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Le point de vue rationnel sur les processus PA

Résumé : PA est ’algébre de processus autorisant le non-determinisme, les compositions
sequentielle et paralléle et la récursion. Nous proposons de voir les processus PA comme des
langages d’arbres.

Notre résultat principal montre que ’ensemble des prédécesseurs itérés d’un ensemble
régulier de processus PA est un langage régulier, et de méme pour les successeurs itérés. De
plus les automates correspondants sont construits en temps polynomial. Ces résultats ont des
applications immédiates pour les problémes de vérifications liés & I’algébre Pa, notamment
un algorithme de model-checking simple et général.

Mots-clé :  Algébre de Processus, Systéme & infinité d’états, vérification, model-checking,
atteignabilité, automates d’arbres.
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Introduction

Verification of Infinite State Processes is a very active field of research today in the
concurrency-theory community. Of course, there has always been an active Petri-nets com-
munity, but researchers involved in process algebra and model-checking really became inter-
ested into infinite state processes after the proof that bisimulation was decidable for normed
BPA-processes [BBK87]. This prompted several researchers to investigate decidability issues
for BPP and BPA (with or without the normedness hypothesis) (see [CHM94, Mol96, BE97]
for a partial survey).

From BPA and BPP to PA: BPA is the “non-determinism + sequential composition +
recursion” fragment of process algebra. BPP is the “non-determinism + parallel composition
+ recursion” fragment. PA (from [BEH95]) combines both and is much less tractable. A few
years ago, while more and more decidability results for BPP and BPA were presented, PA
was still beyond the reach of the current techniques. Then Mayr showed the decidability of
reachability for PA processes [May97c|, and extended this into decidability of model-checking
for PA w.r.t. the EF fragment of CTL [May97b]. This was an important breakthrough,
allowing Mayr to successfully attack more powerful process algebras [May97a] while other
decidability results for PA were presented by him and other researchers (e.g. [Ku¢96, Kuc97,
JKM98]).

A field asking for new insights: The decidability proofs from [May97b] (and the fol-
lowing papers) are certainly not trivial. The constructions are quite complex and hard to
check. Tt is not easy to see in which directions the results and/or the proofs could be adap-
ted or generalized without too much trouble. Probably, this complexity cannot be avoided
with the techniques currently available in the field. We believe we are at a point where it
is more important to look for new insights, concepts and techniques that will simplify the
field, rather than trying to further extend already existing results.

Our contribution: In this paper, we show how tree-automata techniques greatly help
dealing with PA. Our main results are two Regularity Theorems, stating that Post™ (L)
(resp. Pre*(L)) the set of configurations reachable from (resp. allowing to reach) a confi-
guration in L is a regular tree language when L is, and giving simple polynomial-time
constructions for the associated automata. Many important consequences follow directly,
including a simple algorithm for model-checking PA-processes.

Why does it work ? The regularity of Post*(L) and Pre*(L) could only be obtained
after we had the combination of two main insights:

1. the tree-automata techniques that have been proved very powerful in several fields
(see [CKSV9T7]) are useful for the process-algebraic community as well. After all, PA
is just a simple term-rewrite system with a special context-sensitive rewriting strategy,
not unlike head-rewriting, in presence of the sequential composition operator.
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4 D.Lugiez, Ph.Schnoebelen

2. the syntactic congruences used to simplify notations in simple process algebras help one
get closer to the intended semantics of processes, but they break the regularity of
the behavior. The decidability results are much simpler when one only introduces
syntactic congruences at a later stage. (Besides, this is a more general approach.)

Plan of the paper: We start by recalling the basics of tree-automata theory (§ 1) before
we introduce our definition for the PA process algebra (§ 2). After we explain how sets of PA
processes can be seen as tree languages (§ 3) we give a simple proof showing how Post™(¢)
and Pre”(t) are regular tree languages and start listing applications to verification problems.
We then move on to Post™(L) and Pre*(L) for L a regular language (§ 5). These are our
main technical results and we devote § 6 to the important applications in model-checking.
We end up with an extension to reachability and model-checking under constraints (§ 7) and
some simple but important techniques allowing to deal with PA processes modulo structural
equivalence (§ 8).

Related work: Several recent works in the field use tree-automata to describe the beha-
viour of systems. We use them to describe set of configurations.

The set of all reachable configurations of a pushdown automaton form a regular (word)
language. This was proven in [Biic64] and extended in [Cau92]. Applications to the model-
checking of pushdown automata have been proposed in [FWW97, BEM97].

The decidability of the first-order theory of the rewrite relation induced by a ground
term rewrite system relies on ground tree transducers [DT90] (note that PA is defined by a
conditional ground rewrite system).

Among the applications we develop for our regularity theorems, several have been sug-
gested by Mayr’s work on PA [May97c, May97b] and/or our earlier work on RPPS [KS97a,
KS97b].

