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Abstrac t .  Many object classes, including human faces, can be modeled 
as a set of characteristic parts arranged in a variable spatial configu- 
ration. We introduce a simplified model of a deformable object class 
and derive the optimal detector for this model. However, the optimal 
detector is not realizable except under special circumstances (indepem 
dent part positions). A cousin of the optimal detector is developed which 
uses "soft" part detectors with a probabilistic description of the spatial 
arrangement of the parts. Spatial arrangements are modeled probabilisti- 
cally using shape statistics to achieve invariance to translation, rotation, 
and scaling. Improved recognition performance over methods based on 
"hard" part detectors is demonstrated for the problem of face detection 
in cluttered scenes. 

1 I n t r o d u c t i o n  

Visual recognition of objects (chairs, sneakers, faces, cups, cars) is one of the 
most challenging problems in computer vision and artificial intelligence. Histor- 
ically, there has been a progression in recognition research from the particular 
to the general. Researchers initially worked on the problem of recognizing indi- 
vidual objects; however, during the last five years the emphasis has shifted to 
recognizing classes of objects which are visually similar. 

One line of research has concentrated on exploiting photometric aspects of 
objects. Matched filtering (template matching) was an initial a t tempt  along these 
lines. More modern approaches use classification in subspaces of filter responses, 
where the set of filters is selected based on human receptive fields, principal com- 
ponents analysis [12, 23, 16, 2], linear discriminant analysis, or by training with 
perceptron-like architectures [22, 20]. These methods allow one to accomodate a 
broader range of variation in the appearance of the target object than is possible 
using a simple matched filter. 
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A second line of research has used geometric constraints between low level 
object features. Methods such as alignment [11], geometric invariants [15], com- 
binations of views [24, 21], and geometric hashing [26, 19] fit within this category. 

Further generalization has been obtained by allowing an object to be repre- 
sented as a collection of more complex features (or texture patches) connected 
with a deformable geometrical model. The neocognitron architecture [10] may 
be seen as an early representative. More recently, Yuille [27] proposed to use de- 
formable templates to be fit to contrast profiles by gradient descent of a suitable 
energy function. Lades, vonder  Malsburg and colleagues [13, 25] proposed to 
use jet-based detectors and deformable meshes for encoding shape. Their work 
opened a number of interesting questions: (a) how to derive the energy function 
that encodes shape from a given set of examples, (b) how to initialize automat- 
ically the model so that it converges to the desired object despite a cluttered 
background in the image, and (c) how to handle partial occlusion of the object. 
Lanitis, Cootes et al. [14, 6, 7] proposed to use principal components analysis 
(applied to the shape of an object rather than the photometric appearance) to 
address the first issue. Pope and Lowe [17, 18] used probability theory to model 
the variation in shape of triples of features. BruneUi and Poggio [1] showed that 
an ad hoc face detector consisting of individual features linked together with 
crude geometry constraints outperformed a rigid correlation-based "full-face" 
detector. 

Burl, Leung, and Perona [3, 4] introduced a principled framework for repre- 
senting object deformations using probabilistic shape models. Local part detec- 
tors were used to identify candidate locations for object parts. These candidates 
were then grouped into object hypotheses and scored based on the spatial ar- 
rangement of the parts. This approach was shown to work well for detecting 
human faces in cluttered backgrounds and with partial occlusion. There is no 
guarantee, however, that first "hard-detecting" the object parts and then look- 
ing for the proper configuration of parts is the best approach. (Under a "hard" 
detection strategy, if the response of a part detector is above threshold, only the 
position of the part is recorded; the actual response values are not retained for 
subsequent processing.) 

In this paper, we reconsider from first principles the problem of detecting an 
object consisting of characteristic parts arranged in a deformable configuration. 
The key result is that we should employ a "soft-detection" strategy and seek the 
arrangement of part locations that maximizes the sum of the shape log-likelihood 
ratio and the responses to the part detectors. This criteria, which combines both 
the local photometry (part match) and the global geometry (shape likelihood) 
provides a significant improvement over the "hard-detection" strategy used pre- 
viously. 

In Sect. 2 we provide a mathematical model for deformable object classes. 
The optimal detector for this model is derived from first principles in Sect. 3. 
We then investigate, in Sect. 4, an approximation to the optimal detector which 
is invariant to translation, rotation and scaling. In Sect. 5 we present evidence 
which verifies the practical benefits of our theoretical findings. 
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2 D e f o r m a b l e  O b j e c t  G l a s s e s  

We are interested in object classes in which instances from the class can be 
modeled as a set of characteristic parts in a deformable spatial configuration. 
As an example, consider human faces, which consist of two eyes, a nose, and 
mouth. These parts appear in an arrangement that  depends on an individual's 
facial geometry, expression, and pose, as well as the viewpoint of the observer. 

