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A b s t r a c t .  Image sequence processing techniques are used to study ex- 
change, growth, and transport processes and to tackle key questions in 
environmental physics and biology. These applications require high accu- 
racy for the estimation of the motion field since the most interesting pa- 
rameters of the dynamical processes studied are contained in first-order 
derivatives of the motion field or in dynamical changes of the moving 
objects. Therefore the performance and optimization of low-level mo- 
tion estimators is discussed. A tensor method tuned with carefully op- 
timized derivative filters yields reliable and dense displacement vector 
fields (DVF) with an accuracy of up to a few hundredth pixels/frame 
for real-world images. The accuracy of the tensor method is verified with 
computer-generated sequences and a calibrated image sequence. With 
the improvements in accuracy the motion estimation is now rather lim- 
ited by imperfections in the CCD sensors, especially the spatial nonuni- 
fortuity in the responsivity. With a simple two-point calibration, these 
effects can efficiently be suppressed. The application of the techniques 
to the analysis of plant growth, to ocean surface microturbulence in IR 
image sequences, and to sediment transport is demonstrated. 

1 I n t r o d u c t i o n  

Since December 1995, the Interdisciplinary Center for Scientific Computing,  the 
Ins t i tu te  for Environmental  Physics, and the Ins t i tu te  for Botany cooperate  
in a DFG-funded interdisciplinary research unit ("Forschergruppe") to s tudy 
t ranspor t ,  exchange, and growth processes. The  oceanographic applications are 
investigated in close cooperation with the Scripps Inst i tut ion of Oceanography, 
University of California, San Diego. The  combination of novel visualization tech- 
niques and image sequence processing techniques gives an unprecedented insight 
into complex dynamic processes. This approach allows studying key scientific 
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questions for which previously no adequate experimental techniques were avail- 
able. A close and interdisciplinary cooperation between applications and funda- 
mental research in image analysis is the most distinct feature of the research 
unit. The application areas currently include 

- small-scale air sea interaction processes, especially air-water gas transfer 
and wind-generated waves [14,11], 

- plant leaf growth processes including the measurement of the physiological 
relevant parameters, and 

- analysis of the pollution plumes (especially NO=) from biomass burning and 
industrial areas using multispectral image sequences of the GOME instru- 
ment on the ERS2 satellite. 

The "objects" encountered in the research unit differ from those normally 
studied in computer vision and thus pose new challenges for image sequence 
processing and analysis: 

Accuracy. The displacements between consecutive frames must be determined 
with a relative accuracy much better than 1%. This requirement results in an 
error for the interframe displacement of no larger than a few hundredth pixels. 

Derivatives of motion field. For plant growth studies and the analysis of 
turbulent flows the optical flow is not of primary interest but spatial derivatives 
of the motion field such as divergence and vorticity. 

Estimate of dynamical changes. The objects are non-rigid undergoing dy- 
namical changes. New parts may gradually appear when studying the growth of 
plant leaves or roots or when new waves are generated by the wind at the ocean 
surface. 

Multichannel motion estimation. An adequate study of dynamic processes 
often requires the simultaneous acquisition of image sequences of many param- 
eters. Therefore the image sequence processing techniques must be set up in a 
way that they can also be used with multichannel images. This means more than 
just using multiple channels to determine a single velocity. Often the different 
channels show slightly different velocities, which are significant to characterize 
the underlying dynamical process. In the plumes from biomass burning, for ex- 
ample, different tracers have different life times. Or, if multiple tracers are used 
to study the transfer processes across the ocean surface, different diffusivities 
lead to different concentration patterns from which important clues about the 
underlying mechanisms can be drawn. 

Speed of processing. Systematic studies of the dynamical processes investi- 
gated require processing of huge amounts of image sequences. Thus the algo- 
rithms used must also be fast. 

The requirements summarized above caused us to revisit the basic approaches 
to image sequence processing. While there is a wealth of different concepts to 
compute optical flow (for a recent review see, e. g., [1]), much less work has been 
devoted to analyze the performance of optical flow algorithms with real-world 
image sequences and to optimize their implementation for accuracy and speed. 



