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A b s t r a c t .  Several investigations [11, 16,19-21] have recently been un- 
dertaken into object recognition based on matching image intensity neigh- 
borhoods rather than geometric matching of features extracted from the 
images. These projects have used small subwindows or complete im- 
age regions and matching has been based on the similarity of extracted 
descriptors to previously stored descriptors. One characteristic common 
to these approaches is the representation of objects as a whole, rather 
than as a structured ensemble. This paper describes an extension to these 
approaches wherein a set of related features recognized at an earlier iter- 
ation also contribute to the complete object recognition. The paper de- 
scribes an iconic, or image-based, matching approach that incorporates 
an element of geometric matching and shows that use of the subfeatures 
improves matching efficiency, position accuracy and completeness. 

1 Introduction 

Symbolic matching algorithms have been popular and well-explored (e.g. [9]). 
They depend for their success on a combinatorial search process to establish 
feature correspondence and thus have an "all-or-nothing" behavior. To improve 
reliability and efficiency the use of a subcomponent hierarchy in matching al- 
gorithms has also been common in the symbolic domain, for both machine vision 
(e.g. [17, 4,6, 7]) and biological vision (e.g. [13, 3]). In contrast, image template 
matching has been used in restricted domains for many years (e.g. [1], pg 65). 
The template matching approach has problems with rotation and scale invari- 
ance, and has requires much image computation. With the use of the log-polar 
representation [18, 22], the invariance problems can be overcome and the recent 
great increase in computational power of standard processors has reduced the 
computation time. As a consequence of these two factors, several investigations 
[11, 16, 19-21] have recently been undertaken into object recognition based on 
matching images (or some non-symbolic representation of them) directly rather 
than geometric matching of symbolic features extracted from the images. 

We have been investigating [10, 11] the capabilities of iconic, or image-based, 
approaches to object recognition (described in some detail in Section 2) as have 
other research groups. Rao and Ballard [16] used a number of filters, derivatives 
of gaussians at several different scales, to build an n-dimensional feature vec- 
tor. The feature vectors are input into a simple neural network which associates 
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each vector with one of a number of objects. Their system is able to distin- 
guish between a large number of objects under varying pose, by learning a set 
of poses. However, their system is unable to distinguish between objects with 
similar global frequency responses and the global filtering approach does not 
represent the spatial distribution of features necessary for distinguishing subtle 
appearance differences. Schiele and Crowley [19] have matched 2D histograms of 
pairs of image properties (mainly gradient-based) and achieved good matching 
results using a X 2 metric, but their approach also ignores the global organiza- 
tion of the image features. Seibert and Waxman [20] used an ART network to 
match feature vectors extracted from log-polar processed images. Their features 
were interest points extracted from binary images of single isolated objects. 2D 
image-based recognition was linked into a 3D aspect and multiple competing 
identity object recognition network. Siebert and Eising [21] used the log-polar 
architecture with a difference-of ganssians receptive field and their matching 
scheme used templates applied directly to the log-polar image. An alternative 
approach [2] uses log-log sampling in the fourier domain but it is not considered 
here as it confounds the structural information exploited in our approach. 

There has been much work on property-based image indexing from databases 
(e.g. [14]) but most of it has not used image geometry other than [8], which uses 
graph-like models of human and animal limb relationships. Mundy et al [15] 
have compared an iconic and a projective invariant object recognition system 
on a small database of simple parts and found that the iconic approach had a 
higher false-positive rate and lower false-negative rates. In part this was due to 
the iconic system not having a verification stage. The computation rate was also 
affected as the model base grew. On the other hand, their invariant approach 
was limited by the ability to model only simple shapes, but did cope better with 
illumination problems. One of the questions addressed in our research is how the 
associated model evidence affects the false-positive rate. 

Another approach has been to represent families of similar objects by a 
weighted set of eigenvectors, with the recognition mechanism comparing the pro- 
jection weights of a sample image to the eigenvectors in a database (e.g. [24]). 
In this case, object geometry is implicit in the representation, so the technique 
investigated here is inappropriate. Tistarelli [23] investigated the combination 
of the active space-variant sensor (as used here) with the eigenvector approach, 
and concluded that the accuracy of recognition can be much improved while 
simultaneously reducing the database size. 

This paper describes an iconic matching approach that incorporates a sim- 
plified geometric model and shows that use of the subfeature matching promotes 
matching efficiency, position accuracy and correctness. More details can be found 
in [12]. 