We do not offer a precise definition of what constitutes an object "part",  
but  we are generally referring to any feature of the object that  can be reliably 
detected and localized using only the local image information. Hence, a part  may 
be defined through a variety of visual cues such as a distinctive photometric pat- 
tern, texture,  color, motion, or symmetry. Parts  may also be defined at multiple 
scales. A coarse resolution view of the head can be considered a "part" as can 
a fine resolution view of an eye corner. The parts may be object-specific (eyes, 
nose, mouth) or generic (blobs, corners, textures). 

2.1 S impl i f i ed  M o d e l  

Consider a 2-D object consisting of N photometric parts Pi(x, y), each occuring 
in the image at a particular spatial location (xi, y~). The parts Pi can be thought 
of as small image patches that  are placed down at the appropriate positions. 
Mathematically, the image T of an object is given by: 

N 
T(x,y)  = ~ P i ( x  - x~, y - Yi) (1) 

i=1 

For convenience, we will assume, that  the Pi(x, y) are defined for any pair (x, y), 
but  are non-zero only inside a relatively small neighborhood around (0, 0). 

Let X be the vector describing the positions of the object parts, i.e. 

X - -  [XlX2 . . .XNYl  Y2 . . .  YN  ] T (z) 

An object class can now be defined as the set of objects induced by a set of 
vectors {Xk}. In particular, we assume that  the part positions are distributed 
according to a joint probability density Px iX) .  We will designate the resulting 
object class as T.  To generate an object from this class, we first generate a 
random vector X according to the density p x ( X ) .  Since this vector determines 
the part  positions, we simply place the corresponding pat tern  Pi at each of these 
positions. 

Note that  no assumption about p x ( X )  is made at this time. It  should be 
clear, however, that  through p x ( X )  we can control properties of the object 
class, such as the range of meaningful object shapes, as well as tolerable ranges 
of certain transformations, such as rotation, scaling and translation. 
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3 D e r i v a t i o n  o f  t h e  O p t i m a l  D e t e c t o r  

The basic problem can be stated as follows: given an image Z determine whether 
the image contains an instance from 7" (hypothesis wl) or whether the image 
is background-only (hypothesis w2). In our previous work we proposed a two- 
step solution to this problem: (1) apply feature detectors to the image in order 
to identify candidate locations for each of the object parts and (2) given the 
candidate locations, find the set of candidates with the most object-like spatial 
configuration. However, there is nothing to say that first hard-detecting candi- 
date object parts is the right strategy. In the following section, we will directly 
derive the optimal detector starting from the pixel image Z. 

3.1 Optimal Detector 

The optimal decision statistic is given by the likelihood ratio 

A = (3) 

We can rewrite the numerator by conditioning on the spatial positions X of the 
object parts. Hence, 

A = E x p ( Z l X ,  rdl). p(Xlrdl) (4) 

where the summation goes over all possible configurations of the object parts. 
Assuming that parts do not overlap, we can divide the image into N + 1 regions, 
:Z~ ,Z N, where Z i is an image which is equal to Z in the area occupied 
by the non-zero portion of part Pi (positioned according to X)  and zero other- 
wise. L r~ denotes the background. Assuming furthermore that the background is 
independent across regions, we obtain 

A = E x  1-I~-oP(Z/[X, Wl) "P(XIwl) 
p(Zl 2) 

(5) 

(6) 

(7) 

Here, the Ai(xi, yi) = P(Z'bx'wl) p(Z,]~d2) can be interpreted as likelihood ratios express- 
ing the likelihood of part Pi being present in the image at location (x~, Y0- Note 
that )~0(x, y) is equal to one, under the hypothesis that the statistics of the 
background region do not depend on the presence or absence of the object. 
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We can specialize this derivation by introducing a particular part detection 
method. For example, assuming that the object is embedded in white Gaussian 
noise, we can substitute Gaussian class conditional densities and obtain 

 x, 2z) 
= 0, 2x) (s) 

Here,/~x is the object with parts positioned at X, 0 shall denote a vector of zeros 
and I is the identity matrix. Expanding the Gaussian densities and combining 
terms yields: 

e x p .  ~ a  2 ] . e x p ( ~  - )  

where a 2 is the variance of the pixel noise and e depends only on the energy in 
the object image and is therefore constant independent of X ,  provided the parts 
do not overlap. Equation (9) simply restates the well known fact that matched 
filtering is the optimal part detection strategy under this noise model. Writing 
A~ for the response image obtained by correlating part i with the image 27 and 
normalizing by a 2, we finally obtain 

A = c. E exp (Ai(x,, Yi)) �9 p(X)  (101 
X 

The constant c does not affect the form of the decision rule, so we will omit it 
from our subsequent equations. 

