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A b s t r a c t .  This paper deals with the constrained shape reconstruction 
of objects having quadric patches. The incorporation of geometric con- 
straints in object reconstruction was used first by Porrill [10]. His ap- 
proach combined the Kalman filter equations with linearized constraint 
equations. This technique was improved by De Geeter et al [5] to reduce 
the effects of linearization error. The nature and the specificity of this 
technique make it limited in scope and application. 
In their approach for 3-D object pose estimation, Bolle et al [2] con- 
strained some quadrics to have a certain shape (circular cylinder and 
sphere) by using a specific representation for these particular surfaces. 
Our work uses a new approach to global shape improvement based on 
feature coincidence, position and shape constraints. The key idea is to 
incorporate user specific geometric constraints into the reconstruction 
process. The constraints are designed to fix some feature relationships 
(such as parallel surface separations, or cylindrical surface axis relation- 
ships) and then use least squares fitting to fix the remaining parameters. 
An optimization procedure is used to solve the reconstruction problem. 
In this paper, constraints for planar and general quadric surface classes 
are given. Results with quadric surfaces show much improvement in 
shape reconstruction for both constrained and unconstrained relation- 
ships. The proposed approach avoids the drawbacks of linearization and 
allows a larger category of geometric constraints. To our knowledge this 
work is the first to give such a large framework for the integration of 
geometric relationships in object modelling. 
The technique is expected to have a great impact in reverse engineering 
applications and manufactured object modelling where the majority of 
parts are designed with intended feature relationships. 

1 I n t r o d u c t i o n  

There has been a recent flurry of effort on reconstructing 3D geometric models 
of objects from single [3,6,8] or multiple [2,4, 12, 11,13] range images, in par t  
motivated by improved range sensors, and in par t  by demand for geometric 
models in the CAD and Virtual Reality (VR) application areas. However, an 
impor tan t  aspect  which has not been fully investigated is the exploitation of the 
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geometric constraints defining the spatial or topological relationships between 
object features. 

The work presented in this paper investigates reverse engineering, namely 
the combination of manufacturing knowledge of standard object shapes with 
the surface position information provided by range sensors. 

The first motivation behind this work is that models needed by industry are 
generally designed with intended feature relationships so this aspect should be 
exploited rather than ignored. The consideration of these relationships is actually 
necessary because some attributes of the object would have no sense if the object 
modelling scheme did not take into account these constraints. For example, take 
the case when we want to estimate the distance between two parallel planes: if 
the plane fitting results gave two planes which are not parallel, then the distance 
measured between them would have no significance. 

The second motivation is to see whether exploiting the available known re- 
lationships would be useful for reducing the effects of registration errors and 
mis-calibration. Thus improving the accuracy of estimated part features' para- 
meters and consequently the quality of the modelling or the object localization. 

In previous work [14] we have shown that this is quite possible for planar 
objects. A general incremental framework was presented whereby geometric re- 
lationships can be added and integrated in the model reconstruction process. 
The objects treated were polyhedral and the data was taken from single views 
only. An overview of the technique is given in Section 3. 

In this paper we study the case of parts having quadric surfaces. Two types 
of quadric are treated here, cylinders and cones. Both single view data and 
registered multiple view data data have been used. 

Section.2 discuss the related work and the originality of our contribution. 
In Section.3, we summarize the technique. More details can be found in [14]. 
Section.4 gives some mathematical preliminaries about quadrics in general and 
cylinders and cones in particular. Section.5 demonstrates the process on several 
test objects. 