The motivation for this research comes from the intuition that ifI  am looking 
at a feature and have some moderate evidence that it is a given model (e.g. "it 
might be an eye") and I have seen other nearby related features (e.g. another eye 
and a nose in the correct relative orientation and placement) then this feature 
is more likely to be the hypothesized object. The accuracy will increased by the 
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response from the correct orientation and placement of the other features with 
respect to the current feature. The better the predicted and actual associated 
labels match, the more accurate the current match is likely to be. 

2 O v e r v i e w  o f  t h e  i c o n i c  r e c o g n i t i o n  p r o c e s s  

We have used a foveated (R,/9) log-polar coordinate system [22] for retino-centric 
coordinates, with 20 bands, each containing 48 sectors. The receptive fields (i.e. 
the area of the (i,j) image from which they take input) of each pixel in the 
(R,/9) representation increase (logarithmically by 1.2) as R grows larger in order 
to cover the entire foveated area. The receptive fields in the innermost bands take 
their input from only one or a few pixels, averaging the value. This gives high 
resolution around the foveation point. Receptive fields in the outermost bands 
average large numbers of pixels, giving lower resolution. Receptive fields overlap 
by about 33% to avoid gaps, leading to some blurring. The polar representation is 
attractive because it maps rotation and scaling into translation, and this feature 
is used in the matching algorithm described below to deliver scale and rotation 
invariance. 

The main representations are: 

1. The  World  - a large static (r, g, b) image (here 5122) within which the iconic 
matcher saccades and extracts smaller (here 1282) foveated views. 

2. The  Image  Stack - Foveating the world image maps part of the raw (r, g, b) 
image to (R,/9) space, to form the first part of the image stack. 
The feature extraction process extracts 42 log-polar images registered with 
the current foveated image [10]. The images consist of 3 scales (extracted 
from the 1, 1 and 2 size images) of 14 feature types: the red/green/blue 
intensity component images, two on- and off-center-surround features, four 
radial and orthogonal on- and off- bars, four orientations of edges and an 
unoriented corner measure. Each receptive field in each of the feature planes 
gives a measure of the strength of the given property at the corresponding 
spatial image location. The feature images are extracted by applying a small 
neighborhood operator at each location in the foveated image. 

3. The  Mode l  Base - a set of models that may be matched to the current 
image stack. The iconic portion of each model has the same format and con- 
tents as the image stack. Each feature plane has a weight associated with 
it, indicating how useful the feature is in identifying this object. The struc- 
tured portion of each model may have a list of associated models (e.g. an 
eye may link to a likely nearby nose position). This list has of the form 
{ ( modeLtype, relative_position, relative_orientation, relative_scale, import- 
ance_weight ) }. These links can also be used to form an iconic geometric 
model (described in Section 3). Models are created by a learning process 
using pictures that are representative of the class. A model is normally re- 
gistered on a feature that will attract the attention system [11]. Models are 
learned at three scales (50%, 100% and 200%) because not all features will 
be visible at all scales. 
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4. The  In te res t  Map  - The interest map [11] is an image structure registered 
with the world. Its contents record a value representing the interestingness of 
a given point in the scene. Interestingness values increase as center-surround 
and corner image features are found and as models are identified (as these 
predict locations of likely associated models). Interestingness values decrease 
at parts of the image that have been explored. Details of the calculation of 
the interest map is given in [11]. 
The scene is explored in a saccade-like process by selecting the current 
highest interest point as the next location to foveate. 

The matching process uses a modified multi-variate cross-correlation func- 
tion: 

42 

VI = f(~"~ pkwk + WO) (1) 
k = l  

where Pk is the single channel match score (using the standard statistical cross- 
correlation between 2 feature images at each given rotation and scale offset) 
and wk are weights which are learned by a perceptron learning algorithm. These 
weights reflect the relative importance of the feature correlation scores in de- 
termining object identity. The bias w0 reflects the a priori probability of data 
belonging to this class (defaults to 0). f (x)  is the sigmoid function 1/(1 + e-=). 
The matching process compares the stack of 42 iconic feature images to entries in 
a model database. In order to achieve rotation and scale invariance, the log-polar 
images are shifted in a convolution-like process. One shift direction is equivalent 
to a scale change, the other is equivalent to a rotation (well known properties 
of the log-polar transform). The shift process, for example, allows alignment 
of a rotated model with a database entry, thus improving correspondence. To 
achieve translation invariance, the matcher outer loop has a saccade-like process 
that shifts foveation to the next highest point in the attention map. As models 
are created by foveation at high interest points, using these points to direct fo- 
veation increases the chances of aligning a model image with the corresponding 
image in a test scene. Thus, the highest model score (greater than a "recog- 
nition threshold") is the recognized model, the current saccade position is the 
object's position and the rotation and scale at which the best match occurs is 
the estimated model orientation and size. 

