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A b s t r a c t .  We introduce the notion of a distorted reconstruction from 
two views, which need not satisfy the epipolar constraint. It can be com- 
puted from point correspondences and from a possibly inexact estimate 
of the stereo configuration. Thus, this scheme avoids the often costly and 
unstable minimization procedure for establishing the epipolar constraint, 
at the cost of introducing non-linear distortions. As a consequence, the 
convexity and topology of curves and surfaces can be changed. 
The distorted reconstruction is related to the original scene structure by a 
quadratic Cremona transformation of space. By analyzing the distortion 
of curves and surfaces geometrically in terms of the singular elements of 
the associated Cremona transformation, we show that severe distortions 
are present particularly in the vicinity of the camera centers, thereby 
indicating that their consideration is of particularly high relevance for 
near regions of the stereo rig. Our main technical contribution is the 
derivation of the exact criteria governing changes in surface convexity 
and topology. 

1 I n t r o d u c t i o n  

One of the central tasks of a binocular (or stereoscopic) vision system is to recon- 
struct the scene from the projections of environmental structures onto the two 
views. The reconstruction computation is based on two pieces of information : 

- a set of corresponding points (or lines) in the two views. 
- the stereo configuration, i.e. the relative positions and orientations of the 

two cameras, and their internal parameters. 

Corresponding points are usually obtained by a matching procedure based on 
purely visual attributes, whereas the stereo configuration can be obtained from 
either visual or by non-visual sources of information. 
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1.1 R e c o n s t r u c t i o n  a n d  the Epipolar Constraint 

By whatever means it is obtained, the stereo configuration needs to be known ex- 
actly if the resulting reconstruction is to be veridical, i.e. if metric properties such 
as distances and angles are to be preserved. Unfortunately, obtaining the exact 
stereo configuration can be problematic. Estimates of the stereo configuration 
based on non-visual information are often not accurate enough. Furthermore, 
they are usually inconsistent with the epipolar constraint, which expresses the 
fact that  corresponding rays issued by the two cameras should intersect in space. 
In order to exploit visual information, the cameras have to be calibrated indi- 
vidually, and their relative orientation has to be found, with both procedures 
in general requiring a non-linear minimization[16]. Especially in the presence of 
noise these computations are plagued by instabilities, and convergence can not 
in general be guaranteed. 

Partial  relief comes from recent advances in the field of computer vision 
showing that  a projective reconstruction can still be obtained even if the in- 
ternal parameters of both cameras are unknown[7]. A projective reconstruction 
is a projective transformation of the original scene structure, i.e. it is linear 
when expressed in terms of homogeneous coordinates. Furthermore, a projec- 
tive reconstruction satisfies the epipolar constraint. A more practical reason for 
its attractiveness is the fact that  a projective representation is adequate for a 
variety of tasks, such as recognition and navigation[5, 11]. 

But,  just as is the case for the calibration of the stereo rig in the metric case, 
computing a projective reconstruction can be an unstable process[9]. In both 
cases the instability arises from the at tempt  to satisfy the epipolar constraint. 
The question we asked ourselves is whether this step could be avoided, and if so, 
what the nature of the resulting, necessarily non-linear, distortions would be. 

1.2 Distorted Reconstruct ion 

The reconstructed position of a point in space is usually defined as the intersec- 
tion of the two corresponding rays. Therefore, the reconstruction is in general 
not even defined unless the epipolar constraint is satisfied. We remedy this by 
extending the definition of the reconstruction to point correspondences which 
are incompatible with the epipolar constraint. We call this new reconstruction 
a distorted reconstruction. There are many different ways of defining it, but  we 
choose here a simple one that  is at once geometrically intuitive and algebraically 
tractable : instead of the intersection of the two rays, the distorted reconstruc- 
tion of a point is defined as the intersection of one of the rays and a plane 
containing the other ray. 1 This kind of distorted reconstruction can be termed a 
reconstruction with a dominant camera. The specific instance we will be using 
is shown in Figure 1, where the left camera is considered the dominant one, by 
virtue of providing the ray, whereas the right camera only provides a plane (the 
one defined by the x-coordinate). 