2 R e l a t e d  w o r k  

The main problem encountered in the incorporation of geometric relationships 
in object modelling is how to integrate these constraints in the shape fitting 
process. The problem is particularly crucial in the case of geometric constraints 
many of which are non-linear. In his pioneering work, Porrill [10] suggested a 
linearization of the nonlinear constraints and their combination with a Kalman 
filter applied to wire frame model construction. Porrill's method takes advantage 
of the recursive linear estimation of the KF, but it guarantees satisfaction of the 
constraints only to linearized first order. Additional iterations are needed at each 
step if more accuracy is required. This last condition has been taken into account 
in the work of De Geeter et al [5] by defining a "Smoothly Constrained Kalman 
Filter". The key idea of their approach is to replace a nonlinear constraint by a 
set of linear constraints applied iteratively and updated by new measurements in 



187 

order to reduce the linearization error. However, the characteristics of Kalman 
filtering makes these methods essentially adapted for iteratively acquired data 
and many data samples. Moreover, there was no mechanism for determining how 
successfully the constraints have been satisfied. Besides, only lines and planes 
were considered in both of the above works. 

The constraints considered by Bolle et al [2] in their approach to 3D object 
position covers only the shape of the surfaces. They chose a specific representa- 
tion for the treated features: plane, cylinder and sphere. 

Compared to Porrill's and De Geeter's work, our approach avoids the draw- 
backs of linearization, since the constraints are completely implemented. Besides 
our approach covers a larger category of feature shapes. Regarding the work of 
Bolles, the type of constraints which can be held by our approach go beyond 
the restricted set of surface shapes and cover also the geometric relationships 
between object features. To our knowledge the work appears the first to give 
such a large framework for the integration of geometric relationships in object 
modelling. 

3 T h e  o p t i m i z a t i o n  t e c h n i q u e  

Given sets of 3D measurement points representing surfaces belonging to a cer- 
tain object, we want to estimate the different surfaces' parameters, taking into 
account the geometric constraints between these surfaces. 

A state vector p is associated to the object, which includes the set of paramet- 
ers related to the patches. The vector p has to best fit the data while satisfying 
the constraints. So, the problem that we are dealing with is a constrained optim- 
ization problem to which an optimal solution may be provided by minimizing 
the following function: 

E(p) = F(p) + C(p) (1) 

where F(p) is the objective function defining the relationship between the set of 
data and the parameters and C(p) is the constraint function. F(p) could be the 
likelihood of the range data given the parameters (with a negative sign since we 
want to minimize) or the least squares error function. The likelihood function 
has the advantage of considering the statistical aspect of the measurements. In 
a first step, we have chosen the least squares function as the integration of the 
data noise characteristics into the LS function can be done afterwards with no 
particular difficulty, leading to the same estimation of the likelihood function in 
the case of the Gaussian distribution. 

Given M geometric constraints, the constraint function is represented by the 
following equation: 

M 

c ( v )  = ; kCk(v) (2) 
k = l  

where Ck (p) is a vector function associated to constraint k. Ak are weighting 
coefficients used to control the contribution of the constraints in the parameters' 
estimation. Each function is required to be convex since many robust techniques 
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for minimizing convex functions are available in the literature. The objective 
function F(p)  is convex by definition, so therefore E(p)  is also convex. 

Figure 1 shows the optimization algorithm that  we have used, which has been 
simplified so that  a single A is associated to all the constraints. The algorithm 
starts with an initial parameter vector p [0] that  satisfies the least squares func- 
tion. Then we iteratively increase A and solve for a new optimal parameter p [n+l] 
using the previous p IN]. The new optimal vector is found by means of the stand- 
ard Levenberg-Marquardt algorithm. The algorithm stops when the constraints 
are satisfied to the desired degree or when the parameter vector remains stable 
for a certain number of iterations. The initial value A0 has to be large enough to 
avoid the trivial null solution and to give the constraints a certain initial weight. 
A convenient value for the initial A is : A0 = F ( p  [~ [0]) 

initialise p and 2L 
P - - P o  

X ~ Xo 

1 
C(p)=Z Ck(p) I 

While "l~k ~ 
Ck(p) > 
k= 1..K X - X + A X C(p) 

find p mimizing F(p) +~. 

update p 

Fig. 1. The optimization algorithm optim 

4 P r e l i m i n a r i e s  

This section give a brief overview about constraining quadrics and some partic- 
ular shapes. A full treatment of these surfaces can be found in [1]. While the 
material contained here is largely elementary geometry, we present it in order 
to make clear how the set of constraints used for each surface type and relation- 
ship relate to the parameters of the generic quadric. The generic quadric form is 
used because it is easy to generate a least squares surface fit using the algebraic 
distance. 