324 

In this paper we report  significant improvements in the accuracy of a tensor- 
based technique analyzing motion as orientation in spatiotemporal images. After 
briefly reviewing the tensor technique in Sect. 2, the focus in this paper is on an 
accurate and fast implementation in Sect. 3. One key point is a new nonlinear 
filter optimization technique minimizing the error in the direction of gradient 
operators (Sect. 3.2). In Sect. 4 the accuracy of the new approach is first verified 
with computer generated and calibrated real-world image sequences. Then it is 
shown that  a careful radiometric calibration of the camera is required to avoid 
systematic errors in the motion field due to the photoresponse nonuniformity 
(PRNU) of the imaging sensor. Finally, various applications of the research unit 
are shown and discussed in Sect. 5. 

2 T h e o r y  o f t h e  S t r u c t u r e  T e n s o r  

2.1 Mot ion  as Orientation in Spat iotemporal  Images 

The displacement of gray value structures in spatiotemporal images yields in- 
clined image structures with respect to the temporal  axis. The relation between 
the orientation angle and the optical flow is given by 

u = - [tan ~1, t a n  ~p2] T , (1) 

where u = [u~, Uy] T denotes the optical flow on the image plane and the angles 
~1 and ~v2 define the angles between the plane normal to the lines of constant 
gray value and the x and y axes, respectively [7]. This basic property of spa- 
t iotemporal  images allows to estimate the optical flow from a 3-D orientation 
analysis, searching for the orientation of constant gray value in zt-space. Orien- 
tat ion is different from direction. While the direction (e. g., of a gradient vector) 
is defined for the full angular range of 360 ~ the orientation is invariant under a 
rotation of 180 ~ and thus has only a definition range of 180 ~ 

In order to determine local orientation locally, Bigiin and Granlund [2] pro- 
posed a tensor representation of the local grey value distribution. Using direc- 
tional derivatives, Kass and Witkin [12] came to a solution that  turned out to be 
equivalent to the tensor method. Searching for a general description of local ori- 
entation Knntsson [13] concluded that  local structure in an n-dimensional space 
can be represented by a symmetric n • n tensor. Rao [19] used a similar tensor 
representation for 2D texture  analysis. 

2.2 Total Least Squares Opt imizat ion  

The orientation of gray-value structures can mathematically be formulated as 
a total  least squares optimization problem [3]. The scalar product  between a 
vector r ,  representing the orientation for constant gray values in the image 
sequence, and the spatiotemporal gradient Vxtg(x ,  t) is a semi-positive definite 
bilinear form that  expresses the local deviation of the spatiotemporal gray value 
structure from an ideally oriented structure. If the gradient is perpendicular to 
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r ,  the product  is zero. It reaches a maximum when the gradient is either parallel 
or antiparallel to r .  Thus the expression 

oo 

/ 
--OO 

h ( x -  ~ ' , t - t ' )  (rT(x , t )  Wxtg(x',t ')) 2 d2x'dt ', (2) 

has to be minimized in a local neighborhood. The  size of the local neighborhood 
around the central point (~ , t )  is given by the shape of the window-function 
h(x  - x ' ,  t - t '). Equation (2) can be rewritten as a matr ix  equation 

r T [h* (Vxtg WxtgT)] r = r T J r --* min, (3) 

with the 3D structure tensor 

cx~ 

= / 
--OO 

_ t"~ ~ ^Tr x' h(x  x ' , t - t ' ) ~ ' x t g ( x ' ,  j xtv ~ , t ' )  d2x'dt '. (4) 

The components of this tensors are abbreviated by 

Og Og) 
Gpq = h * -~p ~q with p, q �9 {x, y, t} (5) 

Equation (3) reaches a minimum if the vector r is given by the eigenvec- 
tor of the tensor J to the minimum eigenvalue [2,18]. The estimation of local 
orientation therefore reduces to an eigenvalue analysis of the tensor J .  