1 One alternative is the midpoint of the shortest segment connecting the two rays. 
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We do not claim originality for the form of the definition of the distorted 
reconstruction. Even in traditional approaches the reconstruction is sometimes 
computed in this manner, however only once an admissible stereo configuration 
has been found. Our approach represents, rather, a shift in emphasis : we con- 
sider the distorted reconstruction a legitimate reconstruction that  is worthy of 
study. In going with this view, we take as the object of our analysis not the 
error in reconstruction, i.e. the difference between distorted and true structure, 
but the transformation relating the two. We call the transformation between the 
true and the distorted reconstruction of a scene the shape distortion transfor- 
mation, or shape distortion for short. This also makes it more evident that  we 
are considering the systematic relation between the two reconstructions arising 
from the use of an incorrect estimate of the stereo configuration, and not random 
errors due to image noise or matching errors. We have argued elsewhere[l] that  
both sources of error need to be considered, but in this article we concentrate 
on systematic errors. 

The distorted reconstruction from image correspondences involves what we 
call the apparent stereo configuration, different from the true stereo configuration 
used in the projection of the scene onto the cameras. Furthermore, we refer to an 
apparent space, in which objects live that  were reconstructed using the apparent 
configuration, and a true space, in which objects live that  were reconstructed 
using the true configuration. In order to distinguish objects from the different 
spaces, we will always use primed symbols (e.g. X ~, m ~) to refer to objects in the 
apparent space. 

1.3 Re la t e d  Work 

The framework of distortions was introduced by [6] in the case of calibrated cam- 
eras, and under the assumption of infinitesimal motion. It was shown there that  
quadratic terms appeared in the reconstruction. Here, we show that  the shape 
distortion transformation in the case of discrete displacements is a quadratic 
Cremona transformation for arbitrarily positioned and oriented, uncalibrated 
cameras. Thus, the framework applies to distortions of metric as well as projec- 
tive reconstructions. Our application of global properties of Cremona transfor- 
mations to qualitatively explain the shape distortion is novel; we first used it to 
study the distortions in the planar case [2, 3]. Quadratic distortions have been 
observed by photogrammetrists[13] in certain stereoscopes. In the Computer  Vi- 
sion literature, (plane) quadratic transformations have been used to describe the 
mapping between corresponding points in two image planes (e.g. [10]), but  have 
not been applied in the analysis of transformations of reconstructed space. 

2 T h e  S h a p e  D i s t o r t i o n  

2.1 D o u b l e  A l g e b r a  

In this and in the following sections we utilize the framework of Double Alge- 
bra[4] to derive and analyze the shape distortion. Double algebra was first used 
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in Computer  Vision by Svensson [15], and has gained interest in recent years. 
Specifically, we employ the double algebra of 7~ 4 to represent points, lines, and 
planes in projective space 7 ~3 by (linear) subspaces of ~4  in terms of homoge- 
neous vectors. Two homogeneous vectors a and b that  are equal up to a non-zero 
scale factor k, i.e. a = kb  represent the same subspace, and we write a ~ b when 
we do not wish to mention the scale factor. 

Double Algebra provides the join and meet operators  V and A for combining 
subspaces in various ways. For example, one writes : 

- 1 = A V B for the line 1 formed by joining the two points A and B, 
- p = 1 V C for the plane p formed by joining 1 to a third point C,  
- D = k A p for the point D in which the line k meets the plane p. 

The meet  and the join are both  anti-symmetric, i.e. A V A = 0, expressing the 
fact tha t  the join of a point with itself is undefined, and p A p = 0, expressing 
the fact tha t  the meet of a plane with itself is undefined. They are also linear 
in both  arguments.  Underlying the join and meet operators  is the notion of 
a bracket, which is a coordinate-free abstract ion of a determinant .  In p3,  the 

X 4 bracket is defined for any sequence of four points { i}i=l, and is writ ten as 
IX1 X2 X3 X4]. I t  vanishes when the four points are coplanar, which happens 
when the Xi  are linearly dependent. We will also use the shortened form [m, X4] 
where m -- X l  V X2 V X3 is a plane. 