A general quadric surface is represented by the following quadratic equation: 

f ( x ,  y, z) --- ax 2 + by 2 + cz 2 + 2hxy + 2gxz + 2 f y z  + 2ux + 2vy + 2wz + d = 0 (3) 
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which can be written : X T A X  + 2 X T B  + C = 0 
where 

A = b , B = [U, V, W] T ,  C = d; X = Ix, y, z] T (4) 
/ 

The type of the quadric depends on the discriminant of the quadric A and the 
cubic discriminant l)  : 

a h  
b v 7) = h b (5) 

A =  f c w  
v w d  g f c  

and the cofactors o f / ) :  

,4 = be - I s 

B = a c  - g2 

C = ab - h 2 

= gh - a f  

g = h f  - by 

7 / =  g f  - ch 

(6) 

4 .1  T h e  c y l i n d e r  

The quadric is a cylinder when AI = :D = O, u A + v 7 / + w g  = 0 and ,4 + B + C > 
0. The equation of the cylinder axis is 

vg wh 
y - -  g _ z 74 - - 0  (7 )  

1/.T" I / g 1/7/ 

this means that  the cylinder axis has as direction the vector (1/~', l / g ,  1/7/) 
and passes through the point Xo(U~, -~- wh , -n-). The axis orientation corresponds 
to the eigenvector of the matrix A related to the null eigenvalue. The two other 
eigenvalues are positive. 

T h e  c i rcu la r  cy l inde r  For a circular cylinder, we can show that  the parameters 
of the quadric should also satisfy the following conditions: 

a g h + / ( g 2 + h  2) = 0 (8) 

b h f  + g(h  2 + f 2 ) = 0 

c . f g + h ( f  2 +g2)  = 0 
u v w 

= 0  

A circular cylinder may be also represented by the canonical form: 

(X-Xo)2  + ( y - y o ) 2  + ( z - z o ) 2 - ( n z ( x - x o ) + n y ( y - y o ) + n z ( z - z o )  ) : - r  2 = 0 (9) 
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where Xo = [xo,yo,zo] T is an arbitrary point on the axis, n = [nx,nz,ny] T is a 
unit vector along the axis and r is the radius of the cylinder. 

This form has the advantage of having a minimal number of parameters. 
However its implementation in the optimization algorithm may cause some com- 
plexity, indeed it is not possible with this form to get separate terms for the data 
and the parameters as in (3) (which allows the data terms to be computed off 
line). Consequently this may increase the computational cost dramatically. 

The expansion of (9) and the identification with (3) yields 

2 (10) a = l - n ~  
2 b =  l - n y  
2 c =  l - n  z 

h = - n z n y  

g -= - - n x n  z 

f ~ .  - - n y n  z 

These equations have the advantage of imposing implicitly the circularity con- 
straints of the cylinder and avoid the problem when one of the parameters 
(f, g, h) vanishes. Besides, they make concrete the geometric relationships between 
the cylinder and other object features as we will see in Section 5.2. 

4 . 2  T h e  c o n e  

A cone surface satisfies A ~ 0, 7) = 0. The summit of the cone is given by: 

Xo = A - 1 B  (11) 

The axis of the cone corresponds to the eigenvector related to the negative 
eigenvalue of the matrix A. The two other eigenvalues are both positive. 

