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A b s t r a c t .  Assume that some objects are present in an image but can be 
seen only partially and are overlapping each other. To recognize the ob- 
jects, we have to firstly separate the objects from one another, and then 
match them against the modeled objects using partial observation. This 
paper presents a probabilistic approach for solving this problem. Firstly, 
the task is formulated as a two-stage optimal estimation process. The 
first stage, matching, separates different objects and finds feature cor- 
respondences between the scene and each potential model object. The 
second stage, recognition, resolves inconsistencies among the results of 
matching to different objects and identifies object categories. Both the 
matching and recognition are formulated in terms of the maximum a 
posteriori (MAP) principle. Secondly, contextual constraints, which play 
an important role in solving the problem, are incorporated in the proba- 
bilistic formulation. Specifically, between-object constraints are encoded 
in the prior distribution modeled as a Markov random field, and within- 
object constraints are encoded in the likelihood distribution modeled as 
a Gaussian. They are combined into the posterior distribution which de- 
fines the MAP solution. Experimental results are presented for matching 
and recognizing jigsaw objects under partial occlusion, rotation, trans- 
lation and scaling. 

1 Introduction 

Model-based object recognition is a high level vision task which identifies the cat- 
egory of each object in the scene with reference to the model objects. There are 
two broad types of approaches: templet-based and feature-based. In the templet-  
based approach,  an object is represented by a templet  which may be in the form 
of its b i tmap  or the entire outline; the observation is matched to the templet  
based on some distance measure. This approach has been used in numerous ap- 
plications such as character recognition and face recognition in which objects 
are well observed in the image. 

Currently, the templet-based approach does not seem to offer a proper  solu- 
tion to the partial  matching problem. A basic assumption in the templet-based 
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approach is that the object can be observed entirely. The assumption is invali- 
dated when objects are only partially observable due to mutual occlusions. The 
templet-based approach is not inherently ready to handle this situation: While 
it allows local deformations, it is unable to perform with missing parts. This is 
because of its lack of the ability to represent an object by local features. 

The feature-based approach is complementary to the templet-based approach 
in this regard. Here, an object model is represented by local object features, such 
as points, line segments or regions, subject to various constraints [3, 8,6, 17]. 
Object Matching is performed to establish correspondences between local features 
in the scene (image) and those in each model object. Because it is based on the 
local features of an object rather than the global information of it, it is more 
appropriate to handle the partialness and ovelappingness, and hence provides an 
alternative for object recognition. This paper is aimed to investigate a formal 
mathematical framework for object recognition using partial observation. 

From a pattern recognition viewpoint, an object is considered as a pattern of 
mutually or contextually constrained features. The use of contextual constraints 
is essential in the interpretation of visual patterns. An feature itself makes little 
sense when considered independently of the rest. It should be interpreted in 
relation to other image features in the spatial and visual context. At a higher 
level, a scene is interpreted based on various contextual constraints between 
features. 

An interesting situation is when a scene contains many, possibly mutually oc- 
cluded, objects, which is the case dealt with in this paper. In this situation, both 
the following two sources of contextual constraints are required to resolve am- 
biguities in the model-based matching and recognition, in our opinion: between- 
object constraints (BOCs) and within-object constraints (WOCs). The particular 
structure of an object itself is described by the WOCs of the object. Such con- 
straints are used to identify an instance of that object in the scene. The BOCs, 
which describe constraints on features belonging to different objects, are used to 
differentiate different objects in the scene. In a sense, within-object constraints 
are used for evaluating similarities whereas between-object constraints are for 
evaluating dissimilarities. An interpretation is achieved based on the two types 
of constraints. 

In matching and recognition, as in other image analysis tasks, exact and 
perfect solutions hardly exist due to various uncertainties such as occlusion and 
unknown transformations from model objects to the scene. Therefore, we usually 
look for some solution which optimally satisfies the considered constraints. A 
paradigm is prediction-verification [1]. It is able to solve the matching problem 
efficiently. In terms of statistics, we may define the optimal solution to be the 
most probable one. The maximum a posteriori (MAP) principle is a statistical 
criteria used in many applications and in fact has been the most popular choice 
in statistical image analysis. 