The  eigenvalues A1 > A2 > ~ 3  of the tensor can be used to characterize the 
spatiotemporal  gray value structure [6], where the smallest eigenvalue )~3 reflects 
the noise level in the image sequence. If it is significantly higher than expected 
from the noise level, the neighborhood shows no constant motion. If the smallest 
eigenvalue is consistent with the noise level and the two others are significantly 
larger than the noise level, both components of the optical flow can be estimated 
and are given by the eigenvector e8 to the smallest eigenvalue: 

\ es,t es,t / 

If two eigenvalues are in the order of the noise level, an image structure with 
linear symmetry  (spatial local orientation) moves with a constant velocity. This 
is the well known aperture problem in optical flow computation. The eigenvector 
to the largest eigenvalue, ez, points normal to the plane of constant gray values 
in the spatiotemporal domain and can be used to compute the normal optical 
flow u• 

u l  = e l , t  . ( 7 )  

V/el2  + 
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The tensor approach accounts for errors in all components of the spatiotem- 
poral gradient. In contrast,  the classical differential approach [15] 

G x Y  m 

LGy J 
which is a solution of the least-squares minimization problem 

( h * u • g  + -~  --~ min, 

accounts only for errors in the temporal  derivate Og/Ot. 

(8) 

(9) 

2.3 Analytical  Performance Analysis 

It was shown analytically by [7,9] that  the tensor method - -  as well as other 
approaches - -  yield exact estimates of the optical flow under the ideal condition 
of a spatial pat tern  moving with a constant velocity. The different techniques, 
however, distinguish themselves in the way they respond to deviations and dis- 
tortions from the ideal case. The tensor method shows - -  in contrast to the 
standard least squares differential approach - -  no bias of the estimate in images 
with isotropic normal distributed noise. Inhomogeneous and accelerated motion 
also causes a surprisingly low bias in the motion estimate [9]. 

The analysis summarized here refers to continuous spatiotemporal  images. 
It thus does not include errors caused by the discretization. In Sect. 3.2 we will 
discuss tha t  the largest error in the motion estimate is due to an inadequate 
discretization of the spatial and temporal  derivates. 

3 A c c u r a t e  a n d  F a s t  I m p l e m e n t a t i o n  

3.1 C o m p u t i n g  t h e  S t r u c t u r e  T e n s o r  by  S p a t i o t e m p o r a l  F i l t e r i n g  

The implementation of the tensor components can be carried out very efficiently 
by simple spatiotemporal  filter operators. Identifying the convolution in (4) with 
a 3D spatiotemporal smoothing of the product  of partial derivatives with the win- 
dow function h(x, t), each component of the structure tensor can be computed 
a s  

= B Dq), (10) 

with the 3D spatiotemporal  smoothing operator B and the differential operators 
:Dp in the direction of the coordinate Xp. 

Using a binomial operator  the smoothing can be performed very efficiently on 
a multigrid data  s t ructure [5,8]. With this approach, the displacement vector field 
is stored on the next coarser level of a pyramid. Thus the number of computations 
for any subsequent processing - -  especially the eigenvalue analysis (Sect. 3.3) 
- -  is also reduced by a factor of four. 

The smoothing and derivative filters can be computed very efficiently in 
integer arithmetic using modern multimedia instruction sets such as Intel's MMX 
or Sun's VIS [10]. 
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3.2 Optimal Derivative Filters 

The most critical point is the choice of an appropriate differential operator.  A 
difference operator is only an approximation of a derivative operator. For an 
accurate computation of the s tructure tensor only deviations in the direction 
of the gradient are of importance as can be seen directly from (2). This means 
that  for an optimal difference filter, it is not required to approximate the ideal 
transfer function of the derivative filter, ikq. It suffices to approximate a more 
general transfer function 

b q ( k )  = ](Ikl)kq,  (11) 

where ](Ik]) is an arbi t rary isotropic function and kq is the component of the 
wave number in the direction q (for the time axis this is the circular frequency 
w). The transfer function (11) includes the classes of all regularized derivative 
filters tha t  smooth the images before the discrete differences are computed. 

