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A b s t r a c t .  In this paper we show how the uncertainty within a 3d recog- 
nition process can be modeled using Bayesian nets. Reliable object fea- 
tures in terms of object rims are introduced to allow a robust recognition 
of industrial free-form objects. Dependencies between observed features 
and the objects are modeled within the Bayesian net. An algorithm to 
build the Bayesian net from a set of CAD models is introduced. In the 
recognition, entering evidence into the Bayesian net reduces the set of 
possible object hypotheses. Furthermore, the expected change of the joint 
probability distribution allows an integration of decision reasoning in the 
Bayesian propagation. The selection of the optimal, next action is incor- 
porated into the Bayesian nets to reduce the uncertainty. 

1 I n t r o d u c t i o n  

The task to perform recognition for a 3d scene is a highly complex process which 
involves various types of sensor processing and interpretation algorithms. A hu- 
man observer identifies the objects by the knowledge of what he expects to see. 
If an unknown object occurs the observer may try to find a clue by looking from 
different directions or may try to detect specific features to solve the ambiguity. 
Thus, the cognitive process of recognition should be described rather as a task- 
triangle than a simple bottom-up or top-down process (Figure 1). Based on the 

Fig. 1. The task-triangle which has to be modeled in a recognition system. 
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observations of the world (from sensor data) an interpretation of the scene is 
established. Since the sensor information may be incomplete or misleading this 
interpretation has to be considered as uncertain. The observer decides on an ac- 
tion to obtain a bet ter  interpretation of the scene. As a result of the observer's 
intervention the knowledge of the state of the world increases. 

All available a priori knowledge has to be integrated to make 3d recognition 
system reliable. Not only reliable object features (what I expect to see) but  also 
the dependencies between the observations of the object feature (what are the 
expected relations of the observations) have to be specified. Hence, the domain of 
observations with their uncertainties has to be modeled and classical probability 
calculus and decision theory has to be used to guarantee a consistent represen- 
tation. Now, the recognition task becomes a task to minimize the uncertainty in 
the scene interpretation. 

In section 2 we define reliable free-form object features. This features are treated 
as elemental observations which are modeled with their dependencies to the ob- 
jects in a Bayesian net (section 3). Since information from a single view may be 
insufficient to get reliable results an active recognition system has to implement 
the task-triangle in Figure 1. Dependent on the current evidence appropriate 
actions have to be executed to acquire more information about the scene. Rimey 
and Brown showed that  evidence values from Bayesian nets can also be used 
for selecting next actions [19]. However, the decision reasoning is still done with 
explicit goodness ]unctions. We show that  the whole decision process can be en- 
coded in a Bayesian net incorporating cost-benefit analysis to select the optimal 
action of a set of admissible actions. 

Early approaches to integrate e.g. viewpoint selection into Bayesian nets don' t  
use the general approach for decision reasoning proposed in this paper which 
allows a more flexible and more powerful design of various decision schemes [5, 
6]. Thus, Bayesian nets and decision theoretic techniques provide a sound formal 
basis for representation and control in a selective perception system. 

2 R i m  C u r v e s  f o r  O b j e c t  I d e n t i f i c a t i o n  

The definition of reliable features for free-form objects is a major research field 
in CAD based vision (CBV). Features based on differential properties are very 
vulnerable with respect to noise. Some authors proposed to model small, local 
surface portions, e.g. in terms of "splashes" [21]. Other approaches represented 
surfaces with a tessellated graph (e.g. [7, 10]) or with point samples (e.g. [2, 4]). 
Nevertheless, all these algorithm involve complex computations because surface 
identification is a two dimensional search problem (3 DOF). 

