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A b s t r a c t .  Direct perception is incomplete: objects may show ambigu- 
ous appearances, and sensors have a limited sensitivity. Consequently, 
the recognition of complex 3D objects necessitates an exploratory phase 
to be able to deal with complex scenes or objects. 
The variation of object appearance when the viewpoint is modified or 
when the sensor parameters are changed is an idiosyncratic feature which 
can be organized in the form of an aspect graph. 
Standard geometric aspect graphs are difficult to build. This article 
presents a generalized probabilistic version of this concept. When fitted 
with a Markov chain dependance, the aspect graph acquires a quantita- 
tive predictive power. Tri-dimensional object recognition becomes trans- 
lated into a problem of Markov chain discrimination. The asymptotic 
theory of hypothesis testing, in its relation to the theory of large devia- 
tions, gives then a global evaluation of the statistical complexity of the 
recognition problem. 

K e y w o r d s :  3D object recognition, active vision, aspect graphs, Markov 
chains, statistical hypothesis testing. 

Introduction 
Aspect graphs have been extensively studied in a theoretical way. Their practical use, 
however, has not been clearly demonstrated. Furthermore, their original dynamic na- 
ture has not been used directly, except in a few projects. 

This article aims at showing that  the dynamic nature of aspect transitions can be 
genuinely exploited for the recognition of 3D objects when fitted with a probabilistic 
model. 

The general organization of the paper will be the following. In a first section, the 
possible application of aspect graphs as a modelling tool for object recognition will be 
described. Their limitations will lead us to define in a second section a probabilistic 
extension of the aspect graph by embedding it in a Markov chain representation. A 
third section will present the mathematical  results stemming from the theory of large 
deviations in its application to hypothesis testing. In a fourth section, the mathematical  
features will be computed and tested on a few examples. A small review of related work 
is presented in the fifth section. 
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1 Classical aspect graphs 
One of the main difficulties of vision, and presumably its foremost idiosyncratic feature, 
is the dimensional discrepancy between the sensors - -  usually 2D retinas - -  and the 
observed world of 3D objects. This characteristic generates two kinds of problems: 1) 
the objects are only accessible as appearences which may be ambiguous; 2) since objects 
cannot be apprehended as a whole, visual systems have to deal with a multiplicity of 
appearences related to a same object. 

The final objective of visual systems description, and especially those dedicated to 
recognition, is to find practical or theoretical means of dealing with the appearences 
of objects. Many approaches have been studied in the literature: among them, the 
theory of aspect graphs has proposed an original way of reducing the multiplicity of 
appearances down to a global combinatorial structure. This section presents the con- 
ceptual fundation of this approach, its possible appfication to object recognition and 
its limitations. 

1.1 T r a n s i t i o n s  b e t w e e n  s t a b l e  v i e w s  
The multiplicity of appearences can be indexed by a state in a finite-dimension control 
space. The collection of a tri-dimensional object geometric appearences, for instance, 
may be referenced by a position in a two-dimensional manifold - -  the view sphere - -  
when the viewing model is an othographic projection. 

In general, the mapping between the control space and the set of appearences is 
locally continuous, except for some very specific areas which segment the control space 
in connected regions, usually called view cells. In each view cell the object appearences 
are considered similar or equivalent. The similarity class of appearences is called an 
aspect. 

The set of aspects can be organized as a graph structure which represents the dis- 
similarity relations between view cells. The standard aspect graph example is provided 
by the occluding contour variation of a piece-wise smooth object. The apparent  con- 
tour, which is the set of points on the object surface that  have a high order contact 
with the viewing direction or belong to an edge, projects onto the retina as a dif- 
ferentiable curve except on a finite number of points. The occluding contour varies 
abruptly, "catastrophically", for some view directions, revealing a discontinuity in the 
set of appearences [19, 18]. These catastrophic transitions are called visual events. 

Two contours are declared similar or of same qualitative type if they can be trans- 
formed one into another by a one to one differentiable mapping. This similarity relation 
defines equivalence classes of structurally stable views, corresponding to the segmen- 
tat ion of the view sphere by the catastrophe loci. Rigorous theoretic description of 
the aspect graphs for piece-wise smooth objects have been given [26], and some algo- 
r i thms for their construction in the case of objects described as polyhedron, solids of 
revolution, parametric and algebraic surfaces. 

The significance of the geometric approach to aspect graphs is essentially theoretic. 
It provides a mathematical  justification of view categorization through the detection 
of differentiable mapping singularities. It gives a description of the aspect structure as 
a graph of connected view cells. It unifies the multiplicity of appearences into a global 
object. These three properties indicate the possibility of considering a formal descrip- 
tion of vision both  viewer-centered - -  since aspect graphs refer to the distribution of 
appearences - -  and object centered - -  since it organizes globally the appearences in a 
single formal object. 