While this is an unusual approach to object recognition, its advantages are: 
the primal-sketch-like features provide an element of illumination invariance, the 
correlation matching allows a graceful degradation of correspondence and thus 
an element of generalization and the log-polar representation allows rotation 
and scale invariance. Its disadvantages include: an unconventional, idiosyncratic 
and generally unexplored architecture, moderate computation time per foveation 
position (a second per saccade and model), and somewhat heuristic feature ex- 
traction processes. 

The architecture does allow exploration of the questions addressed in this 
paper: is it possible to in tegra te  geometr ic  models  wi th in  an  iconic 



691 

image matching parad igm? I f  so, does it provide any benefit  in terms 
of speed, spatial accuracy or recognition completeness? 

3 I n t e g r a t i n g  s u b s t r u c t u r e s  i n t o  m a t c h i n g  

To extend the architecture summarized in Section 2, five data structures or 
processes needed to be developed: 

li Structured model.representation, ~u]~component ev~cl~nce recorflyng, 
~,uocog~l~onen~ ,eylae, nce toca~lon, 
D~:r ma~cn~ng mncuon, ana 
m~eres~ map upaa~e. 

These points are discussed in the following subsections. 

3.1 S t ruc tu r ed  model  representation 

The models need to be extended to include other models associated with the 
current model. The associated models include subcomponents (such as an eye 
as being a subcomponent of a face) as well as more generally associated objects 
(such as a keyboard and a monitor). 

Each augmented model becomes: 

model type 
42 feature (R, 8) feature planes 
42 feature evidence combination weights Wk plus w0 
a set of N associated models: 

,4 = { ai } = { ( associated model type/, 
relative position ti, relative orientation r and scale ai, 
relative importance 7i ) } 

Each related model is normally also a proper full model, containing its own 
42 feature planes, as well as its own associated models, which may or may not 
refer back to the initial model. 

3.2 Subcomponent  evidence recording 

The Stable Feature Frame (SFF) [5] represents the system's visual memory. 
It is registered on the world rather than the gaze location and increment- 
ally records a stable, non-retinocentric view of the world. It contains defo- 
veated (r,g, b) data obtained during the system's visual exploration, plus a 
list {s j }  = {(Mj,  t j ,  Cj, aj,  Vj)} of recognized image structures (i.e. model in- 
stances) Mj,  their image locations tj,  estimated orientation Cj, estimated scale 
aj and matching scores Vj. 
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3.3 Subcomponent  ev idence  location 

When matching at the current ~foveation position ty, initially only the 42 feature 
planes are involved. The matching algorithm computes a feature-based match at 
t f  with score V I (using Eqn (1)) and an estimated model scale a! and rotation 
r  For each associated subcomponent i with relative position t~, relative orient- 
ation r and relative scale ai, one can predict where in the scene the associated 
models are likely to be found: 

their expected scale: 

and their expected orientation: 

tpi : t f  q- a f T~(r )ti 

CTpi .= r f 

(2) 

The SFF can then be searched for model instances of the correct type that 
are within a search window of the predicted position, and that have a scale 
and orientation that are within a tolerance of the predicted position, scale and 
orientation. 

3.4 Extended  match evaluation function 

The match evaluation score originally used only the match score Vf provided 
by correlating the 42 feature planes and combining their match scores (see Eqn 
(1)). With the associated model matching scores, the overall matching function 
has been extended to be: 

aYl + (1 - a)Ya 

where Va is the associated model evidence and c~ = 0.7 (chosen arbitrarily). 
The associated model evidence Va is given by: 

Va = Z 7i m a x s ~ S F F  { h(pred(ai) ,s j )  } 
aiE.A 

where pred(x) is the predicted properties of the observed model, as given by the 
formulas in Section 3.3, 71 is the relative importance of each associated model, 
ai is an associated model and sj is a previously found model instance recorded 
in the stable feature frame (SFF). Thus, the more associated models that are 
successfully found, the larger is the combined evidence score Va. 