3.2 Independent Part Positions 

If  the part positions are independent, p(X)  can also be expressed as a product 

N 

Thus, we have 

p(X) = IIp'(=' ,y')  
/---1 

For the special case of additive white Gaussian noise: we obtain 

,] 
X 

(11) 
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= I I  exp(Ai(xi,yi) +logpi(xi,yi)) (12) 
i = 1  (i,Y~) 

Thus, we need to compute the correlation response image (normalized by ~2) 
for each object part. To this image, we add the log probability that the part 
will occur at a given spatial position, take the exponential, and sum over the 
whole image. This process is repeated for each object part. Finally, the product 
of scores over all the object parts yields the likelihood ratio. 

Note, that the detector is not invariant to translation, rotation, and scaling 
since the term pi(xi, Yi) includes information about the absolute coordinates of 
the parts. 

3.3 Jointly Distributed Part Positions 

If the part positions are not independent, we must introduce an approximation 
since summing over all combinations of part positions as in (7) is infeasible. 
The basic idea--similar to a winner-take-all strategy--is to assume that the 
summation is dominated by one term corresponding to a specific combination 
X0 of the part positions. With this assumption, we have 

N 

a Ao = l - [  
i=1  

N 

log A0 = ~ log As(xi, yi) -b logp(X0) (13) 
i = l  

and in the case of additive white Gaussian noise 

logAo = Ai(xoi,yoi) + logp(X0) (14) 

The strategy now is to find a set of part positions such that the matched filter 
responses are high and the overall configuration of the parts is consistent with 
p(Xl~ol). Again, the resulting detector is not invariant to translation, rotation, 
and scaling. 

4 T R S - i n v a r i a n t  A p p r o x i m a t i o n  to  t h e  O p t i m a l  D e t e c t o r  

The approximate log-likelihood ratio given in (13) can readily be interpreted as 
a combination of two terms: the first term, ~ Ai, measures how well the hy- 
pothesized parts in the image match the actual model parts, while the second 
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term, p(X0), measures how well the hypothesized spatial arrangement matches 
the ideal model arrangement. The second term, the configuration match, is spec- 
ified as a probability density over the absolute coordinates of the parts, which in 
practice is not useful since (a) there is no way to know or estimate this density 
and (b) this formulation does not provide TRS-invariance. 

We can make use of the theory developed in our previous work (see [4] or 
[5]) to write down a TRS-invariant detector that closely follows the form of (13). 
In particular, we know how to factor the term p(Xo) into a part that depends 
purely on shape and a part that depends purely on pose: 

px(x0)  = p u ( V o ( X o ) ) ,  p (Oo(Xo)) (15) 

Here, U denotes the shape of the constellation and the vector @ captures the 
pose parameters. Computing U(X) corresponds to transforming a constellation 
X in the image to so-called shape space by mapping two part positions (the 
base-line pair) to fixed reference positions. In shape space, the positions of the 
remaining N - 2 parts define the shape of the configuration, written as 

u =  ... v 4  . . .   N]T (16) 

If p x ( X )  is a joint Gaussian density, then the shape density, pv(U), can be 
computed in closed form as shown by Dryden and Mardia [8]. This established, 
we can obtain the TRS-invariant detector by dropping the pose information 
completely and working with shape variables U0, instead of figure space variables 
X0. The resulting log-likelihood ratio is then 

N 

log A1 = Z Ai(xoi, Yoi) + K.  log pu(Uo]wl) (17) 
i=l pv(Vo[w2) 

The shape likelihood ratio, rather than just Pu (U0), is used in place of Px (X 0 ) 
to provide invariance to the choice of baseline features. The likelihood ratio also 
assigns lower scores to configurations that have higher probabilities of accidental 
occurrence. The factor of K provides a weighted trade-off between the part match 
and shape match terms, since the units of measurement for the two terms will no 
longer agree. (The proper setting for this value can be estimated from training 
data). 