1 Regular tree languages and tree automata

We recall some basic facts on tree automata and regular tree languages. For more details,
the reader is referred to any classical source (e.g. [CDGT97, GS97]).

A ranked alphabet is a finite set of symbols F together with an arity function n : 7 — N.
This partitions F according to arities: F = FoUF; UFa U ---. We write T(F) the set of
terms over F and call them finite trees or just trees.

A tree language over F is any subset of T (F).

A (finite, bottom-up) tree automaton A is a tuple (F,Q, F, R) where F is a ranked
alphabet, @ = {q1,...} is a finite set of states, F' C @) is the subset of final states, and R is
a finite set of transition rules of the form f(q1,...,qn) — ¢ where n > 0 is the arity n(f)
of symbol f € F. Tree automata with e-rules also allow some transition rules of the form
qgr—>q'.

The transition rules define a rewrite relation on terms built on FU @ (seeing states from
@ as nullary symbols). This works bottom-up. At first the nullary symbols at the leaves
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are replaced by states from @, and then the quasi-leaf symbols immediately on top of leaves

from @ are replaced by states from Q. We write ¢ Ay q when t € T(F) can be rewritten
(in some number of steps) to ¢ € @ and say ¢ is accepted by A if it can be rewritten into a
final state of A. We write L(A) for the set of all terms accepted by .A. Any tree language
which coincide with L(A) for some A is a regular tree language. Regular tree languages are
closed under complementation, union, etc.

An example: Let F be given by Fy = {a,b}, F1 = {9} and Fo = {f}. There is an

automaton accepting the set of all ¢ € T(F) where g occurs an even number of times in ¢.
Ais given by Q@ = {q0, 1}, R = {a — q0,b — 90, 9(20) = q1,9(q1) = qo, f(q0, 90) —

g0, f(g0,91) — a1, (g1, 90) — a1, f(g1,91) — qo} and F = {go}.

Let t be g(f(g(a),b)). A rewrites ¢t as follows: g(f(g(a),b)) — g(f(9(q0), q0)) —
9(f(q1,90)) — g(q1) — qo. Hence t — qo € F so that t € L(A).

If we replace R by R' = {a — qo,b — qo0,9(q0) — ¢1,9(¢1) — 0, F(q0,90) —
q0, f(q1,91) — q1} we have an automaton accepting the set of all ¢ where there is an even
number of g’s along every path from the root to a leaf.

The size of a tree automaton, denoted by |A|, is the number of states of .4 augmented
by the size of the rules of A where a rule f(q1,...,qn) — ¢ has size n + 2. In this paper,
we shall never be more precise than counting |@|, the number of states of our automata.
Notice that, for a fixed F where the largest arity is m > 2, |A| is in O(|Q|™).

A tree automaton is deterministic if all transition rules have distinct left-hand sides
(and there are no e-rule). Otherwise it is non-deterministic. Given a non-deterministic tree
automaton, one can use the classical “subset construction” and build a deterministic tree
automaton accepting the same language, but this construction involves a potential exponen-
tial blow-up in size. Telling whether L(.A) is empty for A a (non-necessarily deterministic)
tree automaton can be done in time O(]A|). Telling whether a given tree ¢ is accepted by a
given (non-necessarily deterministic) A can be done in time polynomial in |A| + |¢|.

A tree automaton is completely specified (also complete) if for each f € F, and q1, ... ,qn €
@, there is a rule f(q1,...,¢s) = ¢. By adding a sink state and the obvious rules, any A
can be extended into a complete one accepting the same language.

2 The PA process algebra

For our presentation of PA, we explicitly refrain from writing terms modulo some simplifi-
cation laws (e.g. the neutral laws for 0). Hence our use of the IsNil predicate (see below),
inspired by [Chr93].

This viewpoint is in agreement with the earliest works on (general) process algebras like
CCS, ACP, etc. It is a key condition for the results of the next section, and it clearly does
not prevent considering terms modulo some structural congruence at a later stage, as we
demonstrate in section 8.
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6 D.Lugiez, Ph.Schnoebelen

2.1 Syntax

Act = {a,b,c,...} is a set of action names.
Var ={X,Y,Z, ...} is a set of process variables.
Epa = {t,u,...} is the set of PA-terms, given by the following abstract syntax

tbun=0|X |tul|t]| u

Given t € Epa, we write Var(t) the set of process variables occurring in ¢ and Subterms(t)
the set of all subterms of ¢ (includes t).

A guarded PA declaration is a finite set A = {X; 28¢; | i = 1,...,n} of process rewrite
rules. Note that the X;’s need not be distinct.

We write Var(A) for the set of process variables occurring in A, and Subterms(A) the
union of all Subterms(t) for t a right- or a left-hand side of a rule in A.