Nevertheless, usual industriM objects do not consist of an overall smooth surface 
but contain rims, edges, and holes. Using these object rims the matching problem 
is reduced to a one dimensional search (1 DOF). A rim is defined as a 3d space 
curve separating two adjacent surfaces at a discontinuity. The object rims are 
represented by 3d B-spline curves. A 3d curve can be identified by curvature 
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Fig.  2. Matching of subcurves around a curvature extremum. 

and torsion values which are invariant  with respect  to  3d t ransformat ions .  Rim 
curves describing surface discontinuities can be efficiently computed  from CAD 
da ta  ([8]) and range images as well ([14]) allowing an robust  CAD based vision 
system. For a 3d space curve at each curve point  Pi a Frenet -Frame Fi is defined 
by [ p~ pi x #'i ] 

= - I 11 ' b~ - I1  - 11 ' m ~  = t~ x b~ ( 1 )  

_ d ~ .  which allows the  computa t ion  of the  curvature  ~ = -~8 and torsion T -- -d-7" 

da, = arccos ] ' dfl, = arccos \ " (2) 

Thus,  an equidistanly sampled 3d B-spline is uniquely represented by two feature 
sequence: 

fs .  = [ d a 0 , . . . , d a n . ]  , f s .  -- [df lo , . . . ,df ln . ] .  (3) 

The  similarity between two feature sequences f~ and fc is defined by 

1 ( 1 , [ i ]  - fe[i +/])2 < em~= 
s ( i , j ) =  0 else (4) 

8 (i) = 8(i,j). (5) 
J 

Since curvature  and torsion are significant for a 3d curve an extracted curve can 
be identified by the combined similarity: 

"7,s~(i) + "72s~-(i) 
s(i) = ? , , ? 2  C [0, 1] (6) 

?1 + ? 2  

whereas "h, ?2 determine whether  curvature  or tors ion is more  discriminant.  In  
our  case curvature  is more impor t an t  because the rim curve lay within the object  
surfaces, i.e. 71 = 0.8, ?e = 0.2. The  best  ma tch  is described by the maximum 
o] similarity 

imp== max s(i) (7) 
i~[0,nc-ns] 
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with the matching evidence 

em - S(imaz) e [0, 1] (8) 
nc  

the rim curves are divided into subcurves to guarantee locality (Local Feature Fo- 
cus) and to handle different curve length. Subcurves are selected around a curva- 
ture extremum. This allows a simple matching by only computing the similarity 
around the maxima at the index im (Figure 2), i.e. the index j for computing 
the subcurve's similarity is only taken from the interval j C [ira - 5i, im + (~i] 
within the subcurve in equation (4) and (5). 

Subcurves have to be distinct to allow a reliable subcurve identification. There- 
fore, in an off-line preprocessing the set of all subcurves S is computed from a 
given set of CAD objects ([8]). All subcurves which are similar, i.e. e m >  sl,  
are represented by the subcurve with the highest maximum to form the set of 
significant subcurves S = {So , . . . ,  Sn}. If an extracted subcurve Sc is identified 
by the matching with ec = maxs~es e(Sc, Si) > s,~ then the transformation Tf 
to map the model subcurve Si onto the extracted subcurve Sc is computed by a 
least square minimization [11]. 

3 B a y e s i a n  N e t s  f o r  3 d  R e c o g n i t i o n  

The uncertainty in the recognition process has two major sources. On the one 
hand erroneous sensor data  leads to an erroneous feature extraction or to noisy 
feature values. Reasoning with Bayes rules for low level feature computation 

Fig. 3. Dependencies between subcurves, curves and objects define a Bayesian net. 

from sensor data  has been successfully applied (e.g. [1, 9]). 

On the other hand uncertainty may result from a misclassification between an 
object and extracted features or from an inseparability between objects which 
have similar features. To cope with these problems the statistical behavior of the 
features has to be modeled within the recognition process. Using Bayesian nets 
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not only the statistical behavior of the feature values but  also the dependencies 
between features and objects can be used. 

A Bayesian net is a acyclic directed graph (DAG) where the nodes represent a 
random variable with a fixed set of states and the directed links represent the 
dependencies between the nodes. For the 3d object recognition example each 
node represents a hidden cause or an observed feature with the states present 
(=y) or not present(=n).  