Conceptually, therefore, aspect graphs are appealing mathematical  objects. Besides 
the complexity of their construction, an important  question remains to state how useful 
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they can be in practice. This paper will concentrate thereafter on the problem of visual 
object recognition and show that  some extensions of the s tandard aspect graph concept 
are necessary in order to make it tractable. 

1 .2  A s p e c t  g r a p h s  f o r  o b j e c t  r e c o g n i t i o n  

The  long term objective of the work presented in this paper  is to describe the charac- 
teristics of a genuinely visual model of object recognition. Since, as it  has been briefly 
mentioned, aspect graphs conciliate in a way the traditionnally antagonistic viewer and 
object centered approaches, it could be a good idea to see how they could be used to 
recognize objects. 

The origin of aspect graphs lies in the dynamic nature of vision: the variations 
of aspects can only revealed by moving or modifying something in an observer visual 
system. An aspect graph, therefore, should not be considered as an object model since 
it does not consist in an objective substitute. It reveals as much of the object as of the 
way it is perceived, and points out the intrinsic incompleteness of vision. 

A classical or geometric aspect graph is specific of an object both by the nature of 
its aspects and by the structure of its variations. Therefore, aspect graphs should be 
exploited dynamically in order to use fully all the information it contains, especially 
the structural  reparti t ion of view cells. The natural  way of using classical aspect graphs 
for object recognition would be to move in the control space~ i.e. change continuously 
the viewpoint, and detect the aspect transitions that  could be considered characteristic 
of the object observed. 

An aspect, in the classical geometric framework, is defined as the maximal set of 
structurally stable curves, i.e. the class of occluding contours that  can be transformed 
by a diffeomorphism. The key feature of an aspect, therefore, is the distribution of 
singular points along the occluding contour. Transitions between aspect are detected 
as bir th or death of singularities of the object outline. 

The aspect transitions are organized in a graph structure where each node refers 
to an aspect. In order to recognize an object, it is enough to detect empirically what 
is the graph related to the object observed by collecting a sequence of aspects until a 
recognition decision can be made. It is assumed in this scheme that  a given object can 
be fully characterized by the graph structure of its aspects. 

We can now state what could be the most important  elements of a recognition 
system based on aspect graph discrimination. It shoud be characterized by: 

�9 Visual features: occluding contour singularities. 
�9 Data  structure: distribution of singular points. 
�9 Control parameters:  view point direction. 
�9 Recognition principle: graph structure discrimination. 

1 .3  D i f f i c u l t i e s  

The elementary recognition scheme described above, although conceptually appealing, 
has to face many difficulties. There are mainly two series of obstacles to its practical use: 
aspect graphs are too complex to build and to use, and in many cases, the concept itself 
of aspect graph do not bring enough reliable discriminating information for recognition. 

T h e  c o m p l e x i t y  o f  a s p e c t  g r a p h s  The construction of aspect graphs, although 
theoretically solved for many classes of objects, is computatioimaly expensive. Most 
of the thorough studies have concentrated on a single object [24, 35], revealing the 
difficulties of designing an automatic procedure. 
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An evaluation of the intrinsic complexity of aspect graphs has been performed 
by S. Peti t jean [23] for piecewise-smooth algebraic surfaces. For an object made of 
n quadrics, for instance, the number of aspects exact upper bound is a polynome of 
degree n 12 when an orthographic projection is used. This huge bound may explain why 
aspect graphs are difficult to build in the case of complex objects, and intractable in 
practice. 

Besides this intrinsic complexity, one may suspect that  the direct use of the graph 
structure is also a difficult problem. The question of deciding whether two graphs are 
isomorphic has never been proved to be NP-complete, but  no algorithm in polynomial 
time has ever been found either [12, 17]. In the othographic case, however, the aspect 
graph is planar, which implies that  a faster algorithm can be used. In the general case, 
and since the number of aspects is huge, even for a simple object, the recognition 
principle cannot lie only in a graph structure discrimination. 

T h e  l i m i t a t i o n s  o f  c l a s s i c a l  a s p e c t  g r a p h s  The "classical" concept of aspect 
graph itself may not be adequate for object recognition because of three reasons. 

Firstly, the notion of singular point on the contour comes from a continuous, and 
even differentiable, approach of vision processes. In practice, most of the available 
signals are in the form of pixel arrays, where the notion of singular point is ill defined. 
If aspects can be built from a theoretical object model, it seems difficult to detect them 
empirically on images obtained from a digital camera retina, for instance. 