Circular  cone For a circular cone the parameters of the quadric equation have 
to satisfy the following conditions 

a f - g h  = b g - h f  c h - f g  
- -  = ( 1 2 )  

/ g h 

As for the cylinder case, a circular cone equation has a more compact form: 

= 0 
(13) 

where [xo,yo, Zo] T is the summit of the cone, [n~,ny,nz] T is the unit vector 
defining the orientation of the cone axis and c~ is the semi-vertical angle. The 
quadric equation parameters can thus be expressed explicitly as a function of 
the above terms by : 

2 (14) a ~ n x - - C 0 8 2 0 l  
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2 b = n u - cos2~ 

2 
C ~ n z - -  C 0 8 2 0 l  

h = n x n y  

g = n z n z  

f = n y n z  

For the same reasons mentioned in the cylinder case the compact form of the cone 
equation is not adequate for the optimization algorithm. Nevertheless it is useful 
to implicitly impose the conic constraints by means of equations (14) Instead of 
(12). Indeed in this form all the parameters (f,  g, h) need to be different of zero. 

4.3 P l a n e s  

A plane surface can be represented by this following equation: 

n=x + n y y  + n z z  + d = 0; (15) 

where n = [n=, ny ,  nz] T is unit normal vector (llnll = 1) to the plane and d is 
the distance to the origin. 

5 A p p l i c a t i o n  o n  s o m e  t e s t  o b j e c t s  

The objects treated in this section are real parts. The data  was acquired with a 
3D triangulation range sensor. The range measurements were already segmented 
into groups associated with features by means of the rangeseg [7] program. 

5.1 N o t a t i o n  

For the rest of the paper we need the following notations: 
i~ is a vector which all the elements are null except the r th element which is 
equal to 1. 
j(r,s) is a vector which all the elements are null except the r th and the s th 
elements which are equal to 1 and - 1  respectively. 
M(r,s) is a diagonal matrix which all the elements are null except the r th and 
the s th elements which are equal to 1 and - 1  respectively. 
U(r,s) is a diagonal matrix defined by 

U ( i , i ) = l  i f r < i < s  
U(r,8) = U ( i , i )  0 otherwise 

L(r,s,p ) a symmetric matrix defined by 

L ( i , j ) = L ( j , i ) = l / 2  i f i = r + t , j = s + t  O < t < p  
L(r,s,p) = L ( i , j )  = L ( j , i )  0 otherwise 
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5.2 The  hal f  cy l inder  

This object is composed of four surfaces. Three patches $1, $2 and $3 have 
been extracted from two views represented in Figure 2(a,c). These surfaces cor- 
respond respectively to the base plane $2, lateral plane $1 and the cylindrical 
surface $3 (Figure 2.b). The parameter vector is p = [plT,p2T,p3T] T, where 
Pl = [hi T, dl] T, P2 = [n2 T, d2] T and P3 = [a, b, c, h, g, f ,  u, v, w, d] T. The least 
squares error function is given by: 

O ;1  0(4,4) O(4,10) ] 
F(p) = pT Hp,  H = ,4) H2 O(4,10) 

0 T L (4,10) (4,10) H3 
(16) 

where Hi, H2,//3 are the data matrices related respectively to $1, $2, $3: 

i i T  i H, = ~'~(X~)(Xj)  for Xj belonging to surface S{ 
J 

This object has the following constraints 

1. S1 and $2 are perpendicular, 
2. the cylinder axis is parallel to Sl's normal, 
3. the cylinder axis lies on the surface $2, 
4. the cylinder is circular. 

Constraint 1 is expressed by the following condition 

Cang(p) : (nlTn2) 2 : (pTL(1,5,2)p)2 : 0; (17) 

Constraint 2 is satisfied by equating the unit vector n in (9) to Sl'S normal 
h i .  Constraint 3 is represented by two conditions: axis vector n is orthogonal 
to S2's normal n2, and one point of the axis satisfies S2's equation. The first 

Fig. 2. Two views of the half cylinder and the extracted surfaces 
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condition is guaranteed by constraint 2 since n2 is orthogonai to n l .  For the 
second condition the point Xo in Section 4.1 has to satisfy the equation: 

Gaze(P) = (XTo n2 + d2) 2 = (--[u,v,w]Tn2 + d2) 2 = ( isTp -- pTL(5,15,2)p)2 = 0 
(18) 

using equations (6) and (10). 
The cylinder circularity constraint is implicitly defined by the equations (10). 