In most object recognition systems using Bayesian nets the nodes represent sub- 
parts of an object [3, 16, 19]. However, observable features need not to coincide 
with object subparts, i.e. features from the same subpart are not statistical in- 
dependent as it is assumed by constructing objects from subparts. Furthermore, 
general free-form objects can not be constructed from a simple set of primitives. 

Thus, constructing a Bayesian net the dependencies between observations and 
not between geometrical primitives have to be modeled. Furthermore, the leaf 
nodes in a Bayesian net have to be independent. The first step is to define re- 
liable object features which can easily be extracted from sensor data  and CAD 
data. In the previous section subcurves of object rims are defined to provide 
simple and robust features to identify industrial free-form objects. The match 
of a subcurve with the matching evidence em (8) represents an observation and 
the evidence is entered into the corresponding leaf node of the Bayesian net. 

Nevertheless, a major  problem using Bayesian nets for recognition is the encod- 
ing of the object 's locations. Sakar and Boyer proposed the Perceptual Inference 
Network (PIN) which is a special Bayesian net propagating not only belief val- 
ues but  also position information [20]. But their methods involve highly complex 
propagation algorithms. Hence, the PIN is reduced to a tree-like structure and 
is used for reasoning in 2d gray level images only. 

We propose to model only relational properties of objects and features in a 
Bayesian net. The nodes represent subsets of object 's hypotheses and the links 
point from more discriminative to more general subsets. 

The Bayesian net can be constructed by "simulating" the possible observations 
in the CAD data. In a first step for each object in the database a root node, 
a node with no parents, is introduced in the Bayesian net. In a second step 
rim curves are extracted from the CAD models [8]. The curve matching from 
the previous section allows the computation of the similarity between these rim 
curves. A high matching evidence 

e ~  > ~e (9) 

indicates a dependency between the two curves. The threshold ze indicates the 
ability to separate different types of curves depending on the uncertainty of the 
sensor data. The value is determined by experiments with real data  and in our 
case is set to s~ -- 0.90. All similar curves are mapped onto a single node. Links 
between the root nodes and the curve nodes are established if a high matching 
evidence is found by equation (9). 
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Subsequently, the curves are divided into subcurves to allow object identification 
even if only a part of a curve is visible. Only significant subcurves are mapped 
onto leaf nodes in the Bayesian net to guarantee the independence of the leaf 
nodes. Similar subcurves given by equation (9) are represented only by a single 
subcurve, i.e. are represented by the subcurve with the highest curvature maxi- 
mum. 

If a significant subcurve is similar to a curve by equation (9), i.e. if the significant 
subcurve Si E C~ is similar to the subcurve Sj  E Cm, then there is a link be- 
tween (Si, Ca) and (Si, Cm).  The nodes representing subcurves are the expected 
observations. All the other nodes represent the hidden causes containing a set 
of likely object hypotheses. Therefore, the proposed Bayesian net contains three 
node layers describing subcurves, curves and objects (Figure 3). The propaga- 
tion of detected features can be performed without considering the positions of 
the subcurves. 

To complete the network specification we have to specify the prior and the con- 
ditional probabilities at the nodes. If prior knowledge of the probabilities of oc- 
currence for the objects in the scenes is available then the priors must represent 
the expected probability of occurrence. In the absence of any prior knowledge 
we assume equal prior probabilities: 

1 
P ( O i  = n) = P ( O i  -- y) = ~ (10) 

The conditional probability at a node represents the conditional belief that  a 
child node is caused by the parent node, i.e. a set of hypotheses sharing a curve 
causes the observation of a specific subcurve. The matching evidence (8) deter- 
mines the likelihood 

L ( C I S )  := em (ii) 
that  the observation of a specific subcurve S was caused by a curve C and the 
likelihood L ( O I C  ) of the curve C to have been caused by the object O. 