Secondly, the control space contains a unique parameter,  although in general multi- 
dimensional: the viewpoint direction and position. Classical aspect graphs are based 
essentially on geometric features of the objects. Information such as color, texture or 
photometry, are not used and may have in some occasions a greater discriminating 
power. 

Thirdly, the graph structure may not hold enough discriminating information. 
F ig .  1 illustrates this problem. 

F ig .  1. Three different objects from the same viewpoint having the same geometric 
aspect graph. 

The three objects have the same simple aspect graph but  are clearly distinguishable 
since, for instance, they would not be naturally grasped in the same manner. This fact 
impfies that  something more must be added to the classical geometric approach to 
aspect graphs to efficiently and reliably use them for recognition purposes. 

2 Probabilistic aspect graphs 
The first section has proposed a way of using aspect graphs for object recognition based 
on its original dynamic nature, and pointed out several fimitations of the approach. 
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This section intends to show that some of the previously exposed difficulties can be 
removed if a probabilistic model is fitted to the graph structure in the form of a Markov 
dependence. 

2.1 Probable  aspects  

Research in computer vision have been mostly interested until now in a geometric or 
topological description of phenomena: this step was necessary in order to make the 
intuitions more formal and rigorous, and allowed the practical use of rather abstract 
mathematical fields. The recent development of geometric invariants is one of the most 
prominent examples. 

Geometric theories are essentially qualitative: they do not get along very well with 
metric measurements. Recently, however, several studies dealing with quantitative con- 
cepts have been conducted. They concern the definition of geometric robustness and 
utility, thanks to a concept of canonical or generic object view. 

A canonical view can be characterized according to two dimensions: stability and 
likelihood. The definition of a view likelihood relies on a very simple and rather intuitive 
phenomenon: the probability distribution of an angle defined by two intersecting lines 
has a maximum when the viewing direction is perpendicular to the plane defined by 
the the two lines, if the view sphere is uniformly sampled [2, 5]. This '~peaking effect" 
defines therefore a most probable view and has been exploited in [31] to recognize very 
simple polyhedrons. Another definition of generic view based on a notion of bayesian 
stability was proposed in [10]. 

The two concepts of likelihood and stability of views have been generalized in [37] 
and used in [13] to determine the canonical views of some simple smooth objects from 
their occluding contour. It was shown it these papers using some formal definitions that 
stable views are the most likely observed ones. More generally, canonical viewpoints 
are orthogonal to the first two 3D object inertia axes. 

The practical use of these notions of stability and likelihood is difficult: the com- 
plexity of analytical results increases drastically with the complexity of the objects. 
Furthermore, and more fundamentally, the definition of a canonical view using a sta- 
bility criterion is contradictory with the definition of an aspect as a set of views refer- 
enced by a region in the control space delimited by a set of catastrophic hypersurfaces. 
One can represent an aspect by the most stable view as a prototype, but the stabil- 
ity criterion does not say anything about the overall aspect organization and on their 
potentially predictive capacity. 

The general framework studied in this paper is to allow the system to generate 
dynamically new object appearences by modifying its viewpoint or other control pa- 
rameters. The key feature is the structure of the appearence variation. Therefore, what 
should be embedded in a probabilistic environment is the collection of aspects them- 
selves, and not the set of views or appearences. The origin of an aspect is, of course, 
of geometric nature, but the only accessible reality is an already categorized view, in 
other words, the aspect itself. 

The reduction of the object geometry to a probability distribution on categorized 
visual data allows one to integrate roughly some uncertainty on the appearence varia- 
tions. It also gives a quantification of the utility of views. Some aspects will be more 
often observed than others depending on the object geometry; the conditional probabil- 
ity of aspect occurence can be converted into a likelihood. The next section will explain 
in more details how the aspect probability structure can be analyzed statistically. 
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2.2 M a r k o v  r e p r e s e n t a t i o n  o f  a s p e c t  g r a p h s  

Visual aspects are categories of object appearences. The graph structure that comes 
with them, deduced from the visual events organizing their variations, can be considered 
as a primitive predictive tool. The graph connectivity foretells what are the expected 
visual events, and thus what are the possible observable aspects. 

The probabilistic description of aspects gives a quantitative measure of their em- 
pirical utility. In the same way, it is possible to embed the graph structure into a 
probabilistic environment in order to provide some utility measure of the visual events 
themselves. Some events will happen more likely than others, will be more stable, will 
give a better  and more robust characterization of the object observed. 

The true origin of visual events is vision dynamics. Aspect change can only be 
detected if something has been actively modified, if the viewpoint has been forced to 
move. Said informally, it is necessary to act if you want that something happens. 