The standard symmetric difference filter is a bad choice to compute the 
structure tensor. This filter has the transfer function 

Dq = i sin( 4), (12) 

where k is the wave number normalized to the Nyquist wave number. Conse- 
quently the direction of the 2-D spatial gradient is given by 

sin(Trk sin r 
r = arctan sin(Trk cos r (13) 

A Taylor expansion of this expression in k gives the angle error, Ar in the 
approximation of small k as 

n r  (~)2 24 sin4r + 0(/~4). (14) 

The error is substantial, it is more than 5~ k = 0.5. The error of other s tandard 
derivative filters is not much lower. The error for the Sobel filter, for example, 
is only two times lower in the approximation for small wave numbers [8]. 

The general form of the transfer function in (11) suggests tha t  an ansatz 
of a derivative filter with cross-smoothing in all directions except the direction 
in which the derivation is applied seems to be a good choice. (The symmetric 
difference filter contains already a certain degree of smoothing.) For the sake of 
an efficient computation, separable filters of the form: 

1 [1 ,0 , -1 ] ,  By,t  = [ p / 2 , 1 - p , p / 2 ]  T (15) Dx,opt = D z  * B y  * B t ,  Dx  -= "~ 

are used with the transfer function 

Dz,opt (p) = is in(rkx)((1 - p )  + pcos ( rky) ) ( (1  - p )  + pcos(r&))  (16) 
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The equations above show the separable filter for derivation in x direction. The  
derivative filters in the other direction just  show permuted indices for the direc- 
tions. 

The  ansatz in (15) and (16) has one degree of freedom. I t  is optimized with a 
nonlinear functional tha t  describes the deviation of the direction of the gradient 
built with the filters and contains an arb i t ra ry  wave number  dependent weighting 
function so tha t  the filters can be optimized for selected wave number  ranges. 
Further  details of the optimization technique and its generalization to larger 
filter kernels can be found in [20]. With  rat ional  filter coefficients, a value of 
p = 6/16 turned out to be an opt imal  choice. For wave numbers k up to 0.5, 
the error in the direction of the gradient is well below 0.4 ~ . The max imum 
error is thus more than  ten times lower than  for the Sobel filter. The nonlinear 
optimizat ion procedure used here also produces significantly bet ter  filters than  
a similar approach by Farid and Simoncelli [4] based on a linear optimizat ion 
technique. 

3.3 Fast Eigenvalue Analysis  

The Jacobi transformation [17] proved to be an efficient and robust algorithm to 
determine the eigenvalues and eigenvectors of the s tructure tensor. In all cases 
no more than  8 elementary Jacobi rotations were required. Interestingly, the 
3acobi algorithm required a max imum of only three iterations with a spatially 
oriented gray value s tructure (aperture problem, rank one structure tensor). 
Since edges are generally more common than  corners, the Jacobi algorithm is 
thus very efficient in the mean. 

Preselecting interesting image regions could further speed up the eigenvalue 
analysis. If  the trace of the s tructure tensor (sum of the eigenvalues) is below a 
certain noise dependent threshold, it indicates a homogeneous region in which 
the computa t ion  of the eigenvalues and eigenvectors is not required since no 
significant motion est imate can be retrieved then. 

4 R e s u l t s  

4.1 C o m p u t e r  Generated Image Sequences 

First  computer  generated sequences were used to test  the ul t imate accuracy of 
the implementat ion of the tensor method.  In order to get realistic spatial struc- 
tures, we used frame 13 (Fig. 2a) of the calibrated sequence taken by the I I T B  in 
Karlsruhe [16]. From this image a sequence was produced using optimized inter- 
polation filters [8]. The result for a motion in x direction with 0.456 pixels /frame 
of a sequence to which zero mean normal distr ibuted noise with a s tandard de- 
viat ion of 2.0 bits was added is shown in Fig. 1. For the optimized filter and the 
Sobel filter, the s tandard deviation of the error in the velocity est imate is well 
below 0.01 pixels/frame. In contrast  the simple symmetr ic  filter shows bo th  a 
systematic  offset of almost 0.1 pixels /frame and a significant wider distribution 
in x direction. This test  clearly shows tha t  highly accurate motion est imation is 
possible under ideal condition with a constant  motion field. 
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Fig.  1. 2-D histogram of the error in the motion estimation for a constant 
shift of 0.456 pixels/frame of one image of the I ITB sequence. In addition, a 
zero-mean normal distributed noise with a standard deviation of 2.0 was added 
to each image of the computer  generated sequence. One unit in the diagram 
corresponds to 0.01 pixels/frame, zero error is in the center at [20, 20]. Results 
with the tensor technique using a a symmetric derivative filter 1/211 0 -1], b a 
3-D Sobel filter, and c the optimized 3 x 3 x 3 filter described in Sect. 3.2. 