A4(X) denotes {t | there is a rule “X % #” in A} and A(X) is Uaseact Da(X). Varg =
{X € Var | A(X) = @} is the set of variables for which A provides no rewrite.

In the following, we assume a fixed Var and A.

2.2 Semantics

A PA declaration A defines a labeled transition relation —-aC FEpa x Act x Eps. We always
omit the A subscript when no confusion is possible, and use the standard notations and
abbreviations: t — ¢ with w € Act*, t 54 with k € N, t 51, t—, ... —a is inductively
defined via the following SOS rules:

t 5t t St
— L7 1 —— (X3t eA
2] || to —)tll || to t1.19 —)tll.tQ X =t
ty 5t ty St
— 72 —2 "2 IsNil(ty)
2] ||t2 — 1 ||tl2 tl.t2—>t1.tl2

where the IsNil(...) predicate is inductively defined by

IsNil(ty || t2) = IsNil(t1) A IsNil(ts), IsNil(0) = true,
. def . . . def true lf A(X) = @,
IsNil(t1.t3) = IsNil(t1) A IsNil(t2), IsNil(X) = { Jalse otherwise.

The IsNil predicate is a syntactic test for termination, and indeed

Lemma 2.1. The following three properties are equivalent:
1. IsNil(t) = true,

2.t (i.e.t is terminated),

3. Var(t) C Varg.

INRIA
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Proof. (3 = 2) Assume t — t’. This derivation used has some X; 2 ¢; with X; € Var(t).
(2 = 1) Use induction over ¢ to prove that IsNil(t) = false implies that t — ¢’ for some t'.
(1 = 3) is obvious from the definition. O

3 FEpa as a tree language

We shall use tree automata to recognize sets of terms from Epa. This is possible because
Epy is just a T(F) for F given by Fy = {0, X,Y,...} (= {0} U Var) and Fy = {.,||}. Of
course, we shall keep using the usual infix notation for terms built with “.” or “||”.

We begin with one of the simplest languages in Epa:

Proposition 3.1. For any t, the singleton tree language {t} is regular, and an automaton
for {t} needs only have |t| states.

Similarly, an immediate consequence of Lemma 2.1 is

Corollary 3.2. L?, the set of terminated processes, is a reqular tree language, and an
automaton for L? needs only have one state.

4 Regularity of the reachability set

*

For t € Epa, we let Pre*(t) = {t' |t/ 5t} (resp. Post*(t) = {t’ |t 5 t'}) denote the set of
iterated predecessors (resp. the set of iterated successors, also called the reachability set) of
t.

These notions do not take into account the sequences w € Act® of action names allowing

to move from some ¢ to some ¢’ in Post™(t). Indeed, we will forget about action names until
section 7 which is devoted to Pre*[C](t) and Post™[C](t) for C C Act™.

Given two tree languages L, L' C Epy, we let

LI = {tt'|teLt' el L|IIL = {t|t|telt' el

4.1 Regularity of Pre™(t)

We define (Lt)teEp, , an infinite family of tree languages, as the least solution of the following
set of recursive equations. The intuition is that these are quasi-regular equations satisfied

RR n3403



8 D.Lugiez, Ph.Schnoebelen

by Pre*(t).
Lo = {0}u (J Ly, Ly = L|lLeu [J Ly,
Y30eAa Y 3t||t’'ea
o (%)
Li.Ly U U Ly, iftelL?, (1)
Y3¢iteA
Lx = {X}u U Ly, Liy =
YS3Xea L, {t'}u U Ly, otherwise.
Y3tteA

Observe that all equations define L; as containing all Ly’s for Y a process variable allowing
a one step transition Y < ¢ into ¢.

Lemma 4.1. For anyt € Epa, Ly = Pre*(t).

Proof. (Sketch) The proof that u % ¢ implies u € L; is an induction over the length of
the transition sequence from wu to ¢, then a case analysis of which SOS rule gave the last
transition, and then an induction over the structure of ¢.

The proof that u € L, implies u — t is a fixpoint induction, followed by a case ana-
lysis over which summand of which equation is used, and relies on simple lemmas about
reachability, such as “t; = u;y implies ¢, || t2 5w || t2”. ([

The equations from (1) can easily be transformed into regular equations, just by introducing
new variables for sets {t} in the definitions for the L;;’s. Now, because any given L,
only depends on a finite number of L,’s and {u}’s, namely only for u’s in Subterms(t) U
Subterms(A), we have !

Corollary 4.2. For any t € Epya, the set Ly 1s a reqular tree language.
and the corresponding tree automaton has O(|A| + [t]) states. This entails

Theorem 4.3. For anyt € Epa, Pre*(t), Pre(t) and Pret(t) are regular tree languages.