It is possible to be more formal, however. If st represents an observed aspect at 
a given discrete time t, and if an action at from a control space is produced, the 
probability that an event of the form st ~ St+l for an object Ok can be described as a 
probability transition: Pr[st+lls t ,at ,ok] .  

This last expression simply means that the probability of observing a given visual 
event depends on the type of object observed, on the type of viewing parameter modifi- 
cation, and on the current aspect observed. This probabilistic interpretation of a visual 
event leads to a modelling of an aspect graph as a controlled Markov chain, specific to 
a given object. 

This probabilistic aspect graph can be simplified by assuming that the the actions 
are drawn from a stationnary probability distribution p(a). A homogeneous Markov 
chain can then be derived from this law as: 

Pk[st+l I st] = f~ Pr[st+l I st, a, ok] dp(a) 

An object can now be modelled as a Markov chain describing the probabilistic evolution 
of its aspects. 

At this point, it should be necessary to be a bit more precise about what I would 
call a model of an object. The probabilistic formulation of an aspect graph, as I have 
mentioned it above, cannot be considered as an approximate substitute of some reality. 
It characterizes only the a priori structural relations of appearences when some viewing 
parameters are modified according to a stationnary stochastic action law, and when 
the views are categorized by a fixed process. An object model must be understood as 
a prediction or anticipation of a sensory actuality when an observer interacts with it. 

The Markovian dependence is able to take into account two different series of 
features: empirical measures of event utility, leading to the definition of a likelihood, 
and definition of visual events. The transitions with probability equal to zero and 
those with positive probability do not have the same interpretation. Indeed, the first 
ones reveal the structural organization of events, whereas the second ones measure 
their relative frequencies, i.e. their informative capacity. This double nature of the 
probability transitions will be used more precisely in a next section for the actual 
recognition of objects and the measure of recognition problem complexity. 

2 .3 C o n s t r u c t i o n  as  e s t i m a t i o n  

If a Markov representation of aspect graph is used, a natural method for the determi- 
nation of the model is an empirical estimation. The exact aspect graph construction 
translates into a problem of statistical learning. The complexity to deal with is of 
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another kind: problem of dimension, learning time, approximation and generalization 
errors. This new type of complexity is usually more manageable and quantizable. 

The dynamic nature of aspect graphs is captured by the notion of stochastic process. 
The construction of a probabilistic aspect graph will simply consist in sampling the 
Markov chain by generating a random sequence of actions drawn from the stat ionnary 
control law p(a). For each object ok all there is to do is to detect the aspect transitions 
s '  --~ s and collect the frequencies nk(s, s ').  The corresponding probability transition 
will be obtained by using the standard maximum likelihood estimator [3]. From a 
computing point of view, an est imated aspect graphs will therefore consist in a array 
of integers, with many coefficients equal to zero. 

There are two types of questions related to the estimation of Markov representation 
of aspect graphs: 1) when the learning time is unbounded, when can it be decided to 
stop the estimation in order to achieve a given level of confidence; 2) when the learnig 
time is limited, what to do with the available samples. These two questions have been 
studied in [15] and will be presented in a forthcoming paper. The rest of the paper  
is devoted to a mathematical  analysis and characterization of a 3D object recognition 
based on Markov representations of aspect graphs. 

2.4  G e n e r a l i z e d  a s p e c t s  

So far, the only type of action that  has been explicitly mentioned was a modification of 
the viewpoint, according to the classical geometric approach. It has also been pointed 
ou that  the concept of singular point was ill defined in the context of pixel-based sensory 
data.  Another notion of singular point, however, can be defined by introducing a scale 
of analysis. 

The definition of a generalized singular point on a contour, controlled by a scale of 
analysis, has been proposed in a previous paper [14], following classical work on edge 
detection. It was emphasized that  no optimal intrinsic analysis scale can be found in 
order to characterize a given digital curve. A shape should be analyzed at  all scales. The 
philosophy of scale space theory [9, 20, 21, 11] claims precisely that  the global spectrum 
of local extrema obtained by spatial filtering at  all scales brings useful information. 
This means that  - -  if we relate it to our problem of active recognition - -  scale should 
be considered as a control parameter,  and should be actively modified. 

The concept of scale of analysis, which was introduced rather  naturally in order to 
give a a definition of a singular point on a digital contour, is in fact the prototype of 
a new kind of appearence variety. In other words, the variations of object appearence 
when the viewpoint is modified and when the scale of analysis is changed are not 
different in essence. The scale can be added to the control space as another dimension. 
From the observer, moving the viewpoint or changing the scale of analysis produces 
aspect transitions which are undistinguishable. 

Some notion of scale in relation to aspect graphs has been proposed in [8]. The 
scale was not used however as a free control feature but  as a parameter  able to deal 
with some kind of "geometric noise". 

