tune the solutions obtained on the coarser 
resolution levels. The first grids generally provided a good approximation of 
the final solution. Multigrid matching is usually motivated by the significant 
computational  gain obtained in the registration. As noticed by several authors 
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[19], multigrid algorithms are also far less sensitive to local minima in the cost 
function than single resolution optimization schemes. It has indeed been conjec- 
tured that  multigrid analysis may, to a certain extent, smooth the "landscape" 
of the objective function to minimize. This yields fast convergence towards good 
solutions [19]. 

4 E x p e r i m e n t a l  R e s u l t s  

Registration experiments were performed with both 2D and 3D images. The 
following similarity measures have been implemented and compared: 

- the standard least-squares (LS) similarity measure (Eq. 2) ; 
- the inter-image uniformity (IV) criterion [3] (EQ. 3) ; 
- the mutual information (MI) criterion [4, 5] (Eq. 6) ; 
- the robust least-squares (RLS) similarity metrics (Eq. 7) ; 
- the robust inter-image uniformity (RIU) criterion (Eq. 8). 

LS and RLS may only be applied to single modal image registration, whereas 
the other methods (IU, RIU, MI) have been tested both in single and multimodal 
registration problems. Two representative case studies have been considered: 
the registration of single modal (MRI/MRI) and multimodal (MRI/SPECT) 3D 
medical images showing gross outliers or lesion evolution, and the matching of 
multispectral (visibte/IR) remotely sensed images showing large overcast areas. 

4.1 S i n g l e  M o d a l  I m a g e  R e g i s t r a t i o n  

M e d i c a l  I m a g e s .  A first class of experiments consisted in applying a known 
rigid transformation (3D translation and rotation) to a set of MRI volumes to 
create a second image set. 25% of the transformed images was then corrupted 
by salt and pepper noise, to simulate gross outliers (see Fig. l(a-b)). For each 
method, the estimated registration parameters were compared to the true ones 
to determine the accuracy of the registration. Statistics on the registration errors 
were computed on a set of 20 different registrations problems, involving trans- 
lation parameters between -20  and +20 voxels and rotations between -30  and 
+30 degrees. Let us notice that  large rotations are generally difficult to handle 
with standard, deterministic approaches (in which initializations close to the 
desired solution are necessary). This is not the case of the stochastic sampling 
algorithm used here. 

As we can see in Table 1, the robust algorithms achieved subvoxel registration 
errors while the non robust (LS and IU) techniques failed. The MI method, the 
"best" method referenced at the present time, also achieved subvoxel registration 
but its performances are slightly inferior to the results obtained by the RLS 
technique. 

Figure l(e) shows an example where the standard method (LS) failed to cor- 
rectly register the MR slices shown in Figures l(a) and l(b), but where the RLS 
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Fig. 1. Robust registration of MR images. (a) Reference image. (b) Image in (a) 
rotated by 20deg, translated by 10 pixels along the x-axis, 10 pixels along the y-axis 
and corrupted at 25% with salt and pepper noise with large magnitude. (c) Difference 
between the (noise free) registered image and the image in (a) (LS similarity metric). 
(d) Difference between the (noise free) registered image and the image in (a) (RLS 
szmglarity metric) 

achieved accurate matching by discarding outliers. The difference in accuracy is 
readily visible on the registration error shown in Figures l(c) and l(d).  

We also show in Fig. 2 an example of the application of the RLS algorithm 
to the detection of changes in a set of MRI slices of a multiple sclerosis patient, 
acquired at different dates. Figure 2 illustrates a case on which small differences 
due to lesion evolution, which were not well distinguished previously due to 
misalignment by the standard LS similarity metric (Fig. 2(c)), are now clearly 
identified by simple image subtraction (Fig. 2(d)). This result has been validated 
by an expert physician from IPB. 