4.2 Regularity of Post™(t)

We define (L}, L} )t Ep, , two infinite families of tree languages, as the least solution of the
following set of recursive equations. Our aim is that L (resp. L}) should coincide with

!Tn section 5.1, we shall see that Corollary 4.2 holds even when A is infinite (but Var(A) must be finite).

INRIA



The Regular Viewpoint on PA-Processes 9

Post™ (t) (resp. Post™(t) N L?).
Ly = {0}, Ly = {0},

{X}if X € Varg,

/ _ / "o .
Ly = {X}u U L, Ly = U LY, otherwise,
a 2
X—=teA X3&teA ( )
7 _ / 7 1 _ 1 1
Ly = Lyl L, qe = LOILE,
/ _ / / 1 / 1 _ 1 1"
ro = Ly{U'PULY.Ly, te = LiLi.

Again, these can easily be turned into regular equations. Again, any given L} or L} only
depends on a finite number of L!’s, L!’s and {u}’s.

Corollary 4.4. For any t € Epa, the sets L, and L} are regular tree languages.

and the corresponding tree automata have O(|A| + |t|) states.
As with Pre*(t), we can easily show

Lemma 4.5. For anyt € Epa, L, = Post™(t) and L} = Post*(t) N L?.
hence the corollary

Theorem 4.6. For anyt € Epa, Post™(t), Post(t) and Post™ (t) are regular tree languages
that can be constructed effectively.

Theorems 4.3 and 4.6 will be generalized in sections 5 and 7. However, we found it
enlightening to give simple proofs of the simplest variants of our regularity results.

Already, Theorems 4.3 and 4.6 and the effective constructibility of the associated auto-
mata have many applications.

4.3 Some applications

Theorem 4.7. The reachability problem “is t reachable from t' 7 is in P.

Proof. Combine the cost of membership testing for non-deterministic tree automata and the
regularity of Pre* (') or the regularity of Post™ (). O

For a different presentation of PA and —a, [May97c| shows that the reachability problem is
NP-complete. In section 8, we describe how to get his result as a byproduct of our approach.

Many other problems are solved by simple application of Theorems 4.3 and 4.6:

boundedness. Is Post™(t) infinite ?

RR n3403



10 D.Lugiez, Ph.Schnoebelen

covering. (a.k.a. control-state reachability). Can we reach a ¢’ in which Y, ...,Y}, occur
(resp. do not occur).

inclusion. Are all states reachable from ¢; also reachable from t5 7 Same question modulo
a regularity preserving operation (e.g. projection).

liveness. where a given A’ C A is live if, in all reachable states, at least one transition

from A’ can be fired.

5 Regularity of Post*(L) and Pre*(L) for a regular lan-
guage L

In this section we prove the regularity of Pre*(L) and Post™(L) for a regular language L.
For notational simplicity, given two states ¢, ¢’ of an automaton A, we denote by ¢ || ¢’

(resp. q.¢') any state ¢’/ such that ¢ || ¢’ Ay q" (resp. q.¢' WA q"), possibly using e-rules.

5.1 Regularity of Pre*(L)

Ingredients for Ap,.+~: Assume Ap is an automaton recognizing L C Fpa. Apre+ is a
new automaton combining several ingredients:

o Ay is a completely specified automaton accepting terminated processes (see Corol-

lary 3.2).
e Ay is the automaton accepting L.

e We also use a boolean to record whether some rewriting steps have been done.

States of App+: A state of Appe+ is a 3-tuple (¢o0 € Qa,, 91 € Qa,,b € {true, false})
where (). denotes the set of states of the relevant automaton.

Transition rules of Ap,.«: The transition rules of Ap,.+ are defined as follows:

type 0: all rules of the form 0 — (¢o, g1, false) s.t. 0 lg ¢e and 0 Az qr -

type la: all rules of the form X — (gg, qr, true) s.t. there exists some u € Post™ (X) with
U lg gz and u Az, qr.

type 1b: all rules of the form X — (¢, g1, false) s.t. X |ﬂ> ¢e and X Az qr-

type 2: all rules of the form (¢e, qr,b) || (9%, 9%, 0) — (9o || 45,9z || 4L, b0V b').

type 3a: all rules of the form (¢e,qr,b).(¢%, 4%, b") — (4o 4%, 9197, bV ') s.t. ¢o is a final
state of Ag.

INRIA



The Regular Viewpoint on PA-Processes 11

type 3b: all rules of the form (¢e, qr,b).(¢%, ¢7., false) — (4o 4%, 9097, b).

Lemma 5.1. For anyt € Epa, t m (9,91, b) iff there is some u € Epa and some p € N
Ag .
such that t & u, u ™= qu, u ALy qr, and (b= false iff p=10).

Proof. By structural induction over ¢. There are three cases:

1.t =0 or t = X: Because Ap,.+ has no e-rules, we only have to observe that its rules of
type 0, la and 1b exactly correspond to what the lemma requires.