The conditional probability table at each node with parents describes the strength 
of the links to the parents. If evidence is entered into a node N the evidence 
must be distributed to the parents p c ( N )  = P = {No, . . .  ,Nt}. Hence, the cor- 
rect conditional probabilities P ( N I P *  ) for all states in a node N dependent on 
all combinations of the states in the parent nodes have to be specified. A likeli- 
hood value represents only the strength to a single parent. The whole conditional 
probability table is computed by the "noisy od' operation [12, 18]. 

Each event Ci = present  = y causes S = present  = y unless an inhibitor prevents 
it, and the probability for that  is 

qi = 1 - L (Ci IS ) .  (12) 

That  is, P ( S  = nlCi  = y) = q~ assuming all inhibitors to be independent. The 
conditional probabilities are defined by: 

P ( S  = n , C o , . . . , C n )  = H qJ (13) 
jEY 
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where Y is the set of indices for variables in the s tate  present = y [12]. 

The conditional probabilities P(CIO* ) are computed likewise. 

Fig. 4. There are two different types of actions: an action with has no impact on the 
probability distribution (left) and an action changing the probability of H (right). 

4 Decision Reasoning in Uncertainty 

To take decisions under uncertainty the global goal is to reduce the uncertainty 
within the recognition process. The recognition has to decide in a quest for more 
information which action to take. Let the knowledge be represented in one 
variable called a hypothesis H with a probabil i ty distribution P(H), i.e. given 
a hypothesis with nh exclusive states with a probabili ty value each. The driving 
force for the evaluation of the information value is the variable H ,  i.e. the decision 
process is called hypotheses driven [12]. 

Given a set of admissible actions A = {a0 , . . . ,  an} and a utility table U(a, h) 
which describes the utility of each action to reduce the uncertainty if the state 
h E H is true. The value of information V(a) for each action is the expected 

t 

Fig. 5. A test action is an intervening action connected to a node which carries the 
test  outcome as states (left Figure). A test can be easily combined with any arbitrary 
action (right Figure). 
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Fig. 6. Decision reasoning with known results (left), uncertain results (middle) and 
unknown results (right) from action al E A1. 

utility EU(a) of the action: 

Y(a) = EU(a) = ~ U(a, h)P(h). (14) 
hEH 

The value of information V for the whole decision process is a function of the 
distribution of H defined by the expected utility EU of performing the optimal 
action opt(A) E A: 

V(P(H)) = EU(P(H)) = max ~ U(a, h)P(h). (15) 
aEA 

hEH 

The optimal  action opt(A) is the argument which maximizes the value of infor- 
mat ion V: 

opt(A) = arg max V(a). (16) 

Introducing costs for each action the expected gain g(a) of an action is defined 
by 

g(a) = max(V(a)  - c(a), 0) E [0, 1] (17) 

Fig. 7. An example task net to select the optimal action for 3d object recognition. 
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and the optimal action optg (A) maximizes now the expected gain with 

optg (A) = arg max g (a). (18) 

This decision problem can be mapped conveniently on a Bayesian net with a 
influence graph [12]: A two state utility node U is connected with the hypothesis. 
The decision table is mapped on the conditional probability table of U. The 
action's costs are mapped likewise onto a utility node C. The set of actions 
is mapped on a n state decision node A and the cost node C is connected to 
it. Now, we have only to distinguish between intervening and non-intervening 
actions (Figure 4). The execution of a non-intervening action doesn't  change 
the probability distribution in the hypothesis H whereas the execution of a 
intervening action does, i.e. the decision node A is connected to the utility node 
U or the hypotheses node H is connected to the decision node A. The expected 
utility of a non-intervening actions is 

EU(ale) = E U(a'h)P(hle)" (19) 
h c H  

The optimal action for a non-intervening actions can be computed by an Bayesian 
net (see left Figure 4) with: 

opt(A) = a r g m a x ( P ( V  = yI a, e) + C(a)). (20) 

Several sets of non-intervening actions can be computed independently and the 
optimal action is the Cartesian product  of the separated optimal actions [12]. 