4.2 C a l i b r a t e d  R e a l - w o r l d  S e q u e n c e  

The IITB image sequence [16] is one of the few calibrated image sequences 
available. It  has also been used to test the error in the motion estimation with real 
image sequences. Fig. 2 shows the results. At the highly textured floor, a dense 
velocity field could be computed, while it is rather sparse at the marble columns 
(Fig. 2c). The smallest eigenvalue of the structure tensor shows the deviation 
from an ideally spatiotemporal  structure with constant motion. Therefore parts 
of the edges of the columns appear bright in Fig. 2d. The error maps for the 
velocity estimates are shown in Fig. 2e and f, respectively. It  is not surprising 
that  the errors are high at motion discontinuities, because the structure tensor 
averages over a local spatiotemporal neighborhood defined by the size of the 
smoothing mask in (10). Again the much bet ter  performance of the optimized 
filter can be observed. The simple symmetric difference filter (Fig. 2e) shows 
a considerable systematic error tha t  grows with increasing shifts in x direction 
(see Fig. 2b). 

A 2-D histogram of the error maps for the velocity estimate is shown for three 
different derivative filters in Fig. 3. The optimized filter results in a s tandard 
deviation less than 0.03 pixels/frame. This is about a two times lower standard 
deviation than the best results in Table 1 from Otte  and Nagel [16]. Their  results 
are based on averaging over a 5 x 5 x 5 neighborhood, while the smoothing used 
with the multigrid binomial filters in the tensor method effectively averages 
only over a sphere with a radius of 1.73 pixels or a volume of 22 pixels and thus 
preserves a higher spatial resolution. The non-optimized filters show significantly 
broadened distributions with standard deviations comparable to those found by 
Otte and Nagel [16] (Fig. 3a, b). 
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Fig .  2. Motion analysis using the calibrated sequence from the I ITB,  Karlsruhe 
[16]. a Frame 13 of the sequence, b x component  of the t rue motion field, c 
Motion field determined with the tensor technique. Areas where no 2-D velocity 
could be determined are masked out. d Smallest eigenvalue of the s tructure 
tensor, e Error map  (range [-0.2, 0.2] pixels/frame) for the 1/2 [1 0 -1] filter. 
f same as e for the optimized 3 x 3 • 3 derivative filter (Sect. 3.2). 

F ig .  3. 2-D histogram of the  error in the motion est imation for the calibrated 
I I T B  sequence. Results with the tensor technique using a a symmetr ic  derivative 
filter 1/211 0 -1],. b a 3-D Sobel filter, and c the optimized 3 • 3 • 3 filter. 
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Fig. 4. Radiometric calibration of a standard CCD camera (Jai CV-M10): a 
Image of the relative responsivity in a range of =k3%. b Fixed pattern noise 
(without any illumination) in a range of +0.5. 

4.3 Influence of Sensor Imperfections 

One may wonder why the standard deviations with real sensor data are signifi- 
cantly higher than those obtained with computer generated sequences (compare 
Fig. 1 und 3). The higher errors are related to imperfections of the CCD sen- 
sor/camera system. 

A radiometric calibration study showed that standard CCD cameras show 
significant large-scale and small-scale spatial variations in the order of about 1%, 
which cannot be neglected (Fig. 4a). The fixed pattern noise without illumination 
is less serious. In the example shown in Fig. 4b the amplitude of the patterns 
is well below one. Since these patterns are static, they are superimposed to the 
real motion in the sequence. In parts of the sequence where the local contrast 
is low, the static patterns dominate the structure and thus a lower or even zero 
velocity is measured. 