The associated model goodness evaluation h 0 is given by: 

h((..., tvi , ...), (..., t j ,  ...)) = Mje  -l~d(tp''t~) 

where Mj is the associated model's match evaluation score, d 0 is a position 
dissimilarity metric and/~ is a scaling factor. 
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The position dissimilarity function d 0 is evaluated by: 

II tp~ - t j  II 
d(tpi,tj) = II ~(ltpi + t j )  - t  I II 

which has a small value if the distance between the predicted tpi and observed 
ti model positions is small relative to the distance of the matched models from 
the foveation point t$. This relative distance is important because the accuracy 
of position location declines as models are located distant from the foveation 
point (in part due to the averaging effects of the log-polar representation). An 
orientation and scale dissimilarity metric could also be incorporated into h 0. 

3.5 Interest  map update  

The original interest map was updated by computing an interest function at 
each of the 3 scales on the 14 features. Activity from high-interest features was 
combined with activity from opponent color features and then defoveated into 
the existing interest map. Details of the interest map calculation are given in 
[11]. 

If a model is successfully recognized, this means that there may be other 
nearby associated models. Section 3.3 discussed how the position of these asso- 
ciated models was predicted and how the previously recognized instances of the 
models were located. However, not all of the associated models may have been 
found so far. Therefore, it makes sense to look for these other models in the pre- 
dicted locations (tpi) that had no successful match. The appropriate mechanism 
for causing this search is to increase the level of activation in the interest map 
at the predicted locations. The uncertainty in match position and scale grows as 
the predicted position becomes more distant from the foveation point. Therefore, 
the interest map is updated according to this function: 

I m a p ( x ) +  = ae -r'~(~) 

where x are points near the predicted position tpi, t I is the foveation point, 
a = 250, T = 100 and 

II t p / -  x II 2 

~ ( x )  = I I tpi - t s  II 2 

The interest map is updated only if no associated model has been previously 
found at the predicted point tpi. Determining whether a model has been found 
there uses the mechanism discussed in Section 3.4. 

4 E x p e r i m e n t s  

The claim of the paper is that use of the subcomponent evidence improves the 
speed, positional accuracy and completeness of recognition. We demonstrate this 
by running the iconic recognition system with and without the subcomponent 
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evidence process enabled. The recognition system is iconic, so only objects trans- 
formed by translation, scaling and rotation about the optical axis are appropri- 
ate. The experiments used a set of images containing frontal views of faces as the 
experimental scenes, with eyes, nose and mouths as the associated models. Faces 
have standard substructure and face images are commonly obtainable. Note, we 
are making no claims about this system as a face recognizer, or identifier system. 

The model database contained (for these comparison experiments) 4 models: 
eye, nose, mouth and full face. When the subcomponent mechanism was not 
used, the interest map was not updated with the predicted associated model 
positions and the SFF was not searched for associated model matches. All other 
components of the system were identical including the model base. The time per 
saccade was virtually identical, with or without the subcomponent process. 

All experiments started with a foveation at the center of the image (which 
was always on the face). The stopping criteria were when either all features were 
found, or the system had completed 20 saccades. 

Table 2 summarizes the measurements taken from the experiments without 
and with subcomponent evidence, using 7 test images. Table I (left) describes the 
contents of the five feature columns of Table 2, and Table 1 (right) describes the 
contents of the rightmost summary column of the data tables. Italicized entries 
in Table 2 denote incorrect recognitions. The feature column boxes record on 
which saccade the feature was found, how many pixels error there were between 
the estimated feature position and what we thought was the correct registration 
point (correct matches only), the match score for the correct recognition and 
the number of false recognitions of that feature. (As eyes were indistinguishable, 
false recognitions of eyes are listed only for the left eye.) The rightmost column 
lists the number of saccades needed until the last feature was found, the total 
number of correct features found, the average position error in pixels of the 
correctly found features, and the total number of mismatched features. 

The results for image c6 need a special explanation: in this case the initial 
foveation point was very close to the registration point for the face model, so 
the face was immediately recognized. This results in a large inhibition region 
(to prevent re-saccading back to already recognized features) suppressing the 
recognition of other nearby features. Consequently, it was hard to recognize any 
other nearby features. This is why the right eye and nose were never found and 
why it took a long time to saccade to the mouth. 

With regard to the three qualities claimed, the evidence shows that: 

speed - in all images except c6 (which searched a long time to find the 3rd model 
at the edge of the inhibition region), the number of saccades to recognize all 
features was less in the subcomponent evidence case. 

pos i t ion  - For the 17 features recognized by both systems, the average subcom- 
ponent case position error was smaller (13.5 v e r s u s  16.7 pixels). 

comple teness  - more features were correctly found (30 v e r s u s  17 out of 35 
possible), and fewer incorrect features were found (12 v e r s u s  17). 

