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A b s t r a c t .  The folding of the cortical surface of the human brain varies 
dramatically from person to person. However, the folding pattern is not 
arbitrary. The cortical folds (also called "sulci') often serve as land- 
marks for referencing brain locations, and the most pronounced sulci 
have names that are well established in the neuroanatomical literature. 
In this paper, we will present a method that both automatically detects 
and attributes neuroanatomical names to these folds using image analy- 
sis methods applied to magnetic resonance data of human brains. More 
precisely, we subdivide each fold into a number of substructures which we 
call sulcal basins, and attach labels to these basins. These sulcal basins 
form a complete parcellation of the cortical surface. 
The algorithm reported here is important in the context of human brain 
mapping. Human brain mapping aims at establishing correspondences 
between brain function and brain anatomy. One of the most intriguing 
problems in this field is the high inter-personal variability of human neu- 
roanatomy which makes studies across many subjects very difficult. Most 
previous attempts at solving this problem are based on various methods 
of image registration where MR data sets of different subjects are warped 
until they overlap. We believe that in the process of warping too much of 
the individual anatomy is destroyed so that relevant information is lost. 
The approach presented in this paper allows inter-personal comparisons 
without having to resort to image warping. Our concept of sulcal basins 
allows to establish a complete parcellation of the cortical surface into 
separate regions. These regions axe neuroanatomically meaningful and 
can be identified from MR data sets across many subjects. At the same 
time, the parcellation is detailed enough to be useful for brain mapping 
purposes. 

1 I n t r o d u c t i o n  

The  folding of the cortical surface of the h u m a n  brain varies dramat ica l ly  from 
person to person. However, the folding pa t t e rn  is not  arbitrary.  In fact, the 
cortical folds (also called "sulci") often serve as landmarks  for referencing brain 
locations, and the more pronounced  sulci have names tha t  are well established 
in the neuroanatomical  l i terature [1]. 
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In this paper, we will present a method that  both automatically detects and 
attributes neuroanatomical names to these folds. More precisely, we subdivide 
each fold into a number of substructures which we call sulcal basins, and attach 
labels to these substructures. The reason why we introduce the concept of a sulcal 
basin is that  we believe that  sulcal basins have a lower degree of interpersonal 
variability than entire sulci. 

Our method is important  in the context of human brain mapping. Human 
brain mapping aims at establishing correspondences between brain function and 
brain anatomy. One of the most intriguing problems in this field is the high 
inter-personal variability of human neuroanatomy which makes studies across 
many subjects very difficult. 

Most previous attempts at solving this problem are based on various methods 
of image registration where MR data sets are registered and warped onto a brain 
atlas [2],[3],[4],[5],[6]. A related approach is that  by Gueziec et al. [7] and also 
Declerck et al. [8] who presented methods for extracting and matching lines in 
multiple MR data sets. However, in the process of warping much of the individual 
anatomy is destroyed by geometric distortions so that  relevant information is 
lost. In particular, size and shape information is destroyed. 

The approach presented in this paper allows inter-personal comparisons with- 
out having to resort to image warping. Our concept of sulcal basins allows to 
establish a complete parcellation of the cortical surface into separate regions. 
These regions are neuroanatomically meaningful and can be identified from MR 
data sets across many subjects. At the same time, the parcellation is detailed 
enough to be useful for brain mapping purposes. 

The work closest in spirit to ours is that  by Mangin et al. [9],[10],[11] who 
also seek to obtain a structural description of the cortical topography. It differs 
from ours in that  they do not use use the concept of a sulcal basin which is 
fundamental to our approach. Instead, they use an approach based on structural 
decompositions of sulcal skeletons. 

The paper is organized as follows. We begin by defining the concept of a sulcal 
basin and present an algorithm for extracting sulcal basins from MR images of 
the human brain. We then introduce a brain model consisting of sulcal basins 
and their spatial relationships. Finally, we present a graph matching approach 
that performs an automatic labelling of the sulcal basins. 

2 S u l c a l  b a s i n s  

2.1 T h e  c o n c e p t  o f  a sulcal  bas in  

The notion of a sulcal basin has not been used in the literature before. Let us 
therefore begin by defining this concept. Figure la  shows a volume rendering 
of a MR data set depicting a top right view of a healthy subject 's brain. The 
sulci are clearly visible as dark valleys. Figure lb  shows the top part  of the same 
brain. This time however, we removed the grey matter  so that  the white mat ter  
surface becomes visible and the sulci become more pronounced. Corresponding 
locations in both images are indicated by labels. 
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Figure 1: Sulcal basins 

Note that  the fold labelled "prc-sfs (precentral/superior frontal sulcus)" which 
appears to consist of one large part in the volume rendering decomposes into 
three separate concave basins in the figure lb. In fact, all sulci decompose into 
several such substructures, which we call "sulcal basins". 