The expected utility of a intervening actions is 

EU(ale) = E U(h)P(hla'e)" (21) 
hEH 

The optimal action for an intervening actions can be computed by an Bayesian 
net (see right Figure 4) with: 

[P(alY=y,e) ] 
opt(A) = a rgmax  [. -~(a~ i + C(a) . (22) 

Several sets of intervening actions must be solved by simulating each action [12]. 

Now we have to consider a sequence of actions, e.g. taking a test before executing 
an action. The outcome of the test has a direct influence of the merit of an 
action. Furthermore, a test action is an intervening action and may influence the 
probability of the hypothesis H,  i.e. the evidence whether an object is "present" 
or not. If a test T with cost c(T) yields the outcome t then the value of the new 
information is 

V(P(HIt)) = max E U(a, h)P(hit). (23) 
aEA 

hEH 

Since the outcome of T is not known only the expected information value EV(T) 
can be considered: 

EV(T) = ~ V(P(HIt))P(t). (24) 
tET  
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The expected gain g(T) E [0, 1] performing the test T is 

g(T) = max( EV (T) - V ( P( H) ) - c(T), 0). (25) 

A test is easily incorporated into a Bayesian net (see left Figure 5). A chance 
node FT with a state for each test result is connected to a decision node T 
containing the test actions. After performing the test evidence for the outcome t 
is entered into the net. Deciding which action to execute by first taking a test can 
be easily combined in one Bayesian net and no further computation is necessary 
(see right Figure 5). Taking a test is only profitable if the decision to select an 
action is changed through the outcome of the test. Hence, not only the impact 
of taking test T onto the selection of an action from A but also the decision 
whether to take the test can be computed by equation (22). 

The procedure to select an action after taking a test uses a single look-ahead 
and is called the myopic approach (e.g. [12, 19]). Nevertheless, the results from 
an action my either be uncertain or unknown. Therefore, the look-ahead has to 
be performed over a sequence of actions to allow non-myopic action selection; 
e.g. the utility of two subsequent actions may be greater than the utility of each 
single action. Deciding on a sequence of actions (al E A1, a2 E A2) three different 
cases can be distinguished: the results from action al are known, myopic strategy 
(Figure 6 left), the results are known but are uncertain (Figure 6 middle) or are 
unknown, non-myopic strategy (Figure 6 right). This can be implemented in a 
Bayesian net as well by changing the order of the summation/maximization.  The 
utility for the myopic case MEU1 (A2 lal), the uncertain case MEU2 (As l al) and 
the non-myopic case MEUa(A21al) computes to: 

MEUI(A21al) = E max (26) 
a2 

h 

MEU2(A21al) = E max (27) 
a 2  

o 

(2s) 

U(a2,h)P(hlal) 

( E  U(a2, h)P(o, hlal))  
h 

U(h, al)P(hlal) MEU3(A2[al) = max E 
a 2  

h 

whereby the summation performs a marginalization over all unknows. Since a 
non-myopic decision reasoning is more uncertain the following equation holds: 

MEU3 <_ MEU2 < MEU1 (29) 

This theoretical background allows to build highly complex decision schemes. 
Furthermore, the selection and execution of actions can be easily incorporated 
within the evidence propagation scheme allowing an interaction of scene inter- 
pretation and e.g. sensor actions in the recognition. 

5 R e c o g n i t i o n  R e s u l t s  

The range images are acquired with a sensor based on the coded light approach 
(CLA) which is a well-known active triangulation method. The Bayesian net was 
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Fig. 8. An example view of a scene with four objects (left) and the extracted 3d spline 
curves in the corresponding range image (right). 

implemented using the HUGIN software system [17]. The proposed algorithms 
are implemented on a SUN Sparc V. The modelbase of significant subcurves is 
either extracted from CAD models or learned in a previous range da ta  extraction 
for each single object. 