An object hypothesis is now just a set of N coordinates specifying the (hy- 
pothesized) spatial positions of the object parts. Any hypothesis can be assigned 
a score based on (17). It is no longer the case that hypotheses must consist only 
of points corresponding to the best part matches. The trade-off between having 
the parts match well and having the shape match well may imply that it is better 
to accept a slightly worse part match in favor of a better shape match or vice 
v e r s a .  

We do not have a procedure for finding the hypothesis that optimizes log At. 
One heuristic approach AI is to identify candidate part locations at maxima 
of the part detector responses and combine these into hypotheses using the 
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conditional search procedure described in [4]. However, instead of discarding 
the response values, these should be summed and combined with the shape 
likelihood. In this approach, the emphasis is on finding the best part matches 
and accepting whatever spatial configuration occurs. There is no guarantee that  
the procedure will maximize log A:. 

Figure 1 illustrates the gain of approach .4: over hard detection. The two 
components of the goodness function (sum of responses and shape log-likelihood) 
can be seen as dimensions in a two dimensional space. Evaluating the goodness 
function is equivalent to projecting the data onto a particular direction, which 
is determined by the trade-off factor K.  A technique known as "Fisher's Linear 
Discriminant" [9] provides us with the direction which maximizes the separability 
of the two classes. If the sum of the detector responses had no discriminative 
power, the value of K would tend toward infinity. This would correspond to a 
horizontal line in the figure. The advantage of soft detection is further illustrated 
in Fig. 2. 
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Fig. 1. Illustration of the advantage of soft detection. The sum of the detector outputs 
is plotted against the shape log-likelihood, for a set of face (o) and background (-t-) 
samples. Also shown is a line onto which the data should be projected (derived by 
Fisher's Linear Discriminant method). 

A second approach, ,42, is to insist on the best shape match and accept 
whatever part matches occur. This method is roughly equivalent to using a rigid 
matched filter for the entire object, but applying it at multiple orientations and 
scales. 
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Fig. 2. Two constellations of candidates for part locations are shown. The background 
constellation (black 'x') yields a greater shape likelihood value than the correct hy- 
pothesis (white '+'). However, when the detector response values are taken into con- 
sideration, the correct hypothesis will score higher. 

Finally, we tested a third approach, ~43, that  intuitively seems appealing. 
Candidate part  locations are identified as before in .41 at local maxima in the 
part  response image. From pairs of candidate parts, the locations of the other 
parts are estimated to provide an initial hypothesis. (So far, this is equivalent 
to using a fixed-shape template anchored at the two baseline points). From the 
initial hypothesis, however, a gradient-style search is employed to fmd a local 
maximum of log A1. Individual part  positions are pulled by two forces. One force 
tries to maximize the response value while the other force tries to improve the 
shape of the configuration. 

5 E x p e r i m e n t s  

We conducted a series of experiments aimed at evaluating the improvements 
over hard detection of object parts, brought about by the different approaches 
described in the previous section. To test our method, we chose the problem of 
detecting faces from frontal views. A grayscale image sequence of 400 frames 
was acquired from a person performing head movements and facial expressions 
in front of a cluttered background. The images were 320 x 240 pixels in size, 
while the face occupied a region of approximately 40 pixels in height. Our face 
model was comprised of five parts, namely eyes, nose tip and mouth corners. 

For the part  detectors we applied a correlation based method---similar to a 
matched fil ter--acting not on the grayscale image, but on a transformed version 
of the image that  characterizes the dominant local orientation. We found this 
method, which we previously described in [5], to be more robust against varia- 
tions in illumination than grayscale correlation. The part  detectors were trained 
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part resp.: optimal part resp.: suboptimal part resp.: suboptimal 
shape: suboptimal shape: optimal shape: suboptimal 
combined: suboptimal combined: suboptimal combined: optimal 

Fig. 3. Pictorial illustration of the three approaches ,4i, ,42, and ,4a discussed in the 
text. For each approach we show a set of three contours which represent the superpo- 
sition of response functions from three part detectors. With approach Jr1 the detector 
responses are optimal, but the combination of responses and shape is suboptimal. With 
approach ,42 the shape likelihood is optimal, but the combination is still suboptimal. 
Only under approach As is the combined likelihood function optimized by seeking a 
compromise between contributions from the detector responses and shape. 