More precisely, sulcal basins are defined to be concavities in the white mat ter  
surface which are bounded by convex ridges that separate one basin from the next 
so that adjacent sulcal basins meet at the top of the ridge. Figure 2 illustrates 
this definition. The entire white mat ter  surface is covered by such concavities 
so that a decomposition into sulcal basins yields a complete parcellation of the 
surface. 
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Figure 2: Sulcal basins 
There are two principal advantages in introducing the concept of a sulcal 

basin. Firstly, in subdividing sulci into atomic parts we obtain a spatially more 
precise definition of brain loci. As we are ultimately interested in inter-subject 
comparisons, this is an important consideration. 

Secondly, the high interpersonal variability in sulcal patterns can at least be 
partly at tr ibuted to different forms of groupings of sulcal basins. The two sets 
of sulcal basins below for instance can be easily matched, even though the two 
groups formed in each set cannot be matched: 

% 



372 

The post-central sulcus for instance usually consists of two basins, a superior 
and an inferior basin. In some brains, these two basins are connected to form a 
coherent sulcus. In others, there are completely disconnected. Thus, sulcal basins 
are much more useful as entities for matching than  entire sulci. 

2.2 A u t o m a t i c  d e t e c t i o n  o f  su lca l  b a s i n s  f r o m  m a g n e t i c  r e s o n a n c e  
d a t a  se t s  

Several approaches to automat ic  sulcus detection from MR images have been 
reported in the literature [12], [13], [14] which either seek surface representations 
of the cortical folds or are based on skeletonization methods.  

The concept of sulcal basins is new, and consequently no methods for ex- 
tracting them from MR images have existed so far. In the following, we will 
describe our approach. 

Sulcal basins are concave indentations in the white mat te r  surface, so that  
in principle it would be possible to detect sulcal basins by simply computing 
curvature properties of the white mat te r  surface. Parts  of the surface which 
belong to a sulcal basin are concave so that  both the mean curvature and the 
Gaussian curvature are positive. Boundaries between basins are either saddles 
or ridges and have negative or zero curvature values. 

However, the white mat ter  surface is highly convoluted and the MR data  sets 
have a limited spatial resolution, so that  the computat ion of second order dif- 
ferentials becomes quite inaccurate. As a consequence, we found tha t  curvature 
computat ions are not feasible for our purpose. In addition, there are also some 
parts  of a sulcal basin wall which are convex and yet they do not constitute a 
boundary between basins as illustrated below: 

Therefore, we use a different approach which is not based on curvature prop- 
erties. The method consists of a sequence of image analysis steps of which the 
first four are illustrated in figure 3. 

The input data  set (fig 3a) is first subjected to a white mat te r  segmentation 
which separates white mat ter  from other tissue classes (fig. 3b). This step helps to 
make the sulcal indentations more pronounced and thus more easily identifiable. 

A large number of segmentation algorithms are known from the literature. 
Any suitable segmentation procedure can be used here. A general segmentation 
algorithm that  produces satisfactory results for all types of input da ta  does not 
exist at this point, so that  the choice of a suitable algorithm and its parameters  
still very much depends on the type of da ta  at hand. In our experiments, we 
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used both simple thresholding techniques, as well as a new algorithm based on 
region growing [15]. 

Figure 3: The first four steps of the algorithm 

We then close the sulci using a 3D morphological closing filter [16] to obtain 
an idealized smoothed surface (fig. 3c). We use a structuring element of spherical 
shape with a very large diameter. The exact size of the diameter is not critical as 
long as it is large enough. We subtract the white mat ter  from the morphologically 
closed image so that  only the sulcal interiors remain (fig. 3d). 

At this point in the procedure, the processed image contains the union of all 
sulcal basins. We now need to separate the individual basins by trying to find 
the ridges between them. The main idea is based on the observation that  each 
sulcal basin has a locally deepest point (or a small set of locally deepest points) 
which may be used to guide the search. 