Markov random field (MRF) theory provides a convenient and consistent 
way for modeling image features under contextual constraints [4, 14, 12], also for 
object recognition [15, 5, 12, 9]. MRFs and MAP together give rise to the MAP- 
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MRF framework. This framework, advocated by Geman and Geman (1984) and 
others, enables us to develop algorithms for a variety of vision problems system- 
atically using rational principles rather than relying on ad hoc heuristics. 

Scene-model matching is generally performed by considering one model ob- 
ject at a time, and when there are multiple model objects, multiple matching 
results are generated. Because the matching to each model is done independently 
of the other models, inconsistencies can exist among the results of matching to 
the different objects, and must be resolved to obtain consistent and unambiguous 
solutions. Our formulation of a two-stage estimation offers a solution in terms 
of the MAP principle. 

In this paper, we develop a statistically optimal formulation for object match- 
ing and recognition of a scene containing multiple overlapping objects. Matching 
and recognition are posed as labeling problems and are performed in two con- 
secutive stages, each solving an MAP-MRF estimation problem. The first stage 
matches the features extracted from the scene against those of each model object 
by maximizing the posterior distribution of the labeling. This finds feature cor- 
respondences between the scene to the model objects, and separates overlapping 
objects from one other. It produces multiple MAP matching results, each for 
one model object. Inconsistencies in these results are resolved by the second es- 
timation stage, MAP recognition. In this latter stage, the MAP matching results 
produced by the previous stage are examined as a whole, inconsistencies among 
them are resolved, and all the objects are identified unambiguously finally. 

The contextual constraints are imposed in probability terms. The BOCs are 
encoded in the prior distribution modeled as a Markov random field (MRF). 
This differentiates between different objects and between an object and the back- 
ground. In a way, this is similar to the line-process model [7] for differentiating 
edge and non-edge elements. The WOCs are encoded in the likelihood distribu- 
tion modeled as a Gaussian. It compares the similarity between a model object 
and its corresponding part in the scene. The BOCs and the WOCs are combined 
into the posterior distribution. An optimal solution, either for matching or for 
recognition is defined as the most probable configuration in the MAP sense. 

The rest of the paper is organized as follows: In Section 2, the optimal so- 
lutions for matching and recognition are formulated, which illustrates how to 
use probabilistic tools to incorporate various contextual constraints and how 
to resolve ambiguities arising from matching to individual model objects. Ex- 
periments are presented in Section 3 for matching and recognition of a scene 
containing multiple free-form jigsaw objects under rotations, translations, scale 
changes and occlusions. 

2 T w o  S t a g e  M A P - M R F  E s t i m a t i o n  

Object matching and recognition, like many other image analysis problems, can 
be posed as labeling problems. Let $ = {1 , . . . ,m} be a set of m sites corre- 
sponding to the features in the scene, and s = {1, . . . ,  M} be a set of M labels 
corresponding to the features in a model object. What types of features to use 
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to represent an object is a problem not addressed in this paper. We assume some 
features have been chosen which present invariance in some feature properties 
and relations. An example of representation is given in the experiments section 
for curved objects like jigsaw, which can be referred to now by the unfamiliar 
reader. 

In addition to the M labels in L, we introduce a virtual label, called the 
NULL and numbered 0. It represents everything not in the above label set L:, 
including features due to un-modeled objects as well as noise. By this, the label 
set is augmented into s = {0, 1 , . . . ,  M}. Labeling is to assign a label from 
/:+ to each site in 8.  Without confusion, we still use the notation s to denote 
the augmented label set unless there is a necessity to differentiate. A labeling 
configuration, denoted by f -- { f l , - . - ,  fm}, a mapping from the set of sites to 
the set of labels, i.e. f : S --+/2, in which fi E s is the object feature matched 
to the image feature i. When there are more than one object, a label represents 
not only an object feature but also the object category. 