From these equations we extract the following constraints on the parameter 
vector p: 

Ccircl (p) = (i9Tp 9r pTU(1,1)p -- 1) 2 = 0 

Ccitt2 (P) = (i loTp + pTu(2,2)P -- 1) 2 = 0 

Cci,'cs (P) = ( i l l T p  + pTu(3,a)P -- 1) 2 = 0 

Ccirc4 (P) = ( i l2Tp + pT L(1,2,0)P)2 = 0 

Gcirc~ (P) = ( i laTp + pT L(1,3,0)P) 2 = 0 

Gcirc~ (P) = (i14Tp q- pT L(2,3,0)p)2 = 0 

(19) 

We group then all the above constraints in a single one 

6 
Genre(p) = Vcire  (p) = 0 (20) 

k----1 

Finally the normals n l  and n2 have to be unit. This is represented by: 

Cunit(P) = (pTU(1,3)P -- 1) 2 + (pTU(5,7)P- 1) 2 -- 0 (21) 

The constraint function is then 

C(p) = Cunit(P) + Gang(p) + Gaze(p) + Ccirc(P) (22) 

and optimisation function is 

E(p) = p T H p  + ~(Cunit (P) q- dang (p) q- Gaxe (p) q- Ccirc (p))  (23) 

E x p e r i m e n t s  In the first test, the algorithm optim has been applied to data  
extracted from a single view (Figure 2.c). The behaviour of the constraints 
(17),(18),(20) and (21) during the optinization have been mapped as a function 
of )t as well as the least squares residual (16) and the constraint function (22). 
The figures show a linear logarithmic decrease of the constraints with respect to 
A. It is also noticed that  at the end of the optimization all the constraints are 
highly satisfied. The least squares error converges to a stable value and the con- 
straint function vanishes at the end of the optimization. The figures also show 
that  it is possible to continue the optimization further until a higher tolerance 
is reached, however this is limited by the computing capacity of the machine. 
We have noticed that  beyond a certain value of A some numerical instabilities 
occurred. 



194 

- 8  

-10 

~ - 1 2  

- 1 8  

-2( 

-10 

-12 

~ - 1 4  

-20 

5.9 

58 

A5.7 

~ 5.6 

~ s  4 

5.3 

5.'- 

angle constraint 

1'O 1'1 1'2 1'3 IOglo(A,) 

(a): C~ 
cylinder axis constraint 

9 10 11 12 13 log1 o(:K) 
(e)' co., 

Is function 

~ f 

unit constraint 
--5 ' 

-6P~, 

--1~8 9 10 11 12 13 tOglo(~,.) 

(b):C_. 
cylinder circularity constraint 

-5 
- 6  

-7 

- lg  

-12 
-13 

9 10 ioll  l o ( k ) 1 2  13 14 10 ioll  l o { ~ . ) 1 2  

(e): LS error (f):C(p) 

g 10 11 12 13 log1 o(~) 
(d): Cci,r 

const ralnt function 
-4, 

-5• 

i- 
g-'o I 
----t1[ 

-12~ 9 13 

Fig.  3. (a),(b),(c),(d): decrease of the different constraints with respect to A. (e),(f): 
variation of least squares function and the constraint function with respect to A. 

In the second test, registered data from view1 (Figure 2.a) and view2 (Figure 
2.c) have been used. The registration was carried out by hand. Results similar 
to the first test have been obtained for the constraints. 

Tables 1 and 2 represent the values of some object characteristics obtained 
from an estimation without considering the constraints and from the presented 
optimization algorithm. These are shown for the first and second test respect- 
ively. 