The sulcal depth is computed with respect to the smoothed surface (fig. 3c) 
using a 3D distance transform [17]. The distance transform attaches a value to 
each white voxel which encodes its distance towards the nearest black voxel so 
that each sulcal interior point of figure 3d receives a depth label. In essence, we 
first t ry to detect small "islands" of locally deepest points assuming that  each 
such island represents one sulcal basin. 

direction 
of region 
growing 

Figure 4: Region growing 

We search for locally deepest points by moving a search window of size n x 
n x n across the image where typically n = 7. Adjoining deepest points that  are 
of almost equal depth and are close are merged into one larger patch so that  
perturbations due to noise are eliminated. 

Finally, we let each initial island grow in a manner similar to region grow- 
ing until a separating ridge is encountered. During region growing, successively 
higher levels are processed so that  at each stage in the procedure only voxels of 
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a given depth are added to a sulcal basin. Figure 4 illustrates this process, and 
figure 5 shows a data  flow diagram of the entire procedure. 

input image 

white matter 

3D closing 

[ 3D d'st. trans'. 1 

- minus 

- deepest points 

I region growing 

sulcal basins 
Figure 5: Flow diagram 

3 Knowledge representation 

In the following, we will describe a method of automatically attaching neu- 
roanatomical labels to the sulcal basins that  have been identified using the 
procedures described in the previous sections. We will begin by describing our 
knowledge representation scheme. 

The neuroanatomical knowledge we use for describing sulcal basins consists 
of two parts: firstly, we use a unary model that  describes unary predicates of a 
sulcal basin such as location, depth or size. Secondly, we use a relational model 
that  describes spatial relationships between basins. 

The unary model was obtained as follows. We first rotate  all data  sets into a 
standard coordinate system where the origin is taken to be half-way between CA 
(commissura anterior) and CP (commissura posterior) making our coordinate 
system analogous to the one proposed in [18]. 

We then performed a hand labelling of four data  sets of which the sulcal 
basins had been extracted beforehand. We identified a set of 29 neuroanatomical 
labels which are listed in table I. 

These labels were chosen because they represent all primary and secondary 
sulci, covering the most part of the lateral brain surface. The structures that  are 
not represented here are the medial sulci which reside along the inter-hemispheric 
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cleft, the basal sulci which are located along the bo t t om of the brain, the Syl- 
vian fissure, and some ter t iary  sulci which have a high degree of interpersonal  
variability so tha t  no well established neuroanatomica l  names exist for them.  

Each sulcal basin of the above list is represented by its centroid, which is 
computed  from the four hand-labelled da ta  sets. Figure 6 shows these centroids 
against the sulcal pa t te rn  of one of these four da ta  sets (the sulcal lines shown 
here for bet ter  orientat ion were extracted using the a lgor i thm described in [19]). 

id 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

neuroanatomical name abbreviation 
superior central sulcus 
central sulcus broca's knee 
inferior central sulcus 
superior precentral sulcus 
medial precentral sulcus 
inferior precentral sulcus 
superior frontal sulcus 1 (posterior part) 
superior frontal sulcus 2 
superior frontal sulcus 3 
superior frontal sulcus 4 (anterior part) 
intermediate frontal sulcus (posterior part) 
intermediate frontal sulcus (anterior part) 
inferior frontal sulcus (posterior part) 
inferior frontal sulcus (anterior part) 
superior post-central sulcus 
inferior post-central sulcus 
intraparietal sulcus (anterior) 

cs sup 
cs broca 
cs inf 
prc sup (fef) 
prc reed 
prc inf 
sfs 1 
sfs 2 
sfs 3 
sfs 4 
imfs 1 
imfs 2 
ifs 1 (post) 
ifs 2 (ant) 
poc sup 
poc inf 
~ps asc 

intraparietal sulcus (medial) 
intraparietal sulcus (descending) 
superior temporal sulcus 1 (posterior part) 
superior temporal sulcus 2 
superior temporal sulcus 3 
superior temporal sulcus 4 (anterior part) 
medial temporal sulcus 
inferior temporal sulcus 1 (posterior part) 
inferior temporal sulcus 2 
inferior temporal sulcus 3 
inferior temporal sulcus 4 (anterior part) 
occipital sulcus 

lps hor 
lps desc 
sts 1 (post) 
sts 2 
sts 3 
sts 4 
rots 
its 1 (post) 
its 2 
its 3 
its 4 
occ 

Table I: list of neuroanatomical labels 
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Figure 6: The left hemisphere model 

Spatial relations between sulcal basins are defined with respect to the stan- 
dard coordinate system to which all data  sets have been aligned by the pre- 
processing routine. The relational model describes spatial relationships of three 
different kinds. 

