
Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

261

Johann Christoph Freytag

Translating Relational Queries
into Iterative Programs

Springer-Verlag
Berlin Heidelberg NewYork London Paris Tokyo

Editorial Board

D. Bars tow W. Brauer P. Br inch Hansen D. Gr ies D. Luckham
C. Moler A. Pnuel i G. Seegm011er J, Stoer N. Wir th

Author

Johann Christoph Freytag
IBM Almaden Research Center K55/801
650 Harry Road, San Jose, CA 95120, USA

CR Subject Classification (1987): D. 1.1, H.2.4, 1.2.2

ISBN 3-540-18000-1 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-18000-1 Springer-Verlag New York Berlin Heidelberg

Library of Congress Cataloging-in-Publication Data. Freytag, Johann Christoph, 1954-. Trans-
lating relational queries into iterative programs. (Lecture notes in computer science; 261) Thesis
(Ph. D.)-Harvard University, 1985. Bibliography: p. 1. Relational data bases. 2. Electronic digital
computers-Programming. 3. Functional programming languages. I. Title. II. Series.
CIA76.g.D3F75 1987 005.75'6 87-13054
ISBN 0-387-18000-1 (U.S.)
This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be
paid. Violations fall under the prosecution act of the German Copyright Law.
�9 1987 by Johann Christoph Freytag
Printed in Germany
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2145/3140-543210

P r e f a c e

This book is the published version of my thesis which I wrote as a Ph.D. student

at Harvard University, Cambridge, MA, during 1985. Between 1982 and 1985,

I spent three exciting years at this university developing the research ideas and

results which are presented in this book. During this time, many people, directly

and indirectly, contributed to the successful completion of this work.

I dedicate this book to my wife Susanne and my parents who both deserve

my warmest thanks. Susannne's patience during my three years at Harvard made

it possible for me to finish my dissertation successfully. In times of frustration

her love and kindness have always been a source of strength and encouragement

for me.

My parents ' continuous care and guidance laid the foundations for this

thesis. Their decision 25 years ago to escape from East Germany gave me the

chance to become a student at Harvard.

At times, it seemed impossible to write this thesis. The infinite optimism

of my advisor, Dr. Nathan Goodman, helped me overcome the difficulties finish-

ing this dissertation. His trust in me and his far-sighted view guided me through

my years at Harvard. He always challenged me and lead my research in new

directions. His support and encouragement initiated my interest in functional

programming and program transformation. I am grateful for his firm commit-

ment to serve as my advisor for the last two years.

Prof. Philip A. Bernstein convinced me to return to Harvard as a Ph.D.

student. Despite many changes and difficulties, he insured that I could continue

my research at the Aiken Computat ion Laboratory successfully. His personality

influenced my at t i tude as a researcher during my first year as a graduate student.

Special thanks also go to Prof. Harry R. Lewis and Prof. Mei Hsu who

both invested their time in carefully reading my thesis. Their helpful comments

improved the presentation of my ideas.

During the three years at Harvard I enjoyed the company of my fellow

students. Doug Tygar deserves special thanks for his commitment to carefully

read the first draft of my thesis despite the pressure I put on h im. .His critical

comments improved this thesis in many ways. John Ramsdell introduced me to

the mysterious world of functional programming. I am thankful for the many

discussions and his patience in working with me. During the early stages of my

research Dennis Shasha always had time for fruitful discussions which initiated

many ideas. The discussions with Ariel Klausner clarified many thoughts, es-

pecially those in the first part of my thesis. Eleanor Sacks, Baiba Menke, and

the rest of Aiken Lab's administrative staff provided the help and support which

made everything much easier.

I am also grateful for a DAAD (Deutscher Akademischer Austauschdienst)

fellowship which supported my studies at Harvard University for one year from

1979 to 1980. That t ime initiated my interest in becoming a Ph.D. student at

this university.

Finally, I would like to thank the IBM Almaden Research Center and, in

particular, my manager Dr. Laura Haas who provided me with the time and the

resources to publish this thesis as a book.

This work was supported by the Office of Naval Research under grant

ONR-N00014-83-K-0770.

Los Gatos, April 1987 Johann Christoph Freytag

IV

Abstract

This book investigates the problem of translating set-oriented query specifications

into iterative programs. The translation uses techniques of functional program-

ming and program transformation.

The first part presents two algorithms which generate iterative programs

from algebra-based query specifications. The first algorithm initially translates

query specifications into recursive programs. Those are simplified by sets of

transformation rules before the last step of the algorithm generates the final

iterative form. The second algorithm uses a two level translation which generates

iterative programs faster than the first algorithm. On the first level a small set

of transformation rules performs structural simplification before the functional

combination on the second level yields the final iterative form.

In the second part the same techniques are used to generate efficient pro-

grams for the evaluation of aggregate functions. One possible evaluation strategy

is to sort the relation before applying the aggregate function, or better yet, to

perform aggregation while sorting. Several transformation steps systematically

generate these more et~cient programs from separate specifications for the sort

algorithm and the aggregate function.