The characteristics examined are the angle between plane $1 and plane $2, 
the distance between the cylinder axis's point Xo (see (4.1) and (9)) and the 
plane $2 and the radius of the cylinder. The comparison of the tables' values 
for the two approaches show the clear improvement carried by the proposed 
technique. This is noticed in particular for the radius which the actual value is 
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30mm, although the extracted surface covers considerably less than  a half of a 
cylinder. As we constrained the angle and distance relations, we expect these to 
be satisfied, as they are to almost an arbitrari ly high tolerance, as seen in Fig.3. 
The radius was not constrained, but the other constraints on the cylinder hav,~ 
allowed the least squares fitting of the unconstrained parameters  to achieve a 
much more accurate estimation of the cylinder radius in both  cases. 

v~ew2  angle(S1, $2) (degree) distance(Xo, $2) (ram): radius(mm) I 
without constraints 90.84 6.32 26.98 

I with constraints 90 0 29.68 
actual values 90 0 30 

Table  1. Improvement in shape and placement parameters with and without con- 
stralnts from data from single view. 

registered view1 and view2 angle(S1, $2) (degree) 
without constraints 89.28 

with constraints 90 
actual values 90 

distance(Xo, $2) (mm) radius(ram) 
2.23 30.81 

0 30.06 
30 

Table 2. Improvement in shape and placement parameters with and without con- 
straints from data merged from two views. 

5.3 T h e  c o n e  o b j e c t  

This object contain two surfaces: a plane ($1) and a cone patch ($2) (Figure4(c,d). 
Two views have been taken for this object (Figure4(a,b) 

Fig. 4. (a,d): Two views of part , (c,d): extracted patches 
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The parameter vector is p = ~ I T , p 2 T ]  T, where Pl  = [n lT ,d l ]  T and P2 = 
[a, b, c, h, g, f ,  u, v, w, d] T. The least squares error function is given by: 

F ( p )  = p T H p ,  H = [ H1 O(4,10)] (24) 
L0(4,1o) H2 

where/-/1 and/-/2 are the data  matrices related to $1 and $2. This object involves 
the following constraints: 1) the cone axis is parallel to $1,2) the cone is circular 
Constraint 1 is imposed if Sl'S normal is equated to the unit vector n of the 
cone axis. Eliminating cos2c~ from the the cone circularity equations (14) and 
taking into consideration constraint 1, the circularity constraints are formulated 
a s  : 

a - b = n i  - ( 2 5 )  

- c = n L  - 

h ~ n l ~ n l u  

g ~ / ~ l |  

f ~ n l n l =  

A matrix formulation of these equations as a function of the parameter vector p 
is: 

Ccircl (P) = ( j (5 ,6)Tp -- pT  M(1,2)P)2 -: 0 (26) 

Ccirc2 (P) = ( j(5,7)TP -- pT  M(1,a)p)2 = 0 

Ccircs (P) = (J(6, , )TP -- pT  M(2,3)p)2 = 0 

Ccirc4 (P) = ( i s T p  -- pT  L(1,2,0)P) 2 ---- 0 

Ccirc5 (P) : ( i9Tp  - pT  L(1,3,0)P) 2 : 0 

Ccirc~ (P) = ( i l o T p  -- pT  L(2,3,0)p)2 : 0 

which are grouped into a single constraint Ccirc(P) 6 : Ek=  = 0 .  

Considering as well the unit constraint related to the normal n x  Cunit(P) = 
(pTU(1,a)p -- 1) 2 ---- 0. The whole constraint function is : C(p)  = Cunit(p) 4. 

E x p e r i m e n t s  The optimization algorithm was applied to data  from a single 
view and to registered data. The behaviour of the unit constraint, the circu- 
laxity constraint, the least squaxes function and the constraint function during 
the optimization axe qualitatively identical to that  shown in Fig.3. As with the 
cylinder object, the constraints are satisfied up to a high tolerance. 

For both the single view and the registered data, the angle between the cone 
axis and the plane normal, the distance from the cone summit to the plane and 
the semi vertical angle a have been computed. Table 3 and Table 4 show the 
estimated values. 