The first type of relation is the "anterior-posterior" relation which describes a 
basin's position with respect to the coordinate axis along the front /back direction 
as indicated in figure 6. For instance, basin 4 is anterior with respect to basin 
2, but posterior to basin 7. This relation can be easily computed from the basin 
centroid's address as it is directly related to one of the three coordinate axes of 
the standard coordinate system. 

Likewise, we define a relation called "superior/inferior" ( top/bot tom) which 
is determined by a direction orthogonal to the first. The third direction aligned 
along the third principal axis of the coordinate system is less interesting as the 
brain extends mostly along the first two axes so that  it has less discriminative 
power. 

Instead, we use another relation called "sulcal connectedness" which de- 
scribes whether the ridge that  separates two adjacent basins is "strong" or not. 
More precisely, two basins are said to be "connected" if the ridge between them is 
lower than a given threshold. Note that  the height of the separating ridge can be 
easily determined from the distance transform. However, we use this particular 
relation quite cautiously, as the sulcal connectedness is quite variable from per- 
son to person. Only very few sulcal connections can be definitely established. For 
instance, the basins belonging to the central sulcus must always be connected. 

The three relations defined above are represented by three adjacency matrices 
where each entry in a matrix describes the degree to which the relation between 
any two basins holds. At present, we distinguish between three degrees: "0" 
(the relation does not hold), "1" (unknown) and "2" (the relation holds). For 
instance, basin 5 is always superior to basin 6. However, it is unknown whether 
it is superior or inferior to basin 3, because in some brains it is superior to 
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basin 3 whereas in others it is inferior. The adjacency matrix representing the 
connectedness relation contains mostly "unknowns". However, it is useful in 
establishing the central sulcus. 

4 G r a p h  m a t c h i n g  

Sulcal basins of some data set can now be labelled by matching them against the 
model described in the previous section. The technique we use for this purpose 
is an adaptation of the widely used association graph matching [20, pp.365 fi] 
which will be explained in the following. 

The sulcal basin model described in the previous section yields a graph 

G 1 ~--- (Pl , /~)  

where lJ] denotes the set of 29 nodes which represent the centroids of the model 
basins. Each node v C 1/'1 has a both a neuroanatomical label and a set of 
descriptors which include its 3D coordinate in the standard coordinate system 
and its average size or depth. The relational model R is represented by the list 
of adjacency matrices as defined above. 

Likewise, each new data set is represented by a graph 

G2 = (V=, R) 

where ~ is a list of nodes which represent the centroids of the sulcal basins 
which have been extracted from the data set using the algorithm described in 
section 2. The spatial relationships between these basins are documented in the 
list of adjacency matrices contained in R. 

The association graph 
A = ( a , s )  

contains possible associations between the two graphs G1 and G2 such that  
the neuroanatomical labellings of G1 are inherited by G2 while the constraints 
imposed by the adjacency matrices are preserved. Nodes in the association graph 
represent possible matches. More precisely, a node u of the association graph is 
a pair u = (vl, v.)) E U where vl C V1 and v2 E V2 such that  the distance 

d =l lv l  - v~lL 

does not exceed a given threshold. In our experiments, we used a threshold value 
of 15 ram. As a further restriction, we only allowed three possible matches for 
each model node so that  in cases where more than three nodes of G2 were within 
a 15 mm radius of a model node we only admitted the three closest nodes. Such 
restrictions help to reduce the complexity. 

Two nodes in the association graph are linked by an edge if they exhibit 
compatible spatial relationships. More precisely, two nodes a = (vl,v2) and 
b = (ul, u~) are connected if either 

/~(Vi,~tl) = R(Y2,~t2) # 1, o rR (v l , ? . t i )  --- 1. 
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Thus, links in the association graph enforce spatial constraints as imposed by the 
adjacency matrices. If the spatial relationship between any two basins is known 
(i.e. R(vl, ul) # 1), then compatibility only holds iff the spatial relationship is 
the same in both the model graph and the data  graph. If the spatial relationship 
is not known (i.e. R(vl, ul) = 1) then the link is established anyhow so as not 
to impose unnecessary constraints. 

The process of finding matches between the model graph and the data  graph 
consists in finding maximal cliques in the association graph. A clique is defined 
as a subset C of nodes such that  any two nodes of C are linked by an edge. 
A maximal clique is a clique which cannot be extended without destroying its 
clique property. 

In the context of graph matching, a clique in the association graph represents 
a set of matches between model and data graph such every pair of nodes obeys 
the spatial constraints. If such a clique is maximal, it contains the largest possible 
number of matches. 