) Aprer ) ) Apper

2.t = t1.45: (=): the rewrite t V= (qo,qr,b) required that, for i = 1,2, we have t; =
(¢%,q%,b%) and there is a type 3 rule (g5, q1,b").(¢%, ¢7,b%) — (¢a, 9L, b).

The induction hypothesis entails there are ¢ LN uy and to L&Y uy corresponding to the

rewrite of £; and t5 by Apye+. Now if Ap,e+ used a type 3b rule, then bs = false hence

ps = 0, usg = t9, p1 = p and .19 Py w1ty = up.us. If we used a type 3a rule, then ¢,

is a final state, therefore u; € Ly is a terminated process, hence 1 .15 L&Y uy.ts L&Y Up. Uy

and (b = by V by = false iff p1 + p2 = 0).

. Ag .
(«<): Conversely, assume ¢ = ;.15 2w with u &5 o and u Az qr. Then u is some
uy.uz and either (1) uz = ¢2 and t; RN ug, or (2) u; € Ly and ;.19 2 ourds B ougus
for p1 + p2 = p.
In the first case the ind. hyp. entails t; Lores (95,95, bY) with uy Az q;, and ¢y =
Appes Appes
us V5 (g%, q2, false). Now we can use a type 3b rule to show ¢t V= (¢} .9%, g1 .97,b1)
: AL 1 2
with v — ¢7 .q7.
In the second case, u; € Ly entails ¢y Az (g%, q},b1) with ¢} a final state of Ay. We

Aper
can use a type 3a rule to show ¢ V% (¢5.9%,q}.9%7,b1 V ba).
3.t =t || ta: This case is similar to the previous one (actually it is simpler).

O

If we now let the final states of App+ be all states (¢e,g¢r,b) s.t. g is a final state of
Ay, then t 5 u for some u accepted by Ay iff Ap,.+ accepts t (this is where we use the
assumption that Ag is completely specified.)

Theorem 5.2. (Regularity)

(1) If L is a regular subset of Epa, then Pre*(L) is regular.

(2) Furthermore, from an automaton Ay recognizing L, is it possible to construct (in po-
lynomial time) an automaton Apre+ recognizing Pre*(L). If Ap has k states, then Apye
needs only have 4k states.

RR n3403



12 D.Lugiez, Ph.Schnoebelen

Proof. (1) is an immediate consequence of Lemma 5.1. Observe that the result does not
need the finiteness of A (but Var(A) must be finite).

(2) Building Apge- effectively requires an effective way of listing the type la rules. This
can be done by computing a product of Ax, an automaton for Postt(X), with Ay and

. . Ag .
Apr. Then there exists some u € Postt(X) with u —> ¢4 and u Az, qr iff the the language
accepted by the final states {(¢x,qe,¢r) | ¢x a final state of Ax} is not-empty. This gives
us the pairs ¢, g we need for type la rules. Observe that we need the finiteness of A to

build the Ax’s. O

5.2 Regularity of Post™(L)

Ingredients for Ap,.+: Assume A is an automaton recognizing L C Epa. Aposer is a
new automaton combining several ingredients:

e Automata Az and Ay as in the previous construction, but this time we need to assume
each of them is a completely specified automata.

e Ap is a completely specified automaton recognizing the subterms of A. It has all

states ¢ for s € Subterms(A). We ensure “¢ RaZ qs iff s = ¢’ by taking as transition
rules 0 — qo if 0 € Subterms(A), X +— gx if X € Subterms(A), ¢, || g5 — g5t
(resp. ¢s.qs —> qs.50) if s || 8" (vesp. s.s') belongs to Subterms(A). In addition, the
automaton has a sink state ¢; and the obvious transitions so that it is a completely
specified automaton.

e Again, we use a boolean b to record whether rewrite steps have occurred.

States of Ap,s»: The states of Ap,g» are 4-uples (g0 € Qa,, 90 € Qa,, 98 € Qan,bE
{true, false}).

Transition rules of Ap,+: The transition rules are:
Ag
type 0: all rules of the form 0 — (¢e, ¢z, ¢a, false) s.t. 0 — ¢o, 0 Az gz and 0 aZN qa.

Ag
type 1: all rules of the form X ~— (qo,qr,9a, false) st. X — ¢o, X Az qr, and
X IAé qA.
type 2: all e-rules of the form (¢e, ¢}, ¢s,b") — (4o, 9L, ¢x, true) st. X — sisarulein A

with X A% qr.-

type 3: all rules of the form
(92,9, 92,6) || (95,47, 9a:0") — (4o || 92, qL || 47, 9a || 44, bV D)

type 4a: all rules of the form
(92,9L,92,b).(9%, 91, 4a, false) — (90-9%, 9L 97, 42 -9A, b).
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The Regular Viewpoint on PA-Processes 13

type 4b: all rules of the form
(90, q0,98,0).(9%, 45, @A V') — (9o -0, 9097, 4a-9'A, bV V') s.t. qo is a final state of
Ag.