3 A c t i v e  recogn i t ion  as a s tat i s t ica l  in ference  

Markov chain representations of aspect graphs are generated by sampling a station- 
nary action law in a given control space. This control space may not contain only 
specifications of the viewpoint, but  also parameters characterizing the description of 
appearences such as scales of pat tern  analysis. 



755 

Tri-dimensional object recognition translates now into a problem of Markov chain 
discrimination. A classical approach to this problem is to generate an empirical trajec- 
tory of a given observed chain and produce a statistical inference from the sequence of 
collected states - -  in our case a sequence of aspects. 

The observation of certain aspect transitions will be rare or even impossible for some 
objects: they will be selective. When the visual features and the categorized appearences 
are well adapted to a given recognition problem, several aspects will be able to reshape 
the set of hypothetical objects by rejecting those that could not be associated with some 
observed aspects or transitions. In the extreme case, some observed aspect transitions 
will be able to index directly a given object by rejecting all the others. 

The general recognition principle will be the following: the system samples the 
Markov chain corresponding to a given object by generating new random actions. 
When a selective transition is observed, a set of rejecting decision can be made in 
order to restrict the set of hypotheses. If it is required to take a decision based on the 
available data, a test is performed according to a likelihood ratio. 

In this recognition scheme, two different statistical regimes compete. The first one 
is a function of a set of likelihood values which is modified by interacting with the 
environment, the second uses a priori discriminating data to select dynamically the 
set of potentially observable objects. This section is intended to formalize this scheme 
and to give several mathematical tools to analyze it. 

3 .1 H y p o t h e s i s  t e s t i n g  o f  p o s i t i v e  M a r k o v  c h a i n s  
The decision principle for the recognition scheme that will be presented in this paper 
consists in testing whether a given object is more likely to be observed than any other. 
The decision will be based on the computation of all the likelihood ratios for all couples 
of objects once the sequence of aspects has been collected. We restrict the study in this 
subsection to the case of Markov representation of aspect graphs described by positive 
stochastic matrices. 

A hypothesis test D~(k, k') for a couple of objects ok and ok, is a random variable 
taking values in {0, 1}. It takes the value 1 if it is estimated that the object o~ is 
more likely to be observed than object ok, according to the sequence of aspects ~ r  = 
(So, S1,..., ST), a n d  0 otherwise.  

Globally, it will be decided that the observed object is ok* if: 

VkCk* ,  O ~ ( k * , k ) = * .  

If not, no decision will be taken (the hypotheses are rejected). This decision scheme 
implies that the important features to study are the comparisons of two objects. 

As it is customary, we define the errors of first and second kind aT(k, k') et/gT(k, k') 
as: 

which measure the mean error of rejecting the true hypothesis, and the mean error of 
accepting the wrong one. 

The Markov representation of an aspect graph will be written as a stochastic matrix 
pk( i , j )  if it is related to the object ok. The columns of the matrix will be considered 
as the conditional probabilities: pk( i , j )  = Pk[St = l i s t -1  = j] if St is the random 
variable describing the observed aspect at time t. We define now the random variables 
Y,(k, k') as: 

r~(k, k') = r~ , (S , ,  S,-1) = log [p~,(S. S,_1)1 
t p~(S,, s,_~) j 
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They can be considered as the individual contribution of each new generated action to 
the log-likelihood ratio between the objects ok and oh,. These contributions are then 
summed and normalized in: 

T 

LT(k, k') = T r,(k, k') (1) 
t= l  

If a fixed threshold A is given, the likelihood ratio test consists in deciding that the 
object oh is more likely observed than oh, if 

LT(k, k') < )~ 

The first and second kind errors are then defined as aT(k, k') = Pk [LT(k, k') E [),, +cr 
and fiT(k, k') = Pk, [LT(k, k') E] - ~ ,  ~[]. 

The law of large numbers applied to Markov chains allows one to state, if the object 
Oh is observed, that: 

I~1 I~1 
T~oo ~-~pk(j)~-~pk(i , j ) log ( p k , ( i , j ) )  ~ = - K ( P k  [Pk,) < 0 (2) LT(k,k ' )  

j = l  i=1 \ p k ( i , j )  

where /~k(j) is the invariant measure of the Markov chain pk(i , j) .  The coefficient 
/((Pk I Pk,) plays the role of an entropy between the two chains and gives an idea of 
what should be the useful interval for the threshold ~ used to compare the normalized 
log-likelihood ratio. 