2.2 Camera Geometry 

We use the. pinhole camera model, and use a representation of the camera  in 
terms of its plane star  [2]. 2 Let m l , m 2 , m 3  be the base planes of the camera.  3 
From now on we use the terms plane star  and camera interchangeably. The 
center of projection of a camera is given by OM = m l  A m2 A m3 as the point 
of intersection of the three base planes. We define the projection of a point X 
onto the camera M as ([ml,  X] [m2, X] [m3, X]) T. 

An alternative way to look at a camera is to interpret  it as a line star, 
i.e. the collection of lines that  pass through the camera center. Given a plane 
star M, we define the associated line star  matr ix  LM = (XM YM ZM), where 
XM ~-~ m2 A m3,YM -~ m3 A m l , z M  ---- m l  A m2 are the base lines. 

Given a camera M,  we define the x-plane rex(X) ,  the y-plane m y ( X ) ,  and 
the ray 1M (X) of M through a point X as follows : 

m ~ ( X )  -- --YM V X = [ m l , X ]  m 3 -  [ma ,X]  m l  (1) 

m~,(X) -- XM V X = [m2, X] ma -- [ma, X] me (2) 

1M(X) ~" O M V X • [ml ,  X] x M -b [m2, X] YM q- Ira3, X] ZM (3) 

2 A plane star is the 2-parameter family of planes through a common point. Any plane 
of the pldne star can be generated as a linear combination of three base planes. 

3 The 3 x 4 matrix commonly used to represent a projective camera is given in terms 
of the plane star representation as - M  T, where M = (ml m2 m3). See [2]. 
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Ste reo  G e o m e t r y  Let C and D be two cameras. Then, a point X can be 
reconstructed by computing the meet of, say, the ray 1c(X) of C with the x- 
plane dx(X) of D, i.e. X ~ 1c(X) A dx(X). (See Fig. 1.) Note that  there are 
other possible reconstructions (e.g. replace d=(X) by dy(X)),  but they are all 
equivalent if the apparent and true cameras are identical. 

2.3 Distorted Reconstructions of  Rays ,  P l anes ,  a n d  P o i n t s  

In a distorted reconstruction we have an apparent stereo configuration, given by 
the pair of cameras C' and D ~, which are in general not identical with the true 
cameras C and D. We first define the distorted reconstructions of camera planes 
and rays (by modification of equations (1)-(3)) : 

m~(X) = [ml,X] m 3 --[m3,X] m 1 

my(X) = [m2, X] m 3 - [ m 3 ,  X] m 2 

1~4 (X) ---- [ml, X] x~/-F [m2, X] Y~4 4-[m3, X] z~/ 

(4) 
(5) 
(6) 

These we call direct distorted planes and rays. They live in apparent space, 
whereas X lives in true space. Similarly, we also define the reverse distorted 
planes and rays for a point X'  in the apparent space : 

mx(X')  = [mi ,X '  ] m3 - [ m ~ ,  X'] m~ 
rm~ X q my(X I) = [m~,Xq m3 --t  3, j m2 

r m '  X q 1M(X') = [mi ,X '  ] XM + [m~,X'] YM + t  3, j ZM 

(r) 
(s) 
(9) 

These entities live in true space, whereas X' lives in apparent space. The direct 
distorted reconstruction of a point X is given by 1~ (X) A d~ (X). It is illustrated 
in Figure 1. We have the following result : 

T h e o r e m  1. (Space Shape Distortion) 
Let (C, D) be the true stereo configuration, and (C', D') the apparent one. Then 
the shape distortion transformation T(X) - l~(X) A d~(X) is a quadratic space 
Cremona trans]ormation. Its reverse is T' (K ' )  - 1 c ( X ' ) A  dx(X') .  

Proof. That  T is quadratic in X follows from the fact that  both l~(X) and 
d'~ (X) are linear in X, and from the linearity of the meet. The proof that  T '  is 
indeed the reverse transformation of T can be found in [2]. [] 

3 Global Analysis  of the  Shape D i s t o r t i o n  

In this section we review some established results on Cremona transformations 
[12], and then apply them to the shape distortion transformation. 
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Fig. 1. Distorted reconstruction as the intersection of the distorted ray I~(X) = 
c'~(X) A c~(X) of camera C with the distorted x-plane d'~ (X) of camera D. 