The decision reasoning is done with a task net depicted in Figure 7. The task 
net has a sequence of three different action types. First a test  is performed which 
checks whether any reliable evidence for each interpretat ion (object node in the 
Bayesian net) has arrived. The thresholds are taken from the matching evidence 
threshold ~e in equation (9). If  the evidence is greater than  ~e the object is 
identified and single object hypotheses are created which carry a position infor- 
mation. Each single hypothesis is validated by a Fuzzy ICP algorithm [15]. If  the 
evidence lies between 0.55 and se a different Bayesian net encoding distance in- 
formation is used [13]. After performing the validation actions the system checks 
whether new information by new range images is necessary. 

An recognition example for CAD models is depicted in Figure 8. The propaga-  

Table  1. Results for single and final match of CAD models 

object single em #S~ matched object final em ~Si  views 
P(K1--y) 0.7634 16 5 K1 0.76 i5 of 16 1 
P(K2=y) 0.8673 24 6 K2 0.86 6 of 24 1 
P(K3=y) 0.6735 17 4 K3 0.88 4 of 17 2 
P(K4=y) 0.4534 8 1 K4 0.76 2 of 8 3 

tion results of a single view and after a view sequence are listed in table 1. The 
propagation results after a single view yield tha t  the objects "K2",  " K I "  and 
"K3" have a high evidences because many  subcurves are correctly matched. The 
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Fig. 9. An example view of every day objects. 

Fig. 10. The extracted 3d spline curves in the corresponding range image. 

evidence for object "K4" allows no statement about  the finding of the object in 
the scene because a evidence value about 0.5 is not significant. The sensor data 
is highly corrupted, thus no correct subcurves are found. After evaluating more 
views the object "K4" is correctly identified by using the task net from Figure 
7 as shown in the table 1. 

In Figure 9 a sample of every-day objects is analyzed. The model curves are 
learned in a previous off-line step for each object. The achieved matching evi- 
dence is shown in table 2. Since the edges of the objects for the learned example 
ar not as crisp as in the CAD example matching evidence is lower. Furthermore, 
the reflections on the surface disturb the curve extraction. Thus, more views are 
necessary to identify the objects. 

The results show that  common objects can be recognized with a database either 
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Table 2. Matching results for learned subcurves 

object single em -r matched 
P(Cup=y) 0.7834 5 2 
P(Brushl=y) 0.8073 8 3 
P(Brush2=y) 0.54 ! 4 1 
P(Sugar-Shaker=y) 0.6! 6 1 
P(Salt-Shaker=y) 0.57! 3 1 

object final e,~ ~Si views 
Cup 0.78 2 of 5 1 

Brushl 0.80 6 of 81 1 
Brush2 0.88 4 of 4 ] 2 

Sugar-Shaker 0.77 2 of 6] 5 
Salt-Shaker 0.76 2 of 3] 7 

from CAD descriptions or learned from previous views. 

We showed that  the separation of position independent from position dependent 
know-ledge solves a major problem introducing Bayesian nets in recognition 
systems. Furthermore, selecting appropriate actions depending on the already 
acquired evidence can be incorporated in the Bayesian nets. The recognition 
process adapts to the actual information via a task net which minimizes the set 
of mutual exclusive hypotheses by reducing the uncertainty. 

Using influence graphs allows to build highly complex decision schemes even 
with non-myopic action selection providing a much more flexible decision rea- 
soning within a vision system than any other proposed method (e.g.[5, 6, 19]). 
Furthermore, the concept of handling uncertainty with Bayesian networks and 
selecting appropriate actions is quite general and can be easily adapted to other 
field of recognition and computer vision. 

Using features from 3d rim curves provide sufficient information to allow a robust 
and efficient identification and pose estimation of industrial free-form objects. 
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