A better characterization of the likelihood ratio test will use asymptotic results 
from the theory of large deviations. Indeed, in a recognition problem, what we are 
really interested in is the errors behavior. One can prove [22, 16, 6]: 

T h e o r e m  1 The likelihood ratio test for the positive Markov chains Pk and 
Pk, and a fixed threshold A E] - K(Pk I Pk,), K (Pk, ]Pk)[ has first and second 
kind errors aT(k, k') and fiT(k, k') verifying: 

lira 1 T-.r162 T log aT(k, k') = --Akk,($) < 0 

l logfT(k ,k ' )  = A -  Akk,(~) < lim 0 
T .-~ c~  1 

where the rate function Akk,(A) is defined as 

Akk,()Q = sup (xA-- Xkk,(x)) (3) 
xE[O,1] 

The function Xkk' is given by Xkk'(x) = logp(1-lk(rkk,,x)) where 
p(.) is the Perron-Frobenius eigen value of the matrix l lk(rkk,,x) = 
{Pk (i, j) .  exp[x.rkk, (i, J)]}i,je$ and rkk, (i, j )  = log[pk, (i, j)/Pk (i,/)]. 

This theorem states that the likelihood ratio test generates errors going to zero 
exponentially fast. The logarithmic speed of convergence is characterized by the rate 
function Akk, (A) which can be computed when the stochastic matrices are known. 

When the decision threshold )~ is zero, the speed of convergence of the two errors 
are equal. One can show easily that, in this case, the Bayes risk is optimal regarding its 
converging rate. The rate function corresponding to a zero threshold Akk, (0) is often 
called also Chernoff information or bound. 
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3.2  G e n e r a l  c a s e :  N o n  n e g a t i v e  s t o c h a s t i c  m a t r i c e s  

The asymptotic results presented above require strictly positive stochastic matrices. 
In practice, the generic structure of aspect graphs has many impossible transitions. 
The corresponding incidence matrices contain therefore many null coefficients. The 
stochastic matrices will be in general sparse, although irreducible since all aspects 
communicate. Likelihood ratios will be defined only for the set of common positive 
probability transitions. 

We define now the set of positive probability transitions for a given object oh as: 

~k = {( i , j )  �9 S 2 / p k ( i , j )  > 0}. 

where $ is the set of observable aspects. The transitions in this set will be called 
admissible for the object oh. Using a conditionning by the set of admissible transitions 
for two objects, the decision can be divided into two terms: 

D~(k, k') = { C~(k, k') if #T �9 9"k T,  
S~(k,k ')  if ~T~9"ffk, 

where ~Ykk' = ~Yk fl ~Yk'. 
The first term, the comparative part,  is defined for the admissible transitions of two 

objects (~T �9 ~YTk,). The second term, selective, takes a decision as soon as a selective 
transition has been observed. The errors can be writ ten as: 

aT(k, k') = aC(k, k')Pk[@T �9 9"Tk,] + a~(k, k')Pk[~m r fYTk,] 

/gT(k, k') = flC (k, k')Pk,[~T �9 9"[k,] + ~ ( k ,  k')Pk,[@T f[ g'Tk'] 

The selective part  of the decision, S~(k,k ' ) ,  do not produce any error: when a 
selective transition has been observed, a secure rejection decision can be taken if the 
set of admissible transitions has been perfectly identified. The errors, thus, come from 
the comparative term of the decision. 

The global evaluation of the errors behavior necessitates another mathematical  
result. It is possible to compute the exit logarithmic speed of a Markov chain from a 
set of transitions [29]: 

T h e o r e m  2 Let 9" C 8 2 be a transition subset of a given Markov chain Pk 
having states in $, and ~T a trajectory of length T + 1. There exists a number 
Pk(T) < 1 such that: 

T-,oolim ~1 log Pk[~T 6 9 ~T] = log pk(T) < 0 

This number is the Perron-Frobenius eigenvalue of the matrix pk( i , j )  where 
the coefficients belonging to 82\9 ~ have been set to zero. 

With this result, it is easy to evaluate the global asymptotic behavior of the errors 
when the t rajectory length goes to infinity: 

a t ( k ,  k') c , = aT(k ,k  )Pk[~T 6 9"Tk,] = AT.e -v~T (4) 

t3T(k,k') =/gC(k,k')Pk,[~T 6 ~yTk,] = BT.e -v~T (5) 
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Fig .  2. Example of four 3D objects. The two objects on the left are militar planes, the 
two on the right are civil planes. 

where limT-+oo -~ log AT = limT-+eo ~ log BT = 0. The global logarithmic speeds of 
convergence can be computed as the sum of two terms: 

v,~ = A~kk,(,k) -- log Pk(O'kk,) > 0 

v~ = A~k,(A) - ~ - log pk,(Tkk,) > 0 

where the rate function A~kk, ()0 will be computed using the formula (3) on the Markov 
chains conditionned by the set of admissible transitions 9"kk,. 