Note that  there may be more than one maximal clique in the association 
graph, so that  we need to define a criterion that  selects a "best" maximal clique. 
In our experiments, we used the following function to evaluate the quality of a 
clique: 

f ( M ) =  ~ ~ I I ( l l ~ - ~ ' l l - I I ~ - v ' l l )  ll 
(u,v)EM (u',v')EM 

where M C U denotes a clique in the association graph, and u, u ~, v, v ~ denote 
spatial addresses of nodes in the graphs G1 and G2, respectively. The function 
f(M) measures how well distances between any two nodes in the model graph 
agree with distances in the data  graph. It attains a low value if distances are 
well preserved, and a high value otherwise. 

A large number of algorithms for finding maximal cliques are known from 
the literature [21]. In our experiments, we used the algorithm described in [20, 
p. 367]. Regardless of which particular algorithm we use, the problem of finding 
maximal cliques in a graph is in principal of exponential complexity. Therefore, 
it is not feasible to seek cliques in an association graph using all 29 basin labels 
at the same time. We circumvent this problem by following an incremental ap- 
proach. We begin by first identifying the most prominent and least variable sulci 
which are the central, precentral, lower postcentral and the anterior intrapari- 
etal sulci. We then proceed by identifying the remaining sulci belonging to the 
frontal lobe, the parietal lobe and finally the temporal lobe, so that  the entire 
identification process is split into four stages. At each stage, approximately eight 
basin labels are processed. 

In spite of the fact that  we do not process all labels at the same time, we can 
still enforce the entire set of constraints across all labels so that  the resulting 
clique obeys all constraints. This is possible as the clique finding method we use 
supports incremental updates. 
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5 Experiments 

Our input data  consisted of Tl-weighted magnetic resonance images (MRI) of 
healthy volunteers. The spatial resolution between planes was approx. 1.5turn 

and the within-plane resolution was set to approx. 0.95ram x 0.95ram. The im- 
ages were subsequently resampled to obtain isotropic voxels of size l m m  • l m m  • 

l m m  so that  each data  set contained 160 slices with 200 • 160 pixels in each slice. 
As noted before, all data  sets were rotated into a s tandard coordinate system. 
In addition, we applied an automatic  procedure to extract  brain from non-brain 
material.  For a more detailed description of our preprocessing procedure see [22]. 

Our sulcus detection method was initially applied to four MR data  sets so 
that  the unary model could be generated. This model was then used to label 
sulcal basins which had been extracted from 17 other da ta  sets. None of these 
17 data  sets had been used for the unary model. So far, we have only processed 
left hemispheres. 

The graph matching algorithm produced maximal cliques which on the av- 
erage contained 25.4 out of 29 possible matches. In two cases, only 21 and 22 
matches were found, in all other cases at least 25 matches were found. An average 
of 1.1 of the matches found were false. Figure 7 shows a few results. 
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Figure 7: Results o] the automatic  labelling process 

The computat ion time for the basin identification procedure was approxi- 
mately 100 seconds. The automatic  labelling procedure took approximately 37 
seconds. 
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6 D i s c u s s i o n  

We have presented a method that automatically detects and attributes neu- 
roanatomical names to substructures of the cortical folds which we call sulcal 
basins using magnetic resonance data of healthy human brains. We believe that 
our method is relevant in the context of human brain mapping because it helps 
to identify brain loci in a way that is anatomically meaningful and easily repro- 
ducible across many subjects so that inter-personal comparisons become possible. 

Future work will focus on the following aspects. Firstly, we intend to extend 
the list of anatomical labels so that brain loci which are not modelled at present 
(the Sylvian fissures, the medial and basal sulci and some tertiary sulci) can 
be identified as well. The aim will be to obtain a complete parcellation of the 
human cortex. At present, the method covers most of the lateral brain surface. 

The number of basins varies somewhat between subjects. Therefore, there is 
some ambiguity in the identification process. For instance, the superior frontal 
sulcus (basins 7,8,9,10) sometimes contains one basin more or less than our 
model. In future work, we intend to modify our method so that deviations from 
the standard model can be dealt with. However, in our experiments so far we 
found that deviations from the standard model are surprisingly small. 

Another aspect of our future work will of course be to improve the accu- 
racy and reliability of the method. At present, the method identifies roughly 85 
percent of the sulcal basins with one or two erroneous matches. Improvements 
can be achieved in several ways. Firstly, the unary model which contains av- 
erage voxel addresses of the model basins should be incrementally updated as 
new data sets are processed so that the model begins to "learn". Secondly, other 
types of spatial relationships between basins will be added. And thirdly, the 
graph matching procedure will be extended to include probabilistic reasoning. 
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