The influence of static patterns can nicely be demonstrated if objects with low 
contrast are moving such as the slightly textured elephant in Fig. 5. On the glass 
window of the CCD sensor, dirt causes spatial variations in the responsivity of 
the sensor (Fig. 5a, d). At the edges of the speckles, the smallest eigenvalue of the 
structure tensor shows high values indicating motion discontinuities (Fig. 5b). 
The motion field indeed shows drops at the positions of the speckles (Fig. 5c). If 
a simple two-point calibration is performed using the measured responsivity and 
an image with a dark pattern, the influence of the speckles is no longer visible 
both in the smallest eigenvalue and the motion field (Fig. 5e, f) 

5 A p p l i c a t i o n  E x a m p l e s  

The structure tensor technique was applied to a variety of application examples 
from oceanography (IR ocean surface images), botany (growth processes), and 
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Fig.  5. Demonstrat ion of the influence of spatial sensitivity variations of the 
CCD sensor on motion estimation: a One image of the elephant sequence, b 
Lowest eigenvalue of the structure tensor, c Velocity component in x direction. 
d Contrast  enhanced relative responsivity, e Lowest eigenvalue of the structure 
tensor for a sequence corrected for the spatial responsivity changes, f Velocity 
component in x direction for the corrected sequence. 

to traffic scenes. It proved to work well without any adaptation to the image 
content. Fig. 6 shows example motion fields of such sequences. The application 
to the IR sequences (Fig. 6a) demonstrates tha t  the tensor technique is also 
suitable for noisy imagery. 

The accuracy of the estimated velocity can also be demonstrated by com- 
puting first-order derivatives of the velocities. These are the most interesting 
quantities for the s tudy of the dynamical processes we are investigating. The di- 
vergence of the motion field, for instance, directly gives the area-resolved growth 
rate (relative increase in area, see Fig. 7a). For the s tudy of the microscale tur- 
bulence at the ocean surface, the divergence of the motion field is related to 
divergence and convergence zones at the interface (Fig. 7a). 

Another interesting example is the study of sediment t ransport  in the beds 
of rivers. Figure 8 shows the evaluation of a sequence where a strong flow in the 
river induced the t ransport  of sand particles in the sediment. Despite the bad 
quality of the sequence taken by an endoscope put  into the sand, reliable motion 
fields could be computed. The nature of these processes becomes evident in the 
images showing the divergence and rotation of the flow. 
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Fig.  6. Displacement vector fields computed with the tensor method, a IR 
images of the ocean surface for heat transfer studies, b growing leaf of a castor- 
oil plant. The  arrows visualize the computed displacement field. Black arrows 
mean high certainty, lighter arrows lower certainty. 

Fig.  7. Divergence of the motion field of a growing leaf of a castor-oil plant. 
The  scale for the divergence ranges from -2.0 to 6.0 permille/min. 
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6 C o n c l u s i o n s  

In this paper some recent research results of an interdisciplinary research unit 
were discussed. It is shown that  the accuracy of motion estimation can signif- 
icantly be improved over previous approaches by using a tensor method with 
carefully optimized derivative filters. The tensor approach also gives direct mea- 
sures for the quality of the estimated motion. Some of the next steps of our 
research will include the extension to model-based motion estimation, multi- 
channel image sequence processing, and the direct modeling of parameters of 
the dynamical processes. It is the long-term goal of our research to merge image 
sequence processing, 3-D image processing, and spectroscopic imaging into 5-D 
imaging as a powerful tool to s tudy complex scientific problems. 
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Fig. 8. Example for the study of flow in sediments, a One of the images of the 
flow of sand particles in the sediment observed with an embedded endoscope, b 
Displacement vector field computed with the tensor method, c Divergence and 
d rotation of the vector field as a color overlay on the original image; a color 
scale is included at the top of each image. 