3.1 C r e m o n a  T r a n s f o r m a t i o n s  

A Cremona transformation is a birational transformation, i.e. a rational transfor- 
mation whose inverse is also rational. This means that  Cremona transformations 
are one-to-one mappings in general. A trivial example of a Cremona transforma- 
tion is a collineation. It is one-to-one everywhere. However, for transformations 
of higher order there Mways exist exceptional points for which the transformation 
is not one-to-one. 

A Cremona transformation T in 7 ~3 can be represented by a vector of 4 
homogeneous polynomials T/:  

T :  X ~-4 X' = ( ~ ( X )  T2(X) T3(X) T4(X)) T. 

Cremona transformations have the property that  the polynomials 7~ all have the 
same degree; this is called the order of the transformation. 

Since a Cremona transformation is a one-to-one mapping almost everywhere, 
its inverse T -1 is defined almost everywhere. One usually works instead with 
the reverse transformation T ~, which is equal to the inverse up to scale, i.e. 
T ' (T(X))  ~ T - I ( T ( X ) )  = X. Since we are dealing with transformations be- 
tween homogeneous coordinates, the scale does not affect the mapping of the 
non-homogeneous coordinates as long as it does not vanish. We write the re- 
verse transformation as 

w':  x ' ~  x = (~ ' (x ' )  %'(x') %'(x') ~ ( x ' ) )  r 

It has the same order as T, since a Cremona transformation and its reverse 
always have the same order [12]. 
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S i n g u l a r  E l e m e n t s  The exceptional elements at which T is not one-to-one 
are simply those at which T (X)  = 0, i.e. where all polynomials Ti(X) vanish. 
The set of such points X forms the base elements of T.  For a quadratic space 
Cremona transformation, the base is made up of a base point B1, and a base 
conic b. We will see that  for our purposes the special case of a degenerate base 
conic b will be important;  in this case b splits into two intersecting lines 52 and 
53. Since T ~ is of the same order as T,  its base has exactly the same structure as 
that  of T.  We denote its base elements by the corresponding primed quantities 
B~ and b ' ,  respectively b~, b~. 

A further set of elements, which in a sense is dual to the base elements, is 
also relevant for the characterization of Cremona transformations. These are the 
fundamental elements. With a quadratic Cremona transformation is associated a 
fundamental plane fl, which is the plane containing the base conic b, and a cone 
of fundamental lines, each generating line of which is formed by connecting the 
base point B1 to a point on the base conic b. In the degenerate case of interest 
to us, fl is spanned by b2 and b3, and the cone of fundamental lines splits into 
two planes f2 and fa of fundamental lines. This configuration is illustrated in 
Figure 2. The fundamental elements of T ~ can be defined in an analogous way, 
and will be referred to by the corresponding primed quantities ft. 

BI 

Fig. 2. Base elements of a quadratic space Cremona transformation with degenerate 
base conic. 

The reason that  we single out the fundamental elements is tha t  T maps its 
fundamental elements onto the base elements of T ~, and vice versa. Specifically, 
T maps fl onto B~, and each fundamental line of f2 (f3) to a point of b2 (b3). 
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Proposi t ion 2. (Topology Changes) The topology of a surface changes under 
the shape distortion if] the surface meets one of the following conditions : 

- it intersects the fundamental plane fl. 
- it intersects one o/the planes o/fundamental lines f2 and f3 in such a way 

that it contains at least two distinct points of the same fundamental line. 

Proof. From section 3.1, we know that  all points of a given fundamental element 
map to the same point. Thus, if a surface contains two distinct points belonging 
to the same fundamental element, the image of the surface will pass twice through 
the same point, thus creating a self-intersection, clearly a change of topology. A 
proper intersection with fl yields an entire curve, whereas an intersection with 
f2 or f3 does not necessarily intersect any of the fundamental lines within these 
planes twice. Thus, the additional requirement for f2 and f3. [] 

3.3 Restriction to Preserved Planes 

The space shape distortion is a complicated transformation. We could simplify 
the analysis if we considered the restriction of the space shape distortion to 
planes. However, we can not in general do this, since a plane maps into a (web) 
quadric, and not into a plane. A plane-to-plane mapping only exists if the web 
quadric is degenerate. Luckily, it turns out that  there are enough of these de- 
generate quadrics for the purposes of our analysis. The next proposition tells us 
which ones they are : 

Proposi t ion 3. Let X be a point which neither coincides nor is contained in 
any of the base elements of T,  and let X ~ = T (X ) .  Then, 

1. the pencil of planes with axis X V B1 maps to the pencil of planes with axis 
X'  V B~. 

