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Abstract  

This book investigates the problem of translating set-oriented query specifications 

into iterative programs. The translation uses techniques of functional program- 

ming and program transformation. 

The first part presents two algorithms which generate iterative programs 

from algebra-based query specifications. The first algorithm initially translates 

query specifications into recursive programs. Those are simplified by sets of 

transformation rules before the last step of the algorithm generates the final 

iterative form. The second algorithm uses a two level translation which generates 

iterative programs faster than the first algorithm. On the first level a small set 

of transformation rules performs structural simplification before the functional 

combination on the second level yields the final iterative form. 

In the second part the same techniques are used to generate efficient pro- 

grams for the evaluation of aggregate functions. One possible evaluation strategy 

is to sort the relation before applying the aggregate function, or better yet, to 

perform aggregation while sorting. Several transformation steps systematically 

generate these more et~cient programs from separate specifications for the sort 

algorithm and the aggregate function. 

Finally, the third part investigates the Lisp-dialect T as a possible imple- 

mentation language for database systems. 



Eigentlich weit~ man nur, 

wenn man  wenig weir; 

mit dem Wissen w~chst tier Zweifel. 

Die Wahlverwandtschaften 

Johann Wolfgang Goethe (1749 - 1832) 
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