Best Best Best Best 
Correct False Correct False 

,U Responses 1 0 1 . 1  93.7 ,U Responses 96.4 94.8 
Shape Log-LH. 1.457 -0.096 Shape Log-LH. 3.460 -3.530 
Weighted Total 101.5 93.7 Weighted Total 97.5 93.7 

Fig. 4. Examples from the sequence of 400 frames used in the experiments. The highest 
scoring correct and incorrect constellations are shown for each frame. The tables give 
the values for shape log-likelihood, sum of detector responses as well as overall goodness 
function. 
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on images of a second person. In order to establish ground t ru th  for the part  
locations, each frame of the sequence was hand-labeled. 

Prior to the experiment, shape statistics had been collected from the face of 
a third person by fitting a joint Gaussian density with full covariance matrix 
to data  extracted from a sequence of 150 images, taken under a semi-controlled 
pose as discussed in [4]. 

5.1 Sof t  D e t e c t i o n  vs.  H a r d  D e t e c t i o n  

In a first experiment, we found that  using the five features described above, 
recognition on our test sequence under the hard detection paradigm was almost 
perfect, making it difficult to demonstrate any further improvements. Therefore, 
in order to render the task more challenging, we based the following experiments 
on the upper  three features (eyes and nose tip) only. In this setting, approach 
Az, i.e. combining the part  responses with the shape likelihood without any 
further effort to maximize the overall goodness function (17), yields a signif- 
icant increase in recognition performance. This result is illustrated in Fig. 5, 
where ROC (Receiver Operating Characteristics) curves are shown for the hard 
detection method as well as for approach r 
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Fig. 5. The two I~OC curves show the performance of hard vs. soft detection of features 
as a trade-off between detection probability, Pa, and probability of false alarm, Pf~. The 
soft detection method A1 clearly outperforms the hard detection strategy, especially 
in the low false alarm range. 

5.2 G r a d i e n t  D e s c e n t  O p t i m i z a t i o n  

Approach A3 was tested in a second experiment by performing a gradient de- 
scent maximization of the goodness criteria with respect to the hypothesized 
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part positions in the image. There are two potential benefits from doing this: 
improved detection performance and improved localization accuracy of the part 
positions. A cubic spline interpolation of the detector response images was used 
in order to provide the minimization algorithm with a continuous and differen- 
tiable objective function. Local maxima of the detector response maps were used 
as initial estimates for the part positions. We found that, on average, optimal 
part positions were found within a distance of less than one pixel from the initial 
positions. 

Fig. 6 shows the detection performance of the method before and after op- 
timization of (17). There does not seem to be any noticeable improvement over 
approach dtz. This result is somewhat surprising, but not entirely counterintu- 
itive. This is because by optimizing the goodness criteria, we are improving the 
score of the constellations from both classes, wz and w2. It is not clear that,  on 
average, we are achieving a better separation of the classes in terms of their re- 
spective distribution of the goodness criteria. From a different perspective, this 
is a positive result, because the gradient descent optimization is computationally 
very expensive, whereas we have already been able to develop a 2 Hz real-time 
implementation of approach `41 on a PC with Pentium processor (233 MHz). 

Since our part detectors did not exhibit a significant localization error for 
the test data at hand, we have not been able to determine whether approach .43 
might provide improved localization accuracy. 
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Fig. 6. The ROC performance does not significantly improve after Gradient Descent 
Optimization of the goodness criteria. 

6 C o n c l u s i o n  

We have reconsidered from first principles the problem of detecting deformable 
object classes of  which human faces are a special case. The optimal detector for 
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object class 7" was derived for the case of independent part positions. When the 
part positions are jointly distributed the optimal detector is too complicated to 
evaluate, but it can be approximated using a winner-take-all simplification. In 
both cases, the detector is composed of two terms: the first term measures how 
well the hypothesized parts in the image match the actual model parts, while the 
second term measures how well the hypothesized spatial arrangement matches 
the ideal model arrangement. 

The configuration match is specified in terms of the absolute positions of the 
object parts, therefore the optimal detector cannot be used in practice. However, 
using previous theoretical results, we were able to write an expression that closely 
follows the form of (13), but only exploits the shape of the configuration. The 
resulting criteria combines the part match with shape match and is invariant to 
translation, rotation, and scaling. 

Although we do not have a procedure for finding the hypothesis that maxi- 
mizes the overall goodness function, a heuristic approach A1 worked very well. 
In this approach, candidate parts are identified and grouped into hypotheses as 
in the shape-only method, but, in addition, the response values (part matches) 
are retained and combined with the shape likelihood. A second approach, in- 
cluding a gradient descent optimization of the goodness function with respect 
to the part position in the image, did not provide significant improvement in 
recognition performance. 
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