Given the observed data  d, we define the optimal labeling f* to be the one 
which maximizes the posterior. The posterior is a Gibbs distribution P(F = 
f [ d) c< e -E(f)  with the posterior energy 

E(f)  ~ U(f [ d) = U(f) + U(d [ f)  (1) 

The energy is a sum of the prior energy U(f) (the energy in the prior distribution) 
and the likelihood energy U(d [ f)  (the energy in the distribution of d). Hence, 
the MAP solution is equivalently found by minimizing the posterior energy f* = 
arg minfeF E(f).  An MAP estimation is performed in each of the two stages. 

2.1 Stage 1: M A P  Matching 

This stage performs MAP matching to each model object by minimizing the 
energy E(f)  of a posterior distribution in which the prior is modeled by Markov 
random fields (MRFs) and the likelihood by Gaussian. 

The prior is modeled as an MRF which is a Gibbs distribution P(f)  = 
Z -1 x e -tr(f) where Z is the normalizing constant. The energy U(f) is of the 
form U(f) = ~ceC Vc(]) where g is the set of "cliques" for a neighborhood 
system Af and Vc(f) are the clique potential functions. In object matching, 
one may restrict the scope of interaction by defining the neighborhood set of 
i as the set of the other features which are within a distance r from feature i, 
Afi = {i' E S [ [dist(featurei,, featurei)] 2 < r, i' ~ i}. The function "d i sc  is a 
suitably defined function for the distance between features. For point features, 
it can be chosen as the Euclidean distance between two points. It is tricky as 
how to define a distance between non-point features; e.g. for straight lines, a 
simple definition would be the distance between the midpoints of two straight 
lines. The distance threshold r may be chosen reasonably to be the maximum 
diameter of the model object currently under consideration. 

The prior energy U(f) is of the form U(f) = ~ceC Vc(f) where g is the set 
of "cliques" and Vc(f) are the clique potential functions. In essence, a Gibbs 
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distribution is featured by two things: it belongs to the exponential family and 
its energy is defined on clique potentials. When cliques containing up to two 
sites are considered, the energy has the following form 

{ i}~C1 { i,i' }EC., iES iES i' E.N'i 

where C1 = {{i} [ i E S} and C2 = {{i,i '} [ i' E Af/,i E S} are the sets of 
single- and pair-site cliques, respectively, and 171 and V2 are single- and pair-site 
potential functions. In defining C2, we assume that  {a, b} is an ordered set and 
so {i, i'} r {i', i}. The clique potentials are defined as 

V~( f i )={O if fi  # 0  
vl0 if fi = 0 ' 

V2(fi, f i , ) = { O  i f f i # 0 a n d  f i , r  
v20 if fi = 0 or .fi, = 0 (3) 

where rio ) 0 and v20 > 0 are penalty constants for NULL labels. 
The pair-site clique potentials V2(fi, fi,) encode between-object constraints 

by treating the two situations differently: (i) when both features are due to the 
considered object (fi ~ 0 and fi, r 0), and (ii) when one of the features is due to 
the background or another object (fi = 0 or fi, = 0). This differentiates between 
the considered model object and another object, and between the considered 
model object and the background. A dissimilarity between the classes of the 
two features is thus evaluated. The potentials associate label pairs belonging to 
the considered object (more closely related) with a lower cost, and associates 
label pairs belonging to different objects (less closely related) with a higher cost. 
Therefore, the use of the properties of the pairwise interactions plays a crucial 
role in separating overlapping objects. 