The results on other images (results not shown here) have slight variations, but 
the same general properties still hold. Thus, we claim that the use of subcom- 
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ponent evidence increases the speed, positional accuracy and completeness of 
recognition. 

A side effect of the subcomponent evidence mechanism is tha t  recognition 
scores of the correctly found features are often reduced. This arises because the 
recognition score now requires associated model evidence in order to obtain top 
scores. As initial feature recognitions will not  have many previously found asso- 
ciated features, their recognition scores will be lower. Also, features recognized 
with inaccurate positions reduce the match scores in proportion to the position 
error. 

Figure 1 shows the saccade path on the FCE5 image (left) without and (right) 
with subcomponent evidence. The search is clearly much more focussed with 
subcomponent evidence. 

Saccade found Match score Max. saccades Total correct features found 
Offset error False instances Average offset Total mismatches 

Table 1. Key to the entries in Table 2. 

Fig. 1. Saccades on FCE5 without (left) and with (right) use of subcomponent evidence. 
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Image left eye right eye nose mouth face Summary 
c l  41.00 1 1 .0051 .0631 .0071 .00  7 2 

16 2 1 122 0 19 4 
c3 1 1 . 0 0 7 1 . 0 0 8 1 . 0 0 4 1 . 0 0 3 1 . 0 0  8 4 

14 1 12 111 026 015.8 2 
c4 1 0 1 . 0 0 2  1 . 0 0 1 1 . 0 0 8 1 . 0 0 1 2 0 . 9 ~  12 3 

16 119 13 0 1 1 16 3 
c5 101.0012 1 . 0 0 1 1 . 0 0  12 3 

2 128 0 0 10 1 
c6 51.00 2 0 . 8 6 1 0 . 9 8  5 3 

32 0 34 127 0 31 1 
fce5 9 1 . 0 9  1 . 0 3 1 . 6  50.7~ 20 1 

1 9  2 2 9 5 

bebie l  311.000 181.061 20.941 183 21 

Image left eye right eye nose mouth 
c l  3 0 . 7 1 4  0 . 7 6 6 0 . 8 2 5 0 . 7 9  

9 214 9 0 7  0 
c3 10.70 2 0 . 7 6 3 0 . 7 6 4 0 . 8 3  

14 014  16 012 0 
c4 4 0 . 7 1 9  0 . 8 1 1 0 0 . 8 2 7 0 . 7 7  

19 025 20 123 0 
c5 3 0 . 7 9 2  0 . 7 2 1 0 . 7 0 4 0 . 8 2  

7 117 7 0 5  0 
c6 20.83 180.80 

25 01 9 3 
f c e 5 1 3  0.8312 0.7614 0.81110.75 

4 2 5  4 2 6  
bebie l  1 0 . 7 0 6  0.80 50.75 

3 110 22 0 

face Summary 
7 0.91 7 5 

10 0 7.8 2 
5 0.89 5 5 
5 0 15.6 0 

10 4 
17.2 1 

50.74 5 5 
9 0 9 1 
10.68 18 3 

27 020.3 3 
1 5 0 . 9 2 1 5  5 

2 4 4 
90.86 9 4 
8 0 8 . 6  1 

T a b l e  2. Results of testing (a) without and (b) with full subcomponent evidence. 
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Fig. 2. Test images for reported experiment (cl, c3, c4, c5, c6, fce5, bebiel) 

5 D i s c u s s i o n  

The claim made earlier in the paper is that  the use of the simplified geomet- 
rical model and the associated subcomponent recognition processes improves the 
recognition process in several ways: 

- r e c o g n i t i o n  s p e e d  - in most cases, the number of saccades needed to re- 
cognize the features in the scene was reduced. 

- p o s i t i o n  a c c u r a c y  - the average error in the estimated position of the 
feature was reduced. 

- r e c o g n i t i o n  c o r r e c t n e s s  - more features were correctly found and fewer 
incorrect features were found. 

The experimental evidence supports this claim. 
Sometimes, when a model has been incorrectly recognized (e.g. recognizing a 

squint eye with the mouth model), then prediction can lead the process to search 
several non-feature positions before returning to true feature positions. Adding 
a cumulative evidence process to the attention mechanism could help reduce the 
effect of this. 

At the moment,  the models do not distinguish between left and right eyes. 
This reduces matching accuracy but  means that  a single recognized eye will 
predict two possible positions for the second eye and the recognition will also 
expect to find evidence from 2 positions. The multiple prediction is reasonable, 
but the model representation that  we use should be extended to allow mutually 
exclusive alternatives. 
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