2. the plane X V bi maps to the plane X' V b~, for i = 2, 3. 
3. all other planes through X map to non-degenerate quadrics. 
3. the line X V B1 maps to the line X'  V B~. 
5. the pencil of lines with vertex X contained in the plane X V bi maps to the 

pencil of lines with vertex X'  contained in the plane X' V b{. 
6. all other lines through X map to non-degenerate conics. 

The proof can be found in [2], where it is also shown that  the restriction of the 
space shape distortion to such preserved planes is a quadratic plane Cremona 
transformation. The structure of the planar transformation is similar to the 
space case, but  its analysis is much simpler. Specifically, for a C-plane p (type 
1 in Proposition 3), passing through B1, the base elements of the planar shape 
distortion are three base points : B1, plus the two points p A b2 and p A b3. A 
quadratic plane Cremona transformation in general maps a line to a conic. The 
set of images of lines form the net of conics associated with the transformation. 
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Similarly, T '  maps f~ onto B1, and each fundamental line of f~ (f~) to a point 
of b~ (b~). 

Taken together, we call the base and the fundamental elements the singular 
elements of the Cremona transformation. 

The  W e b  o f  Q u a d r i c s  A quadratic Cremona transformation maps a plane to 
a quadric surface. Thus, to the 3-parameter family of planes in true space there 
corresponds via T a 3-parameter family of quadrics in apparent space. Similarly, 
T ~ defines a 3-parameter family of quadrics in true space which are the images of 
planes in apparent space. Such a 3-parameter family is called a web of quadrics. 
An important  property of the quadrics of a web is that  each one of them contains 
the base elements of the associated quadratic Cremona transformation. 

3.2 Propert ies  of  the Shape  Dis tort ion  

In order to apply the global analysis to the shape distortion, the first step is to 
determine its singular elements. They axe given in the following proposition : 

Propos i t ion  1. (Singular Elements of the Space Shape Distortion) 
The singular elements of the space shape distortion T(X )  (from Thin. 1) are 

B1 = O c  b2 = YD b3 = fl A f2 (10) 
fl = d~(O~) f2 = c (y~)  f3 = B1 V 52, 

and the singular elements of its reverse T~(X ~) are 

B~ = 0 5 b~ = Yb b~ = f~ A f~ (11) 
fl = d~(Oc)  f~ = c '(yD) f~ = B~ V b~ 

The proof can be found in [2]. The proposition states several interesting facts : 

- The dominant camera center O c  is the base point of the space shape dis- 
tortion. 

- The base conic splits into two base lines; one of them is YD, the y-axis of 
the non-dominant camera. 

- The plane spanned by O c  and YD is a plane of fundamental lines. 

Since planes in general map onto quadrics passing through all three base ele- 
ments, we can say that  

C o r o l l a r y  1. The shape distortion is particularly severe in the vicinity of the 
dominant camera center and the Y-axis of the non-dominant camera. 

One can appreciate the severity of the distortion by imagining how the image 
of every plane must somehow converge to pass through the same base elements, 
for example the center of camera C. Thus, it is particularly important  to take 
distortions into account in the near range of the stereo rig. 

Our next result concerns changes in topology of a surface under the shape 
distortion : 
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4 Distort ion of Curvature 

Our next task is to analyze the distortion of surface curvature. We first present 
results for the planar case, and then apply them to sections of surfaces by C- 
planes (type 1 in Proposition 3). 