The likelihood distribution p(d I f) describes the statistical properties of 
model features seen in the scene and is therefore conditioned on pure non-NULL 
matches fi ~ O. It depends on how the visible features are observed, and this in 
turn depends on the underlying transformations and noise, which is regardless of 
the neighborhood system Af. Denote D1 for unary properties and D2 for binary 
relations between the features of a model object. Assume (i) that  the t ruth  
D = {D1, D2} of the model features and the data  d are composed of types of 
features which are invariant under the considered class of transformations (their 
selections are application-specific); (ii) that  they are related via the observation 
models dl(i) = 01(s  + el(i) and d2(i,i') = D2(fi, fi,) + e2(i,i') where e is 
additive independent zero mean Ganssian noise. 1 Then the likelihood function 
is a Gibbs distribution with the energy 

U(d ] f)  -- E Yl(dl(i) I fi) --b E E V2(d2(i,i') Ifi ,  fi,) (4) 
iES,f~O iES,f~O i~E8\i,$r 

1 The assumptions of the independent Gaussian noise may not be accurate but offers 
an approximation when an accurate observation model is not available. 
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where Ski ~ S-{ i} ,  and the summations are restricted to the non-NULL matches 
fi ~ 0 and fi, ~ O. The likelihood potentials are 

and 

V1 (dl  (i)  I f , )  = k) (i)  - k) (5) 
k ~ l  

V2(d2(i,i') Ifi,  fi,) = ~-~.[d~k)(i,i ') -- D~k)(fi, fi')]2/{2[a~k)] 2} (6) 
k-~l  

where the vectors D1 (fi) and D2 (fi, fi,) are the "conditional mean" (conditioned 
on f)  for the random vectors dl(i) and d2(i,i*), respectively; K1 and K2 are 
the numbers unary properties and binary relations; [a(k)] 2 (k = 1 , . . . ,  Kn and 
n = 1, 2) are the variances of the corresponding noise components. 

The likelihood potentials are defined for image features belonging only to the 
model object under consideration (fi ~ 0 and fi, r 0). Therefore they encode 
the within-object constraints. They are used to evaluate the similarity between 
the model object and its corresponding part in the scene. 

The constraints on both the labeling a priori and the observed data are 
incorporated into the posterior distribution with the posterior energy 

U(f I d) = E ie s  Vl(fi) + E ies  Ei,  e~f, V2(fi, fi,)+ 
Eies:/ ,r  Vl(dl(i) I A)+ (7) 
~ies:I,r ~-~i'es\,:I,,#o V2(d2(i, i') I fi, •,) 

Hence, the between-object constraints and the within-object constraints are com- 
bined into the posterior energy. The MAP matching is the configuration which 
minimizes V(f  I d). 

One model object is considered at a time. Minimizing U(f I d) for a model 
object results in a mapping from S to s for that object. The result tells us 
two things: (i) (separation) image features belonging (the "in-subset") and not 
belonging to the considered object, and (ii) (matching) correspondences between 
the features in the "in-subset" and the features of the model object. 

The parameters MRF vl0 and V2o and the likelihood parameter a (k) have to 
be determined in order to completely define the MAP solution. This is done by 
using a supervised learning algorithm [12]. 

The present model can be compared to the coupled MRF model of [7] in that 
there are two coupled MRFs, one for line processes (edges) and one for intensities; 
and a line process variable can be on or off depending on the difference between 
the two neighboring intensities. The concept of "line process" in the present 
model is the relational bond between features in the scene. When f i r  0 and 
Si' r 0, i and i ~ are relationally constrained to each other; otherwise when $i = 0 
or fi, = 0, the relational bond between i and i ~ is broken. The differences are: 
the present model makes use of relational measurements of any orders because 
contextual constraints play a stronger role in high level problems, whereas the 
model in [7] uses only unary observation. Moreover, in the present model, the 
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l i =  II 1 2 3 4 5 6 7 8 9 10 11 12 
f(1) 0 0 0 0 0 0 0 0 0 0 0 0 
f(2) 0 0 0 0 0 0 0 10 (2) 9 (2) 7 (2) 0 0 
f(3) 0 0 0 0 0 0 0 0 0 3 (3) 4 (3) 0 
f(4) 0 0 05 (4) 4 (4) 3 (4) 2 (4) 1 (4) 0 0 0 0 
f(5) 0 0 0 0 0 0 0 7 (5) 6 (5) 5 (5) 4 (5) 3 (5) 

If(all) ll 0 0 0 5 (4) 4 (4) 3 (4) 2 (4) 7 (5) 6 (5) 5 (5) 4 (5) 3 (5) 

Table 1. Matching and recognition of an image containing m = 12 features to L ---- 5 
objects. 

neighborhood system is non-homogeneous and anisotropic, as opposed to the 
image case in which pixels are equi-spaced. 