These asymptotic results give a global characterization of a 3D object recognition 
problem. The complexity of the problem can be measured by a single number: the error 
logarithmic speed of convergence to zero. This number is the sum of two terms. 

The first one, A~k, ()~), is a quantitative measure of the occurence of aspects. Thanks 
to this number we are able to quantify the difference between two objects having the 
same geometric aspect graph, but with different view frequencies. The simple recogni- 
tion problem presented in the first section in F ig .  1 can now be solved and quantified. 

The second term, - l o g  pk(9~kk,), characterizes the differences between two sets of 
visual events. The bigger this term, the more likely recognition will be produced by 
structural  comparisons as the classical aspect graph approach to object recognition 
would have produced. 

4 Experiments 
The theoretical elements presented above will be applied to a simulated problem of 3D 
object recognition. The objects tested are rather  complex polyhedric representations 
of planes (F ig .  2). Three different couples will be tested: two militar planes, the civil 
planes and a couple formed by a militar and a civil planes. Note that  the civil planes 
differ mainly on the relative sizes of their components. 

The method used to define an object aspect requires the choice of a total  number of 
aspects. [14, 15] present in more details the algorithms used. This paper  concentrates 
on the conceptual foundation of an active recognition based on sampling randomly an 
action or control space, and on its the mathematical  analysis. 

The problem of recognizing 3D objects has been translated into that  of discrimi- 
nating Markov representations of probabilistic aspect graphs. The complexity of the 
problem has been characterized globally by its asymptotic behavior, which can be 
quantized by a logarithmic speed of convergence of the error to zero. 

The computation of the recognition complexity measure depends only on the stochas- 
tic matrices and on their structure. The simulations have tested essentially the values 
of this measure when the number of aspects for a given problem varies. Several em- 
pirical measures of the actual recognition errors have been performed to evaluate the 
confidence that  can be expected from the asymptotic results. 
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4.1  A s p e c t  graph structure 
The stochastic matrices representing the probabilistic interpretation of aspect graphs 
will be generally rather sparse. They have a dominant diagonal (Vi ~ j,  pk(i, i) >> 
pk( i , j ) )  and contain a great ratio of probability transition with a zero value, i.e. se- 
lective transitions. The distribution of probability transitions can be divided into two 
modes: one of them concerns the diagonal elements of the matrices and are all above 
0.2. This means that  the Markov chain will stay in the same state during a ra ther  long 
time and then move to another state. This should not be surprising since aspects have 
been defined as structurally stable classes of appearences. 

In the theoretical presentation above, the key role of selective transitions has been 
emphasized since they have an infinite rejecting capacity. It can be observed that,  when 
the number of aspects increases, the number of admissible transitions increases only 
linearly or sub-linearly: matrices tend to get sparser and their structure becomes more 
specific to the object they refer to. 

Graph connectivity of admissible and selective transitions have interesting fea- 
tures: they exhibit a phenomenon of saturation (F ig .  3). When the number of aspects 
increases, the average graph degree, i.e. the average number of connections per node, 
increases also but  with a sub-linear regime, indicating a decreasing connectivity. The 
average degree of the comparative transition graph, i.e. transitions which are com- 
mon to two objects, reaches a maximum whereas the average degree of the selective 
transition graph increases more regularly. 

The connectivity variation of the stochastic matrices when the number of aspects 
increases shows that  the graph of transitions become more and more structurally dis- 
criminating. The comparative transitions increase their number until reaching a limit 
value after which they get distributed among the newly created aspects without gen- 
erating new efficient selective transitions. 

Several differences are noticeable between the three couples of objects tested. Al- 
though they exhibit the same global behavior, their quantitative characteristics show 
that  the number of selective transitions is significantly smaller for the civil planes. This 
result is not really surprising since, "visually", they appear rather  similar. The civil 
planes are less selectively distinguishable than the two other couples. This result should 
be confirmed by computing the recognition complexity measures provided by the large 
deviation theory. 

4 .2  A c t i v e  r e c o g n i t i o n  c o m p l e x i t y  
During the recognition phase, two statistical regimes compete: the first one waits until a 
selective transition is observed, the second one modifies incrementally the log-likelihood 
and takes a decision based on its final value. 

The recognition complexity depends on the type of object observed, on the number 
of aspects, on the decision threshold and on the strategy:..of action sampling p(a) .  In the 
simulations presented here the action law is a uniform random sampling corresponding 
to a brownian motion on the view sphere, and the decision threshold is fixed to 0. 