4.1 T h e  P l a n a r  C a s e  

A key result of the analysis of the planar shape distortion is the following : 

T h e o r e m  2. Let C be a planar curve through the point X ,  with its image C t 
under the planar shape distortion T passing through X ~ = T ( X ) .  Let tr (a t) 
be the curvature of C (C ~) at X (X~), and let ~o (~o) be the curvature of the 
net conic through X (X ~) with the same tangent there as C (C~). Then, the 
curvatures of C and C ~ are related as follows : 

~-~0 = 1 - --a0 (12) 

A proof  of this can be found in [2]. From the curvature formula (12) we obtain 
a simple rule for the sign of the curvature of the distorted curve : 

sgn(a ' )  = 0 , a = a0 (13) 
- s g n ( t ~ )  ,n  > n0 

Thus, the curvature ~ changes sign when the curvature n of the original curve 
crosses the threshold ~o set by the curvature of the net conic. The relationship 
between the two curvatures is illustrated in Figure 3. The four curves through 

K_ 0 

K+ 

m 

Fig. 3. Distortion of Curvature 

0 
K+ 

X on the left map  under T into four curves through X ~ on the right. The 
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curves are labelled by their curvatures, and form the following pairs under T : 
{(t~_, ~_), (0, ~ ) ,  (n0, 0), (~+, ~_)}. The thick curves belong to the net of conics 
defined by the quadratic transformation. The existence of the middle intervals in 
Figure 3 is what distinguishes quadratic from projective (linear) transformations. 
It reflects the fact that  a convex curve may transform into a curve with a concave 
segment, i.e. that  changes of convexity can occur. 

4.2 Dis tor t ion  of  Surface Curvature  

The local surface curvature at a point X on a surface depends on the direction 
in the tangent plane in which it is measured. Euler's formula[8] gives the normal 
curvature as a function of angle ~ in the tangent plane as : 

= cos2(  - + sin (  - (14) 

where ~1 and ~2 are the principal curvatures, i.e. the maximal and minimal 
normal curvatures at X, and a l  is the angle corresponding to the direction 
associated with ~1. The directions in which the principal curvatures occur are 
called principal directions. They are orthogonal. When ~1 and ~2 are of the 
same sign, the surface is locally elliptic, and when they are of opposite signs, 
the surface is hyperbolic. In the latter case there are locally two asymptotic 
directions in which the normal curvature vanishes. The asymptotic directions 
are bisectors of the principal directions. 

If we take the section of a surface by a plane that  is not normal to the 
surface, its curvature is given by Meusnier's Theorem[8] : t~ = ~n /cosT ,  where 
-y is the angle between the sectioning plane and the normal to the surface at X. 
By combining this with (14), we can determine the curvature of an arbitrary 
section of a surface. 

Curvature  o f  a W e b  Q u a d r i c  In the planar case discussed in section 4.1, the 
curvature of a curve was compared to the curvature of the net conic to determine 
whether the convexity of the curve changes. Here, we relate the curvature of a 
given surface to the curvature of the web quadric with the same tangent plane. 
We do this by considering their section by the pencil of preserved planes with 
axis O c  V X. 

We now outline a way in which the curvature of a web-quadric can be deter- 
mined. But first, we derive some useful properties : 

Pr opos i t i on  4. The web quadrics associated with the space shape distortion and 
its reverse are hyperboloids of one sheet. 

Proof. In section 3.1 we saw that  every web quadric contains all base elements. 
In particular, every web quadric of T contains the two (intersecting) base lines 
b2 and b3, and every web quadric of T '  contains the two (intersecting) base line 
b~ and b~. The only non-degenerate quadrics that  contain two intersecting lines 
are hyperboloids of one sheet [14]. [] 
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A hyperboloid has the property that  at each of its points the surface is locally 
hyperbolic, i.e. its principal curvatures are of opposite sign. Additionally, for a 
hyperboloid of one sheet the two lines through X in the asymptotic directions 
are contained as a whole in the surface[14]. They are its generators. The next 
proposition shows that  they belong to the family of preserved lines discussed in 
Section 3.3. 

P r o p o s i t i o n  5. (Generators o] Web Quadrics) 
Let Q be a web quadric o/ the space shape distortion T at a point X,  and let 
m be its tangent plane there. Then, the two generators of Q through X are the 
lines o/ intersection 1~ of m with the planes X V bi, i = 2, 3. 