The MAP matching of the scene is performed to each potential object one 
by one. In this case, the complexity of the search is linear in the number of 
models. Some fast screening heuristics may be imposed to quickly rule out un- 
likely models, but  this is discussed in this paper. We concentrate on the MAP 
formalism. 

2.2 Stage 2: M A P  Recognit ion 

After matching to each potential object one by one, we obtain a number of MAP 
solutions. However, inconsistencies may exist among them: Assuming that  there 
are L potential model objects, we have L MAP solutions, / ( 1 ) , . . . ,  f(L) where 

f(~) = { f ~ ) , . . . ,  f(~)} is the MAP labeling f* for matching the scene to model 

object ~ E { 1 , . . . , L }  obtained in stage 1, and f ~ )  denotes feature number 
I -- fi  of object ~. Since each f(~) is the optimal labeling of the scene in terms 
only of model object c~ but not of the other objects, inconsistencies may exist 
among the L results in the sense below. 

A feature i E S in the scene may have been matched to more than one model 
feature in different objects; that  is, there may exist more than one a E { 1 , . . . ,  L} 

for which f ~ )  ~ 0. Table 1 illustrates an example of results for matching an 
image with m = 12 features to L = 5 model objects, where f(~) (c~ = 1 , . . . ,  5) 
are the MAP solutions for matching to the five objects. For example, image 
feature i = 8 has been matched to 10 (2) (feature No. 10 of object 2), 1 (4) and 7 (5). 
However, any feature in the scene should be matched to at most one non-NULL 
model feature; that  is, for a specific i, there should be that  either f ~ )  -- 0 for all 

c~ or f ~ )  ~ 0 for just one c~ value. When this is not the case, the inconsistencies 
should be resolved in order to unambiguously identify the object category to 
which each image feature uniquely belongs. A possible consistent final result is 
given as f(au) in the table. 

The recognition stage is to make the matching results consistent and to iden- 
tify the categories of objects in the scene. Again, this stage is also formulated as 



740 

an MAP estimation. Denote object a as O (~). The posterior derived previously 
for matching to O (a) can be explicitly expressed as P(f  [ d, O(a)). Denoting 
the posterior probability for matching to all the L objects as P(f  ] d, 0 (au)) 
where O (~u) is short for O(1), .-- , 0 (L), the MAP recognition is then defined as 
f* = argmaxyeF(.,,) P(f  [ d, O(an)). The configuration space F (au) consists of 

L (1 + )-~a=l M(a)) m elements, where M (C') is the number of labels in model a, 
when all the labels in all the models are admissible. 

The posterior, P(f  I d, O(au)) {x P( f  I O(aU))P( d I f,O(au)), is a Gibbs 
distribution because of the Markov property of the labels. Similar to that  in the 
matching stage, the prior energy is 

u(f  I o(al/)) = E vl (fi 1 0 (~")) + ~ ~ V~ (/,, f/, I O (~'~)) (S) 
i6S i68 i' 6Xi 

and the likelihood energy is 

U(d l f, O('~u)) = ~ Vl(dl(i) l f~,o(aU)) + 
ies,$~ #o 

~ V~(d~(~,e) lf.f/,,O (o")) (9) 
ies,I~#o i '6s\.A,#o 

The single-site potential are defined as V1 (ira) [ o(aU)) = V1 ( f ~ )  [ O (a)) which 
is the same as that in (3) for matching to a single model object a.  The pair-site 
potential are defined as 