R e m o t e l y  S e n s e d  Images .  Two images of France, in the infra-red band of 
NOAA (Fig. 3(a-b), acquired at different dates and showing large overcast areas, 
were manually registered by an expert from LSIIT to establish ground truth.  One 
of the images has been transformed using different 2D rotation and translation 
parameters and the registration algorithms were applied. This case, contrary to 
the example considered previously (Section 4.1), does not correspond to a cor- 
ruption of the data  by gross outliers, but to the presence of multiple coherent 
structures (i.e. ground and clouds) in the data. Mixture of data  from multiple 
(coherent) structures introduces a significant bias in all robust estimators, as 
shown in a recent study by Stewart [14]. The performances of the robust meth- 
ods are affected by this bias, as can be seen in Table 2 in which the different 
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T a b l e  1. Single modal registration of 3D MRI images. An MR volume was artifi- 
cially transformed using 20 different rigid transformations and the images were cor- 
rupted at 25% by salt and pepper noise. The average and the s tandard deviation of the 
registration errors computed from the 20 registrations are presented for the different 
approaches. Translation errors are given in voxels and rotation errors in degrees 

Approach At~ Aty Atz AO~ z~Oy A~z 
LS 2:30 -4- 1.75 2.53 -4- 1.56 2.77 4- 1.83 4.71-4- 2.89 5.33 -4- 3.40 5.05 :t= 3.51 
IU 1.49 -4- 1.40 1.56 -4- 1.41 1.93 -4- 1.63 3.75 4- 2.03 3.65 -4- 2.54 2.99 -4- 3.06 
MI 0.05=t=0.06 0.224-0.15 0 .09•  0.35=t=0.35 0 .27•  0.44=t=0.69 

RLS 0.04 -4- 0.07 0.16 -4- 0.11 0.06 -4- 0.10 0.41-4- 0.21 0.16 -4- 0.22 0.33 -4- 0.24 
RIU 0.09 4- 0.05 0.18 -4- 0.14 0.10 i 0.05 0.22 -4- 0.34 0.24 -4- 0.17 0.40 -4- 0.59 

approaches  are compared .  The  reg is t ra t ions  are not  as accura te  as in the  pre- 
vious case, a l t hough  a subpixe l  accuracy is reached,  and  the difference be tween 
m e t h o d s  is less pronounced .  The  robus t  m e t h o d s  p roduce  nevertheless  the  bes t  
resul ts  and  compare  f avourab ly  to  the  MI approach .  

F igure  3 i l lus t ra tes  the  con t r ibu t ion  of  the  RLS met r i c  wi th  respect  to  a 
non robus t  LS met r ic ,  in the  reg i s t ra t ion  of  the  or ig inal  inf ra- red  image  pai r .  
The  or ig ina l  images  show a mis reg i s t r a t ion  of  abou t  3 pixels.  Clouds  in the  
second image  lead the  LS technique to  a sl ight  mi sa l i gnmen t  (Fig.  3(c)) while the  
RLS measure  provides  a more  accura te  reg i s t ra t ion  (Fig.  3(d)) .  The  difference 
is r ead i ly  vis ible  along the  south-west  coast  of France.  The  reg i s t ra t ion  er lors  
presented  in F igures  3(c-d) are ob ta ined  by sub t r ac t i on  of  the  regis tered  image  
f rom the  reference image  in F igure  3(a),  followed by  con t ras t  modi f i ca t ions  for 
v i sua l i za t ion  purpose .  

Table 2. Single modal registration of 2D remotely sensed infra-red images. Two images 
of the infra-red electromagnetic band of NOAA satellite acquired at different dates have 
been manually registered to create ground truth. One of the images has undergone 
20 different rigid transformations using different translation and rotation values. The 
average and the s tandard deviation of the registration errors are presented for the 
different approaches. Translation errors are given in pixels and rotation errors in degrees 

Approach At~ Aty AO 
LS 0.42 -4- 0.18 0.31-4- 0.41 0.32 -4- 0.18 
IU 0.52 -4- 0.21 0.77 ::t: 0.40 0.30 -4- 0.25 
MI 0.49 -4- 0.54 0,63 -4- 0.25 0.75 ::t= 0.89 