197 

We notice tha t  the orthogonality of the plane and the cone axis is almost 
perfectly satisfied with the optimization. The actual  values of the distance and 
the angle a are not known with high accuracy. Nevertheless the est imated values 
are within the errors '  tolerances. 

viewl angle(cone axis ,nl)(degree) distance(Xo, S1)(mm) a(degree) 
without constraints 2.61 72.74 20.78 

with constraints 0.00 72.55 19.68 
True values 0 70 20 

Table  3. Improvement in shape and placement parameters with and without con- 
straints from data from a single view. 

registered viewl and view2 angle(cone axis ,nl)(degree) 
without constraints 0.79 

with constraints 0.00 
True values 0 

distance(Xo, S1)(mm) a(degree) 
71.73 19.20 
70.09 19.59 

70 20 

Tab le  4. Improvement in shape and placement parameters with and without con- 
straints from data merged from two views. 

5.4 The multi-quadric object 

The third series of tests have been carried out on a more complicated object 
(Fig.5). I t  has two lateral planes $1 and $2, a back plane $3, a bo t tom plane $4, 
a cylindrical surface $5 and a conic surface $6. The cylindrical patch is less than  

Fig. 5. four views of the multi-quadric object 
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a half cylinder (40% arc), the conic patch occupies a small area of the whole 
cone (less then 30%) 

The vector parameter associated to this object is then pT = [Pl T, P2 T, pat  p4T PsT, peT] 
where Pi is the parameter vector associated to the surface Si. 

The considered surfaces of the object have the following constraints 

1. $1 makes an angle of 120 ~ with $2 
2. $1 and $2 are perpendicular to $3 
3. $1 and $2 make an angle of 120 ~ with $4 
4. $3 is perpendicular to $4 
5. the axis of the cylindrical patch $5 is parallel to S3's normal 
6. the axis of the cone patch S0 is parallel to S4's normal 
7. the cylindrical patch is circular 
8. the cone patch is circular 

These constraints are then represented in the same manner as in Section 5.2 
and Section 5.3. 

E x p e r i m e n t s  Since the surfaces can not be recovered from a single view, four 
views (Fig.5) have been registered by hand. The results regarding the algorithm 
convergence are qualitatively identical to those shown in Fig.3. All the constraint 
functions vanish and are highly satisfied. 

In order to check the robustness and the stability of the technique, we have 
carried out 100 optimizations, in each of them 50% of the surfaces' points are 

angle ($1, $2)I($1, Ss) ($1, $4) ($2, Sa) ($2, $4) ($3, Sa) 
without constraints 119.76 92.08 121.01 87.45 119.20 90.39 

with constraints 120.00 90.00 120.00 90.00 120.00 90.00 
actual values 120 90 120 90 120 90 

Table 5. Improvement of the surface's angle estimation. 

selected randomly. The results shown below are the average of this tests. Our 
first intention was to compare the constrained approach with an object estima- 
tion method which does not consider constraints, in this case the least squares 
technique applied to each surface separately. 

In Table 5 the angles between the different planes are mapped, we notice 
tha t  all the angles converge to the actual values. Table 6 and Table 7 contain 
the estimated values of some attributes of the cylinder and the cone. The values 
show that  each of the axis constraints are perfectly satisfied, the estimated radius 
and the cone half angle ~ are quite close to the actual ones. We notice the good 
shape improvement of improvement, relative to the unconstrained least squares 
method, given by reduction of bias of about 12mm and 3 ~ respectively in the 
radius and the half angle estimation. The standard deviation of the estimations 
have also been reduced. 