Lemma 5.3. For anyt € Epa, t Alﬂﬁ* (92,41, 9a,b) iff there is some u € Epy and some
. Ag
p €N such that u 5, urA—L>qL, urqu, (b= false iff p=10) and t — qo.

Proof. We first prove the (=) direction by induction over the length k& of the rewrite ¢ Alii*
(42,491, 9a,b). We distinguish four cases:

1. k= 1: Thent =0or ¢t = X and we used a type 0 or type 1 rule. Taking u =¢ and p =0
satifies the requirements.

2. k > 1 and the last rewrite step used a type 2 e-rule: Then the rewrite has the form
k — 1 steps

t— (¢, 95,95, 0") — (9o,9L,9x,true). By ind. hyp., there is a v’ and a p’ s.t.
W' Pt Now o 24 qs entails v/ = s. The existence of the type 2 rule entails

X — s € A. Hence X Py Taking u = X and p = p’ + 1 satifies the requirements.
3. k > 1 and the last rewrite step used a type 4 rule: Then ¢ is some t;.t5 and the

type 4 rule applied on top of two rewrite sequences t; — (¢k, ¢%, ¢4, b") for i = 1,2.

The ind. hyp. gives us, for i = 1,2, some u; and p; s.t. u; LA

If the last rule was a type 4a rule, then b? = false so that p, = 0 and uy = t5. Then

U1.Uso LY t1.us = t. Taking u = uy.us and p = p; satifies the requirements.

. . Ag
Otherwise the the last rule was a type 4b rule. Then ¢ is a final state and t; —> ¢,
entails that ¢; is a terminated process. Hence wuy.us LAY t1.us L&Y t1.ts = t. Again,

taking u = uy.ug (with p = p; + p2) satifies the requirements.

4. k > 1 and the last rewrite step used a type 3 rule: This case is similar (actually
simpler) to the previous one.

For the (<) direction, we assume u % ¢ with the accompanying conditions (a.c.), and
proceed by induction over the length of the transition sequence (i.e. over p), followed by
structural induction over u. There are five cases:

1. u = 0: Then ¢t = u and the a.c.’s ensure we can use a type 0 rule to show ¢ A.ﬂ*
(QQ, qrL,qa, fGZSG).

2. u = X and p = 0: Like the previous case but with a type 1 rule.

3. u =X and p > 0: Then the sequence has the form X L o' P51 4. Here the a.c.’s read
ga = qx and b = true. X L ' € A entails v’ € Subterms(A). If we now take a ¢,
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14 D.Lugiez, Ph.Schnoebelen

s.t. u A q; (one such ¢f must exist) and let &’ be false iff p— 1 = 0, the ind. hyp.

. A "
gives us t V4 (¢g,q},qu,b'). Now, there must be a type 2 e-rule (¢s, ¢}, qu, b') —
. A w
(9o, 9L, 9x, true). We use it to show ¢t ¥ (¢4, qr, qx, true).

4. u = uy.us: Then t is some ;.15 and u 2 ¢ is a combination of some U1 n t1 and us L&Y to
with p = p; + p2. Additionally, if p, > 0 then ¢; € Lg.

For i = 1,2, The rewrites ¢ .ﬂ) o, U A qr and u A ga used some ; lg qi,
U; ALy ¢4 and u; aZN g% (for i = 1,2). If we now define b’ according to p;, the ind.
hyp. entails that, for i = 1,2, ¢; A pog? (4%, 4%, q's, bY).

There are two cases. If t; € Ly then gL is a final state of Ag and Ap,s+ has a type

4b rule (qk, q}, g%, %) .(¢%,4%,94,b%) — (42,91, 9, b) that we can use. If t; & Ly,
then p, = 0 and b? = false. There is a type 4a rule that we can use.

5. u = uy || ug: Similar to the previous case (actually it is simpler).
O

If we now let the final states of Apys» be all states (¢g,qr1,ga,b) s.t. ¢z is a final state of
Ap, then Ap,g e+ accepts a term ¢ iff u = ¢ for a u accepted by Ay, iff ¢ belongs to Post™(L).

Theorem 5.4. (Regularity)

(1) If L is a regular subset of Epa, then Post™(L) is regular.

(2) Furthermore, from an automaton Ap recognizing L, is it possible to construct (in poly-
nomial time) an automaton Apys+ recognizing Post™(L). If Ap has k states, then Apyes
needs only have O(k.|Al|) states.