RLS 0.36 -4- 0.10 0.27 -4- 0.37 0.30 -4- 0.25 
RIU 0.34 -4- 0.17 0.70 -4- 0.28 0.18 -4- 0.13 

4 .2  M u l t i m o d a l  R e g i s t r a t i o n  

M e d i c a l  I m a g e s .  To eva lua te  the  ab i l i ty  of  the  robus t  s imi l a r i t y  met r i cs  to  
hand le  m u l t i m o d a l  image  pairs ,  a 3D S P E C T  image  vo lume has been m a n u a l l y  
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Fig. 2. Change detection in a MRI image sequence. (a) Multiple sclerosis patient MR 
image. (b) Image of the same patient acquired several months later. (c) Difference 
between the registered image and the image in (a) (LS similarity metric). (d) Difference 
between the registered image and the image in (a) (robust RLS .similarity metric) 

Fig. 3. Single modal registration of remotely-sensed images. (a) Image of France in 
the infra-red band of NOAA (02/10/97). (b) Image of France in the infra-red band 
of NOAA (02/05/97). (c) Registration error (LS szmilarity metric). (d) Registration 
error (robust RLS similarity metric) 
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registered to its corresponding MRI volume with the aid of an expert physician 
from IPB. The manually registered SPECT volume was then transformed using 
the same 3D translation and rotation parameters  as in the previously described 
experiments (Section 4.1). To simulate outliers, 25% of the SPECT image was 
corrupted by salt and pepper noise. The robust inter-image uniformity technique 
RIU has been compared to the inter-image uniformity similarity function IU [3] 
and to the mutual  information MI criterion [4, 5]. Table 3 shows the robustness of 
the different similarity measures to gross outliers. The error for the RIU method 
is about  1 voxel for the translation parameters  and 1 degree for the Euler rotat ion 
angles. This  is significantly more accurate than the IU approach. The proposed 
robust similarity metric also compares favourably to the MI criterion which 
yields registrations that  are better  than the IU criterion but are generally below 
RIU. 

Table  3. Multimodal registration of 3D MRI/SPECT images. A 3D SPECT image 
volume manually pre-registered by an expert to its MRI counterpart was artificially 
transformed using 20 different translation and rotation parameters and corrupted at 
25% by salt and pepper noise. The average and the standard deviation of the registra- 
tion errors are presented for the different approaches. Translation errors are given in 
voxels and rotation errors in degrees 

Approach zSt~ Aty At~ zSt~ AOy A ~  
IU 3.85 4- 5.59 
MI 1.41 4- 0.74 

RIU 0.82 4- 0.53 

3.02 -4- 4.78 4.16 4- 4.38 8.33 -4- 4.51 6.23 -4- 3.52 6.80 ::h 4.15 
1.38 4- 1.23 2.06 ::h 1.29 0.94 4- 1.58 1.04 -4- 1.15 1.36 4- 0.77 
0.61 -4- 0.50 0.83 4- 0.60 0.21 4- 0.48 1.14 4- 0.26 0.71 4- 0.94 

Figure 4 shows a real example of a patient SPECT image volume registered 
with respect to its MRI counterpart  by the robust algorithm. The accuracy of 
the registration has been evaluated by visual inspection and has been considered 
as satisfactory by an expert. 

R e m o t e l y  S e n s e d  I m a g e s .  We consider again the case of multispectral  re- 
motely sensed images, presenting coherent data  corruption due to large overcast 
areas. Two images, one in the visible and one in the infrared band of NOAA~ 
acquired at different dates (Fig. 5(a-b)) were manually registered to establish 
ground truth.  One of the images has been transformed using different rotat ion 
and translation parameters  and the mult imodali ty registration algorithms were 
applied. The performances of the different methods are summarized in Table 
4. As expected the robust RIU criterion provides registrations that  are signifi- 
cantly more accurate than the non robust IU technique. The difference between 
the tested similarity metrics is however not as pronounced as for the medical 
images registration problem (in which gross outliers were considered). This may 
again be explained by the bias introduced by the mixture of da ta  from multiple 
coherent structures on the robust estimation [14]. In this particular case, the 
mutual  information MI criterion yields, in the average, the best results. Let us 
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Fig. 4. Robust MRI/SPECT volume registration. The SPECT and MRI volumes with 
the SPECT contours superimposed on the MRI are shown (mult,planar v,sual,zat,on) 
after robust registration ( RIU similarity metric) 

however notice that the variance of the MI estimate is significantly higher than 
the variance of the robust RIU criterion (see Table 4), which tends to temper 
the conclusion in this case. 