�89 {(~') .,i, I 0 ( ' " ) )  = 
' ",2~i"(~) ,~{,'(e) l o (~ , o ("')) if a=a' 

�9 (1o) 

otherwise V20 

where V2(f(c~),f~, a') I O(~), O(E)) = V2(f~,fi,) is the same as that  in (3). The 
above definitions are a straightforward extension of (3): In (3), features due to 
other objects (as opposed to the one currently under consideration) are all la- 
beled as NULL ; (10) simply takes this principle into consideration for recognizing 
multiple objects. Using (3), we obtain 

V2(f(a) ffW) lo(aU)) : { 0v2o otherwiseif (a : a ')  and ( f ~ )  # 0) and (f(W) # 0) 

(11) 
The single-site likelihood potentials are V1 (dl (i) [ f ~ ) ,  0 (au)) = 
V1 (dx (i) [ f~a), O(a) ) which is the same as (5). The pair-site likelihood potentials 
are 

V2(d2(i,i')[f}a), f(W)Ji' , o ( a l l ) ) = { :  (d2(i' 
r I fk),, (e)., ,o("),o(e)) 

if a = a '  

otherwise 
(12) 
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where V2(d2(i , i ' )  I = Y2(d2(i , i ' )  I is the  same 
as (6). The posterior energy is obtained as U(f  [ d , O  (~u)) = U( f  I O(~n))+ 
U(dl f, 0(~")). 

When L MAP matching solutions are available, the configuration space F (au) 
can be reduced to a great extent. Let S ~ C S be the set of sites which were 
previously matched to more than one non-NULL label, S'  = {i E S I f ~ )  
0 for more than one different a}. For the case of Table 1, S ~ = {8, 9, 10, 11}. 
Only those labels in i E S ~ are subject to changes in the recognition stage. 
Therefore, the configuration space can be reduced to F (au) r(au) = , .q  x s x 
�9 . .  s  x / : ~u )  where - i  is constructed in the following way: 

- For i E S' ,  s consists of all the non-NULL labels previously assigned to 

i, {f}~)* r 0 I a = 1 , . . . ,  L}, plus the NULL label; 
r(~n) = {0, 10 (2), 1 (4), 7 (5) } for Table 1. e.g. "--'s 

- For i ~ S ~,/;~an) consists of the non-NULL label if there is a non-NULL label, 
:.(an) r(au) or - i  -- {0} otherwise; e.g. s = {3(4)}, and "'3 = {0}. 

Each involved object a contributes one or zero label to s  as opposed to M (~) 

labels before the reduction, and therefore the size of s au) is at most L + 1 as 

opposed to 1 + ~ L = I  M (a) before. The size of s is one for i r S'.  Therefore, 
the MAP recognition is thus reduced to the following: (i) It is performed over 

the reduced configuration space y(~u) = FLex, Ll~u); (ii) it is to maximize the 
conditional posterior f~, = arg maxis ' eg(s~,z) P(fs '  [ d, f s - s , ,  0 (au)) where fs ,  = 

{fi I i E S'}  is the set of labels to be updated, and f s - s ,  = {fi  I i E S - S '}  is 
the set of labels which are fixed during the maximization. It is equivalently to 
minimize the conditional posterior energy U(fs,  I d, f s - s , ,  O(au)). 

After the reduction, only one or just a small number of labels remain ad- 
missible for each site and the search space becomes very small. For example, 
for the case of Table 1, the reduced label sets of size larger than one are 

f(all) [,(all) ".'s[,(an) = {0,10(2),1(4),7(5)}, ~9 = {0,9(2),6(5)}, "~10 = {0,7(2),3(3),5(5)}, 

f_(au) 9 = {0,4(3),4(5)}, and the sizes of F. (all) - i  are one for i r S'; the previous 
size of ~-~=I(M (a) + 1) .2 configurations (say, M (a) = 10) is then reduced to 
4 x 3 x 4 x 3 = 144, so small that  an exhaustive search may be plausible�9 