Proof. Obvious from the previous construction. [l

Our results relate ¢ and Pre*(t) (resp. Post™(t)). A natural question is to ask if the
relation “5” (i.e. {(t,u) |t = u} is recognizable in some sense. The most relevant notion of
recognizability related to our problem is linked to ground tree transducers, GTT’s for short,
see [CDG197] for details. Since it can be shown that the = relation induced by a ground
rewrite system is recognizable by a GTT, we tried to extend this result to our PA case where
the rules are ground rewrite rules with simple left hand sides, but where there is a notion of
prefix rewriting. Unfortunately, this prefix rewriting entails that our = is not stable under
contexts and the natural extensions of GTT that could handle such conditional rules are
immediately able to recognize any recursively enumerable relation.

6 Model-checking PA processes

In this section we show a simple approach to the model-checking problem solved in [May97b].
We see this as one more immediate application of our main regularity theorems.
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The Regular Viewpoint on PA-Processes 15

We consider a set Prop = {Py, Ps,...} of atomic propositions. For P € Prop, Let
Mod(P) denotes the set of PA processes for which P holds. We only consider propositions
P such that Mod(P) is a regular tree-language. Thus P could be “¢ can make an a-labeled
step right now”, “there is at least two occurences of X inside t”, “there is exactly one occu-
rence of X in a non-frozen position”,

The logic EF has the following syntax:
pu=Plopleng' |EXp | EFp
and semantics

t=P & te Mod(P),
tE-p & iy,
tEeAy & tEpandtEy,

Thus EXy reads “it is possible to reach in one step a state s.t. ¢’ and EFy reads “it is possible
to reach (via some sequence of steps) a state s.t. ¢”.

N

i

tEEXe & ' =g for somet — t,

def

tEEFp & ' | for somet St

o

i

Definition 6.1. The model-checking problem for EF' over PA has as inputs: a given A, a
given t in Epa, a given ¢ in EF. The answer is yes iff t = .

def

If we now define Mod(p) = {t € Epa |t = ¢}, we have

Mod(—¢) = Epa — Mod(p) Mod(EXp) = Pre(Mod(¢)) 3)
Mod(e A¢') = Mod(p) N Mod(¢") Mod (EFy) Pre* (Mod(p))

Theorem 6.2. (1) For any EF formula ¢, Mod(p) is a regular tree language.
(2) If we are given tree-automata Ap’s recognizing the regular sets Mod(P), then a tree-
automaton A, recognizing Mod(p) can be built effectively.

Proof. A corollary of (3) and the regularity theorems. O

This gives us a decision procedure for the model-checking problem: build an automaton
for Mod(p) and check whether it accepts t. We can estimate the complexity of this approach
in term of |p| and ng ().

We define ng:(¢) the number of alternation of negations and temporal connectives in ¢

nalt( ) = 0 nalt(_‘P) =1
nat(e AY) = max(na(p), na(v)) nat(2(e AY)) = max(nae (), na(—))
na (EFe) = nau(e) nat(CEFe) = 14+ nae(e)
na (EXe) = na(e) na(CEXe) = 14+ nae(e)
nat(77p) = nae(p)
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16 D.Lugiez, Ph.Schnoebelen

Theorem 6.3. (Model-checking) An automaton for Mod(y) can be computed in time
2|¢||A|20(IvIIAI)

nau(LP)

NEPN

Proof. We assume all automata for the Mod(P)’s have size bounded by M (a constant).
We construct an automaton for Mod(¢) by applying the usual automata-theoretic construc-
tions for intersection, union, complementation of regular tree languages, and by invoking
our regularity theorems for Pre and Pre*. All constructions are polynomial except for
complementation. With only polynomial constructions, we would have a 29U¢l) gize for
the resulting automaton. The negations involving complementation are the cause of the
non-elementary blowup.

Negations can be pushed inward except that they cannot cross the temporal connectives
EF and EX. Here we have one exponential blowup for determinization at each level of
alternation. This is repeated ng;(p) times, yielding the given bound on the number of
states hence the overall complexity. O

The procedure described in [May97b] is non-elementary and today the known lower
bound is PSPACE-hard. Observe that computing a representation of Mod(¢) is more ge-
neral than just telling whether a given ¢ belongs to it. Observe also that our results allow
model-checking approches based on combinations of forward and backward methods (while
Theorem 6.2 only relied on the standard backward approach.)

7 Reachability under constraints

In this section, we consider reachability under constraints. Let C' C Act™ be a (word)

language over action names. We write ¢ S ¢ when t % t' for some w € C, and we say
that ¢’ can be reached from ¢ under the constraint C'. We extend our notations and write
Pre*[C](L), Post*[C](L), ... with the obvious meaning.