Finally, the third part investigates the Lisp-dialect T as a possible imple-

mentation language for database systems.

Eigentlich weit~ man nur,

wenn man wenig weir;

mit dem Wissen w~chst tier Zweifel.

Die Wahlverwandtschaften

Johann Wolfgang Goethe (1749 - 1832)

VI

C o n t e n t s

2

3

4

I n t r o d u c t i o n 1

1.1 Statement of Problem . 1

1.2 Query Optimization and Evaluation 3

1.3 Functional Programming and Program Transformation 5

D a t a M o d e l s a n d R e w r i t i n g S y s t e m s 9

2.1 Data Models and their Operations 10

2.2 The Target Language . 14

2.3 Term Rewriting Systems . 15

A T r a n s f o r m a t i o n S y s t e m b a s e d on R e c u r s i v e P r o g r a m s 19

3.1 DB Functions and DB Expressions 19

3.2 Simplification Rules and their Properties 24

3.3 The Transformation of DB Functions 29

3.3.1 The Transformation Steps 29

3.3.2 Forms of Expressions . 32

3.3.3 The Transformation of 1-stream Functions 36

3.3.4 The Transformation of 2-stream Functions 38

3.3.5 The Simplification Algorithm 44

Recursion Removal . 45

The Transformation Algorithm 49

More about Transformation . 53

3.4

3.5

3.6

Q u e r y T r a n s f o r m a t i o n b a s e d on M a p E x p r e s s i o n s 57

4.1 Definition of Functions . 59

VII

4.2 Control S t ruc ture Manipulat ion and Functional Composit ion . . 64

4.3 The Transformat ion Algori thm 70

4.4 Extending Query Evaluat ion Plans to Query Programs 73

4.5 Comparison of Algorithms . 76

T h e

5.1

5.2

T r a n s f o r m a t i o n o f A g g r e g a t e F u n c t i o n s 79

Basic Definitions 81

The Transformat ion of Merge and Sum 83

5.2.1 St ruc tura l Transformat ion 84

5.2.2 Functional Transformat ion 94

5.3 General izat ion of Transformat ion 100

6 T h e

6.1

6.2

I m p l e m e n t a t i o n o f D a t a b a s e S y s t e m s in T 105

The Access Method System in T 106

Comparison of Access Methods 109

7 C o n c l u s i o n a n d F u t u r e W o r k 116

Appendix: M e a s u r e m e n t s o f T a n d C F u n c t i o n s

A.1

A.2

A.3

A.4

A.5

A.6

110

Test Configuration . 119

Simple T Functions i 120

Simple C Functions . 123

Program Size of Access Method Functions 124

Runt ime of Simple Functions . 125

Runt ime of Access Method Functions 126

B i b l i o g r a p h y 127

VIII

List of Figures

6.1 Program Size of Access Method Functions 110

6.2 Runt ime of Simple Functions . 113

6.3 t tun t ime of Access Method Functions 115

List of Tables

A.1 Program Size of Access Method Functions 124

A.2 Runt ime of Simple Functions . 125

A.3 Runt ime of Access Method Functions 126

IX

N o t a t i o n

~DB

~H

J~nl
LQEp

LDB

Lmap

L~

E

fl

(

B(fl)

Set of all database functions (DB functions).

Set of form I DB functions.

Set of form I I DB functions.

Set of form H I DB functions.

Set of all well founded query evaluation plans (QEPs)

which are composed of actions.

Set of all database expressions (DB expressions) which are

composed of DB functions.

Set of all well founded map expressions.

Set of all A-expressions.

Mapping from DB expressions to map expressions.

Mapping from map expressions to A-expressions.

Transformation system for recursive functions.

Transformation system for union functions.

~ansformation system for map expressions.

Transformation system for lambda expressions.

function body of function fl.

•

f ,i)

s(f , i)

TAR
I /)

7"/2"

HY

~ s

,.gZ.h4

u./r

T T~m~p

.A4s

TT~

Substitution of function expression calling f2 as the ith

parameter in the function expression calling .fl.

Substitution of the body of function f2 for the ith param-

eter into the body of function fl.

Recursion based transformation algorithm.

Transformation algorithm to produce the ideal form which

is a transformation step in algorithm TT~R.

Transformation step in algorithm TT~R to generate itera-

tive programs from ideal forms.

Unfolding step in transformation algorithm/'7).

Folding step in transformation algorithm/7/).

Simplification step in transformation algorithm 2"7) using

transformation system (Tp, T~p).

Union step in transformation algorithm 2-/) using transfor-

mation system (Tp, 7~u).

Transformation algorithm based on map expressions and

)`-expressions.

Transformation step for map expressions in algorithm

Transformation step for),-expressions in algorithm TT~,~ap.

Simplification step for)`-expressions in algorithm A~4s us-

ing transformation system (T~, ~) .

Applying rule r exhaustively to term ~.

Applying lambda expression t2 to lambda expression h.

XI