2 . 3  M i n i m i z a t i o n  M e t h o d s  

The optimization in MAP matching and recognition is combinatorial. While an 
optimum is sought in a global sense, many optimization algorithms are based 
on local information. Many algorithms are available for this [12]. The ICM al- 
gorithm [2] iteratively maximizes local conditional distributions in a way as a 
"greedy method". Global optimizers such as simulated annealing (SA) [11, 7] 
also iterate based on local energy changes. Relaxation labeling algorithms [10, 
16] provide yet another choice. It is desirable to find globally good solution with 
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a reasonable cost. A comparative study [13] shows that the Hummel-Zucker re- 
laxation labeling algorithm [10] is preferable in terms of the minimized energy 
value and computational costs. Therefore, the Hummel-Zucker algorithm is used 
for computing the MAP solutions in our experiments. As the result of unam- 
biguous relaxation labeling, there is a unique fi for any i in the scene while the 
global energy reaches a local minimum. 

The computational time is dominated by relaxation labeling, in the first 
stage, which matches the scene to each model, and hence so is the complexity of 
the system. The Hummel-Zucker relaxation labeling algorithm converges after 
dozens of iterations. 

3 Exper imenta l  Resul ts  

The following experiment demonstrates the use of the present approach for the 
MAP object matching and recognition of partially observed and overlapping ob- 
jects. There are 8 model jigsaw objects in the model-base which can be seen 
later in the results. All the models share the common structure of round ex- 
trusions and intrusions, and such ambiguities can cause difficulties in matching 
and recognition. In a scene, the objects are rotated, translated, scaled, partially 
occluded and overlapping, as shown in Fig.1. Boundaries are computed from the 
image using the Canny detector followed by hysteresis thresholding and edge 
linking, which results in three broken edge sequences. After that, corners of the 
boundaries, which are defined as curvature extrema and tangent discontinuities, 
axe located, and used as feature points (Fig.l). Some model feature points are 
missing and the boundary of the object in the center is broken into two pieces. 
The sites in $ correspond to the corners on a image curve and the labels i n / :  
correspond to such feature points on a model curve. 

0 

Fig. 1. A jigsaw image (left), the detected boundaries and corners (right). 
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A P' 

o 

Pi J O tin 

Fig. 2. Deriving similarity invariants for each curve segment bounded by two feature 
points pi and pj. 

3.1 Invariant Features 

A similarity invariant representation is used to encode constraints on the feature 
points (dl(i)) and on the curve segments between the feature points (d2(i,j)). 
The invariant unary property dl(i)  is chosen to be the sign of the curvature 
~(Pi) for corner i. Similarity invariant relations d2(i, j)  are derived to describe 
the curve segment between the pair of corner i and j ,  as follows: Consider the 
curve segment p ~  between Pi and pj and the straight line PiPj that  passes 
through the points, as illustrated in Fig.2. The ratio of the arc-length ~p~ and 

a r c l e n g t h ( p ~ ' ~  ) 
the chord-length ~ - j :  d~l)(i,j) = chordlength(p-~7 ) is an invariant scalar. The 

ratio of curvature at Pi and pj: d~2)(i,j) = ~ is also an invariant scalar. 
Two n-position-vectors of invariants are derived to utilize the constraints on the 
curve segment: First, find the mid-point, denoted by p', of ~p~ such that  curve 

segments PTf and p'p~-j have the equal arc-length. Next, find the point, denoted 
by o, on PiPj such that  line o f  is perpendicular to b-~. Both ff  and o axe unique 
for ~ .  Then sample the curve segment at the n equally spaced (in arc-length) 
points U l , . . . ,  u,,. This is equivalent to inserting n - 2 points between Pi and pj. 

The vector of normalized radii is defined as d (3) (i, j )  = [rk]~=l where rk -- Huk -~ 
IIop' II 

= 0 n is similarity invariant. The vector of angles is defined as d~4)(i,j) [ k]k=l 
where Ok = Zukopi is also similarity invariant. Now, d2(i,j) consists of four 
types (K2 = 4) of 2n + 2 similarity invariant scalars. 