Proof. The web quadric Q is the image under T '  of a plane m' .  Consider the 
pencil of lines in m '  with vertex Xq Of the lines of this pencil only two are 
preserved as lines under T ~, namely the lines l~ = (X ~ V b~) A m ~ (type 5 in 
Proposition 3), which map to the lines li, i = 2, 3. These two lines must therefore 
be the generators of Q. [2 

The construction of the generators described in the proposition is depicted 
in Figure 4. Since the directions in the tangent plane at X corresponding to 

/ : ' . .  

~.:.::.' 

B 1 

b3 

Fig. 4. The two generators 12,13 through a point X of a web quadric with tangent 
plane m at X are the lines of intersection of m with the two planes X V b2 and X V b3. 

the generators are asymptotic directions, we can find the principal directions 
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Fig. 5. The asymptotic directions in the tangent plane m are along the generators 
Ii, i ---- 2, 3, of the web quadric. The principal directions are bisectors of the asymptotic 
directions. 

as their bisectors in m ,  as mentioned above. This is shown in Figure 5. The 
principal curvatures of the web quadric can thus be obtained as follows : one 
computes the curvatures kl and k2 of the sections of the web quadric by the two 
C-planes through the principal directions (indicated in Figure 5 by the dotted 
lines). Additionally, one computes the angles V1 and 72 between these C-planes 
and the normal  to m.  Then, the principal curvatures of the web quadric are 
given by Meusnier 's Theorem as n ~ = ~ i / cosv i .  

Q u a l i t a t i v e  D e s c r i p t i o n  o f  C u r v a t u r e  D i s t o r t i o n  Let ~1 and ~2 denote 
the principal curvatures at a point X of a surface with tangent  plane m at X. Let 
c~1 denote the principal direction associated with nl.  The normal  curvature of 
the surface is given by (14). Let s0 denote the principal direction associated with 
~o. The normal  curvature of the web quadric is given by ~0(~) = n ~ cos2(a - 
s0) + n ~ sin2(c~ - s0).  The normal curvatures of the surface and of the web 
quadric are illustrated in Figure 6 (top figure). In each normal  section, i.e. for 
each ~, the interval in which n(~) lies determines the interval in which the 
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Fig. 6. Distortion of normal curvature in true space (left figure) and in apparent space 
(right figure). Solid curves represent the normal curvature of the web quadric as a 
function of direction. Dotted curves represent the normal curvature of the surface. See 
text for explanation. 

distorted curvature n ' (a)  lies. For example, if n(a)  > n0(a), then n ' (a)  > 0. For 
certain values of a the graph of n(a)  intersects the graph of no(a). These are 
the values of a at which the sign of the distorted curvature changes. It should 
be emphasized that  this can happen independently of whether the true normal 
curvature function ever passes through zero. A situation where the surface in the 
true space is locally elliptic (all normal curvatures positive), but  the distorted 
surface is locally hyperbolic, is shown in Figure 6. One sees there tha t  the crossing 
of the graphs of n(a)  and no(a) results in a zero-crossing of n ' (a) .  This is the 
criterion under which an elliptic patch of a surface can transform to a hyperbolic 
patch on the distorted surface, and vice-versa. 

5 C o n c l u s i o n s  

We derived the shape distortion transformation for the general case of uncali- 
brated, and arbitrarily positioned and oriented, cameras, and showed that  the 
full range of distortions for a stereo rig, due to errors in intrinsic and extrinsic 
camera parameters,  is exactly modelled by quadratic space Cremona transfor- 
mations. 

Our analysis of the shape distortion transformation in terms of global prop- 
erties of quadratic Cremona transformations suggested that  the distortions are 
particularly severe in the vicinity of the camera centers. 

Global properties of quadratic Cremona transformations further show that  
the topology and convexity of curves and surfaces can change under the shape 
distortion. We showed how violations of topology are governed by the crossing 
of certain planes defined in terms of the stereo geometry. Regarding violations 
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of convexity, we derived the criterion for the change of surface type from elliptic 
to hyperbolic. 

In this work we have explored the geometrical s tructure of the shape distor- 
tion. Future work will proceed along two directions. Firstly, we intend to perform 
a quanti tat ive evaluation of the magnitude of the distortion for commonly en- 
countered stereo geometries. Secondly, we intend to examine which tasks could 
be performed based on a distorted reconstruction of a scene, similarly to what 
has successfully been done for affine and projective reconstructions [5, 11]. 
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