Two numbers characterize the recognition complexity: the logarithmic speed of 
exiting the set of comparative transitions - log pk (9"k,) and the Chernoff bound A ~ ,  (0). 
The sum of these two terms gives the global logarithmic ,speed of convergence of both  
the first and second kind errors vr (k, k'). 

The graphics of F ig .  4 confirm the expected complexity difference between the 
problem of discriminating the civil planes and the two other couples of objects. Both 
the logarithmic exit speed and the Chernoff bound have smaller values. The global 
logarithmic speed of convergence increases almost linearly with the number of aspects. 
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The relative difference between the civil and the militar is about 40% when 50 aspects 
are used. 

The variation of the two terms forming the global logarithmic convergence speed 
of the errors are not identical. When the number of aspects reaches about 40, the 
increase is due mainly to the logarithmic speed of exiting the comparative transitions. 
The Chernoff bound saturates at a value corresponding approximately to the transition 
graph average degree saturation of Fig.  3: the statistical selective regime becomes the 
prominent one. 

4 .3  R e c o g n i t i o n  p e r f o r m a n c e s  
The theoretical results presented above gave an asymptotic characterization of the error 
behavior. In practice, the asymptotic regime, which corresponds to a stationnary one 
with Markov chains, is seldom reached since the trajectories generated will generally 
be short. 

Fig.  5 shows the error behavior for the different couples of objects tested and for 
various trajectory lengths. In a logarithmic scale, the errors decrease approximately lin- 
eraly towards zero. The expected quantitaive difference between the civil plane problem 
and the other two is clearly noticeable. 

The asymptotic results, however, must be used with care, especially if one wants to 
employ numerical values. Fig.  6 shows the error behavior for the civil plane problem 
and compares it with its rate function value. On this graphic, the empirical measures 
show worse performances than would have been expected if the chain had reached its 
stationnary regime. This difference can be explained by the fact that the rate function 
only qualifies the logarithmic speed of convergence: the functions AT and BT of (4) 
and (5) are unknown and may be influencial for short recognition trajectories. 

Another critical parameter when studying Markov chains are their second largest 
eigenvalue which characterize the speed of convergence towards the stationnary regime. 
In the examples presented in this paper, the action law produced trajectories similar to 
brownian motions, generating Markov chains with a second largest eigenvalue around 
0.95, which is a rather large value since the speed of convergence will be proportional 
to 0.95 T. 
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Fig.  5. Logarithmic error for the couples 
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A few studies have been interested in designing recognition systems dealing with an 
active paradigm. Most of them describe exploratory strategies able to discover the most 
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discriminating point of view or set of features, and then perform recognition. This 
question can be related to the general problem of sensor planning [32]. Recognition 
applications have been described in [34, 38, 36, 7, 33]. 

Recognition based on the active accumulation of pieces of evidence, although it has 
a long history in the case of 2D patterns, has been less extensively studied in computer 
vision. [27] describe a system able to solve simple talcs by seeking actively and optimally 
information in a scene. They use a Bayes net to control the way the evidences are 
handled to perform the task. The actual use of their method for 3D vision is not clear. 
[25] describes a strategy using two cooperative processes - -  locating and identifying - -  
to detect the presence of objects in a scene. [30] proposes a general formalism for the 
specific selection of useful features, and a dynamic procedure to combine them. When 
a hypothesis is rejected, the system changes its viewpoint or extracts another set of 
features. The accumulation of pieces of evidence is obtained by restricted the set of 
potentially observable objects. [1] proposes an evaluation of the information contained 
in a view by computing a likelihood conditionned to a parametric object model. The 
likelihood is incrementally updated using a combination of probabilities. 

The series of studies most related to the work presented here is [28] and more re- 
cently [4]. They describe a system able to learn aspects and to use incrementally a 
sequence of aspects in a recognition phase. The system is decribed using very complex 
coupled differential equations with many critical parameters  which role seem difficult 
to analyze precisely. They do not provide either a clear evaluation of recognition per- 
formances. 

6 Conclusion and future work 
This article has shown how active vision can be used for object recognition, and has 
pointed out that  recognition is inherently active. 

A general approach combining both "objective" and "subjective" features has been 
proposed. It is based on the detection of visual events when an agent interacts with 
the environment and on their statistical purposive accumulation. A set of mathemat-  
ical tools has been provided in order to analyze and quantify the behavior and the 
performances of the recognition procedure. 

The general stochastic representation of an aspect graph probabilistic interpretat ion 
is a controlled Markov chain. The recognition procedure presented in this paper  used a 
stat ionnary action law: one possible extension of the model is to develop more intelligent 
strategies in order to seek more directly, for instance, the most discriminating aspect 
transitions. Object recognition becomes translated into a problem of controlled Markov 
process discrimination, where the action law is purposively controlled by the system. 
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