Table 4. Multimodal registration of 2D visible/infra-red images. Two images, one of 
the visible and one of the infra-red electromagnetic band of NOAA satellite acquired 
at different dates have been manually registered to create ground truth. One of the 
images has undergone 20 different rigid transformations using different translation and 
rotation values. The average and the standard deviation of the registration errors are 
presented for the different approaches. Translation error are given in pixels and rotation 
errors in degrees 

Approach Atx At~ A~ 
IU 1.34 4- 0.87 
MI 0.40 -4- 0.68 

RIU 0.51 =h 0.34 

1.04 4- 0.34 0.34 4- 0.27 
0.31 4- 0.74 0.24 4- 0.37 
0.76 4- 0.37 0.26 4- 0.20 

Figure 5 presents the registration of the original multimodal pair. The images 
from the NOAA visible band (Fig. 5(a)) and from the NOAA infra-red band (Fig. 
5(b)), acquired at different dates have been registered using the IU, RIU and 
MI approaches. In this particular case, the non robust IU metric and the MI 
criterion provided the same final registrations. As may be seen Fig. 5 (c), the 
IU metric, yields a misregistration, that is visible on the error image, along the 
south-west coast of France. This is not the case of the robust RIU similarity 
measure (Fig. 5 (d)) which provides an accurate registration of this dissimilar 
multimodal image pair. Let us notice that the multimodal registration error 
shown in Fig. 5 (c-d) is defined as the difference between the registered IR image 
and the IR image acquired at the same instant as the visible band reference 
image. 
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Fig. 5. Multimodal registration of visible/IR remotely-sensed images. (a) Image of 
France in the visible band of NOAA (02/10/97) (reference image). (b) Image of France 
in the infrared band of NOAA (02/05/97). (c) Registration error (IV similarity metric). 
(d) Registration error (robust RIU similarity metmc). The registration error is defined 
as the difference between the registered IR image and the IR image acquired at the 
same instant as the visible band reference image (a) 

The LS and RLS techniques require approximately the same average com- 
putat ion times: 20 mn cpu t ime for 3D 128 • 128 • 128 images on a HP 715/80 
workstation. For the same data  size, the IU method takes 35 ran, the MI tech- 
nique 40 mn and the RIU method needs 60 mn cpu time. In the case of 2D 
images (256 • 256), the RIU metric requires 4 mn cpu t ime while each of the 
other techniques takes approximately 1-2 minutes. As can be seen, the additional 
computat ional  complexity introduced by the robust estimation is acceptable and 
these methods may thus be used with profit to improve the accuracy in many  
critical single or mult imodal  image registration problems. 

5 C o n c l u s i o n  

The robust similarity metrics-based registration methods described in this paper  
were motivated by the lack, in existing approaches, of specific models for gross 
dissimilarities or outlying data  that  are often present in single and mult imodal  
image pairs. The proposed stochastic multigrid registration algorithms have two 
major  advantages over standard methods: 

- No manual  initialization near the opt imal  solution is required to obtain an 
accurate registration. Local minima, a major  problem in s tandard image 
registration techniques, are avoided by the use of fast multigrid random 
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sampling algorithms. This results in a fully data driven method that requires 
no human interaction. 

- Gross image differences are taken into account efficiently by robust M- 
estimators. To our knowledge, the registration of multzmodal images showing 
gross dissimilarities or mixture of data from multiple coherent structures has 
never been evoked until now. 

As a conclusion, let us emphasize that the approach proposed in this paper 
is comprehensive and not limited to medical or remotely-sensed images. Other 
potentiM application fields [6] such as military imaging, multisensor robot vi- 
sion or the multisource analysis of artistic patrimony [2] may benefit from the 
robustness of these methods. 
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