3.2 Matching and Recognition 

In the matching stage, an image curve is matched against each of the eight 
model jigsaws. Fig.3 shows the solutions of matching one of the image bound- 
cry curves (in solid) to each of the eight model jigsaws, i.e. the MAP estimates 
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Fig. 3. Results from matching and recognition stages. (1) MAP solution f(1)* for 
matching the boundary curve (in solid) to model jigsaw No.1 (in dashed). The overlay 
of the model jigsaw on the input boundary curve indicates the correspondence. (2)-(8) 
MAP solutions for matching the boundary curve to models Nos.2-8. (9) The final MAP 
recognition result where the three recognized model jigsaws are overlayed on the input 
boundary curve. 
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Fig. 4. The overall matching and recognition result. 

f(a)* = m a x l P ( f  ] d ,O (a)) for a = 1 , . . . , 8 ,  where each model jigsaw (in 
dashed) is aligned to the curve. The overlapping portion indicates the corre- 
spondences whereas the image corners in the non-overlapping portion of the 
scene are assigned the NULL label. 

The matching stage does two things: (i) It classifies the corners in the scene 
into two groups, non-NULL and NULL , or in other words, those belonging to 
the considered object and those not. (ii) For the non-NULL group, it gives the 
corresponding model corners. Therefore, the matching stage not only finds the 
feature correspondences between the scene and the considered model, but also 
does the separation of feature belonging to the considered object from those not. 

Despite the ambiguities caused by the common structure of round extrusions 
and intrusions, the MAP matching has successfully distinguished the right model 
using information about the other part of the model. Also, it allows multiple 
instances of any model object, as in f(5)* and f(7)* of Fig.3 where each contains 
two instances of a model. 

Although each MAP matching result is reasonable by itself, it may be incon- 
sistent with others. For example, f(2)*, f(3)* and f(7)* in Fig.3 compete for a 
common part. This is mostly due to the common structures mentioned above. 
The inconsistencies have to be resolved. The MAP recognition stage identifies 
the best model class for each corner in the scene. The final recognition result is 
shown in the lower-right corner of Fig.3. Fig.4 shows the overall result for match- 
ing and recognizing the three boundary curves in the scene to all the models. 

There are a number of parameters involved in the definition of the MAP 
solutions. Parameters v20 = 0.7 is fixed for all the experiments. Parameters 
[a~k)] 2 in the likelihood are estimated by using a supervised learning procedure 

[12]. The estimated values are 1/a~ 1) = 0.00025, 1/a~ 2) = O, 1/a (3) = 0.02240 
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and 1/a~ 4) = 0.21060 for the likelihood. For the unary properties, we set vl0 = 0 
for the prior and Vl(dz(i) [ f i )  = 0 for the likelihood. The reason for setting 
Vl0 = 0 is that  the influence of the single-site prior on the result is insignificant 
as compared to the pair-site one. The reason for Vl(dl( i)  I f~) = 0 (in other 
words, we set al  k = c~) is because we are unable to compute unary constraints 
which are both invariant and reliable. 

4 Conclusions 

A two stage MAP estimation approach has been presented for solving the prob- 
lems of model-based object separation, feature correspondence and object recog- 
nition using partial and overlapping observation. Contextual constraints are con- 
sidered important  for solving the problem. The particular structure of an object 
itself is described by the within-object constraints of the object. Such constraints 
are used to identify an instance of that  object in the scene. Overlapping objects 
are separated by using the between-object constraints which differentiate be- 
tween features belonging to an object and those not belonging to. The MAP 
estimate problem is formulated by taking both types of contextual constraints 
into consideration. Currently, the within-object constraints are mainly imposed 
by the likelihood, i.e. the distribution of properties and relations conditioned on 
non-NULL labels. How to use MRFs to encode within-model constraints into the 
prior distribution in a more efficient way is a topic in future research. 
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