1 We consider the angle between normals. 
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The radius estimation is within the hoped tolerances, a systematic error 
of about 0.5ram is quite nice. However the cone half angle estimation seems to 
involve a larger systematic error (about 1.8~ Two factors may contribute to this 
fact: 1) the registration error may be too large since it was made by hand and 2) 
the area of the cone patch covers less than 30 % of the whole cone. It is known 
that  when a quadric patch does not contain enough information concerning the 
curvature, the estimation is very biased, even when robust techniques are applied, 
because it is not possible to predict the variation of the surface curvature. 

cylinder parameters angle( axis ,Sa's normal) radius standard deviation 
without constraints 2.34 37.81 0.63 

with constraints 0.00 59.65 0.08 
actual values 0 60 0 

Table  6. Improvement of the cylinder characteristic estimates. 

cone parameters angle( axis ,S4's normal) a standard deviation 
without constraints 6.0866 26.0108 0.3024 

with constraints 0 31.8389 0.1337 
actual values 0 30 0 

Table  7. Improvement of the cone characteristic estimates. 

angle ($1, $2) ($1, Sa) ($1,84) ($2, $3) ($2, $4) (Sa, $4)' 
without constraints 119.76 92.08 121.48 87.45 119.20 90.39 

with constraints 119.99 90.33 120.00 90.00 120.00 90.00 
actual values 120 90 120 90 120 90 

Table  8. Improvement of non-constrained angle estimates. 

We have also investigated whether leaving some features unconstrained will 
affect the estimation since one can say that  the satisfaction of the other con- 
stralnts may push the unconstrained surfaces away from their actual positions. 
To test this, we have left the angles between the pair of planes ($1,$2) and 
($1, $3) unconstrained. The results in Table 8 show that  the estimated uncon- 
strained angles are still close to the actual ones and the accuracy is improved 
compared to the non-constrained method. The computation time for this object 
in Matlab was 48s on a 200Mhz sun Ultrasparc workstation. 
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6 C o n c l u s i o n  

If we consider the objectives stated in the introduction which are : object shape 
reconstruction which satisfies the constraints and improves the estimation ac- 
curacy, we can say that these objectives have been reached. The experiments 
show that parameter optimization search does produce shape fitting that almost 
perfectly satisfied the constraints. The comparison of the results with the non- 
constrained fitting confirms that the proposed approach improves the quality 
of the fitting accuracy to a high degree. For the two objects having cylinder 
patches, the radius error is less then 0.5ram. Results for the cone are reasonable 
but less satisfactory. This is mainly due to the relatively small area of the conic 
patch. Actually, we intentionally chose to work with small patches because it is 
the case when non-constrained fitting surface techniques fail to give reasonable 
estimation even with the robust algorithms. This is due to the "poorness" of the 
information embodied in the patch. However we intend to investigate a more 
robust form for the objective function which involves the data noise statistics. 

Regarding the constraint representation, it is noticed that some constraints 
involve a large number of equations, in particular for the circularity constraint. 
One solution is to implicitly impose this constraints through the representation 
of the quadric equation ( ( X -  X o ) T ( I - - n n T ) ( x -  X o ) -  r 2 = 0 ) for the cylinder 
and ((X - X o ) T ( n n  T -- cos2(oL))(X - Z o )  --- 0 )  for the cone. The main problem 
encountered with this representation is the complexity of the related objective 
function and the difficulty of separating the data terms from the parameter 
terms, but we are working on this issue. It will be also worthwhile to investigate 
some topological constraints between surfaces which have a common intersection. 
The adequate formulation of this type of constraints is the main problem to solve. 

We are starting to investigate is how one might identify inter-surface rela- 
tionships that can have a constraint applied. In manufacturing objects, simple 
angular and spatial relationships are given by design. It should be straightfor- 
ward to define Mahalanobis distance tests for standard feature relationships, 
subject to the feature's statistical position distribution. With this analysis, a 
computer program could propose a variety of constraints that a human could 
either accept or reject, after which shape reconstruction could occur. 

We have also investigated [14] an approach where constraints are increment- 
ally added, for example by a human reverse engineer, but have found no essential 
difference in results. The batch satisfaction of all constraints as presented here 
takes very little computing time, so we no longer use the incremental algorithm. 2 

2 Acknowledgements: the work presented in this paper was funded by UK EPSRC 
grant GR/L25110. 
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