Observe that, even if we assume C' is regular, the problem of telling whether ¢ E), ie.
whether Post™[C](¢) is not empty, is undecidable for the PA algebra. This can be proved
by a reduction from the intersection problem for context-free languages as follows: Let X
be an alphabet and # some distinguished symbol. We use two copies a, @ of every letter
a in ¥ U {#}. Context-free languages can be defined in BPA (PA without ||), that is, for

w#
any context-free language L (resp. Lz) on X, we can define PA rules such that X; — iff

w € Ly (resp.Xs % iff w € Ly). These rules don’t overlap. We now introduce the regular

constraint C' = (apar+--- —I—a_n.ﬁ)*ﬁ.%. Then (X7 || X2) £ holds iff Ly N Ly # 0, which
i1s undecidable.
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The Regular Viewpoint on PA-Processes 17

In this section we give sufficient conditions over C' so that the problem becomes decidable
(and so that we can compute the C-constrained Pre* of a regular tree language).

Recall that the shuffle w || w' of two finite words is the set of all words one can obtain
by interleaving w and w’ in an arbitary way.

Definition 7.1. o {(C1,C1),...,(Cm,ChL)} is a (finite) seq-decomposition of C' iff for

all w,w' € Act™ we have
ww' € C iff (weCy,w' e for some 1 <i<m).

o {(C1,CY),...,(Cm,Cl)} is a (finite) paral-decomposition of C' iff for all w, w’ € Act*

we have
CNn(wl|lw)#@ iff (weCjuw el for some 1< i<m).

The crucial point of the definition is that a seq-decomposition of C' must apply to all
possible ways of splitting any word in C. It even applies to a decomposition w.w’ with
w = ¢ (or w' =€) so that one of the C;’s (and one of the C/’s) contains . Observe that the
formal difference between seq-decomposition and paral-decomposition comes from the fact
that w || w’, the set of all shuffles of w and w' usually contains several elements.

Definition 7.2. A family C = {C}, ... ,C,} of languages over Act is a finite decomposition
system iff every C' € C admits a seq-decomposition and a paral-decomposition only using C;’s

from C.

Not all C' C Act® admit finite decompositions, even in the regular case. Consider C' =
(ab)* and assume {(C1,C1),...} is a finite paral-decomposition. Then for every k, there is
a shuffle of ¢ and b* in C. Hence there must be a i s.t. a* € C;, and bk e C{k. Now if

i, = ixs then there there must exist a shuffle w” of a* and b*" with w” € C. This is only
possible if k = k’. Hence all i’s are distinct, contradicting finiteness.

A simple example of a finite decomposition system is C = {{w} | |w| < k}, i.e. the set
of all singleton languages with words shorter than k. Here the paral-decomposition of {w}
is {({w1}, {wi}), ... ({wm}, {w),})} where the w;’s are all subwords ? of w (and w} is the
corresponding remainder). This example shows that decomposability is not composability:
not all pairs from C appears in the decomposition of some member of C'.

More generally, for any linear weight function 6 of the form f(w) = > nilwl,, with

def

n; € N, for any k, k" € N, the sets Cg=p) = w | O(w) =k}, Cocry = ..., Clg>r), and
Co=k mod k') belong to finite decomposition system.

Assume C is a finite decomposition system. We shall show

Theorem 7.3. (Regularity)
For any regular L C Eps and any C € C, Pre*[C](L) and Post™[C](L) are regular tree
languages.

2A subword of w is any w’ obtained by erasing letters from w at any position.
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18 D.Lugiez, Ph.Schnoebelen

Ingredients for Ap,.+(cj:  We build Ap,+[c] in the same way as Ap, s+ but states contain
a new C' € C component.

States of Ap,,-c;: The states of Apyg e[y are 5-uples (40 € Qu,, 90 € Qu,,9a €
Quan,bE {true, false}, C € C).

Transition rules of Ap,+c;: The transition rules are:

type 0: all rules of the form 0 — (¢e, 91, qa, false, C) s.t. 0 bg qe, 0 Az qr, 0 A qa
and € € C'.

Ag
type 1: all rules of the form X — (¢o, 91, qa, false, C)s.t. X — ¢, X ALy qr, X A qa
and € € C.
type 2: all e-rules of the form (ga,q}, 45,0, C") — (qo,qr,9x, true,C) s.t. X 5 s is
a rule in A with X 2% qr, and a € C' for some C’ s.t. (C',C") appears in the

seq-decomposition of C'.

type 3: all rules of the form

(QQ,QL,QA,b,C) || (q/gaq/[,:q,lﬁablacl) — (qg || q/Q:qL || qILJQA || q/A:b\/bl:C”) s.t.
(C, C") appears in the paral-decomposition of C".

type 4a: all rules of the form
(QQ, qr, 494, b: C)(Q;aa qILJ q‘IA,fGZSG, C/) — (ngle‘a qL'qILJ QA'qIA: b: C)

type 4b: all rules of the form
(92,9L,9a,b,C) (45, 4L, 4a, V', C") — (495, 9097, 9a-9a, bV, C") s.t. qo is a final
state of Ay s.t. (C,C’) appears in the seq-decomposition of C".

Apost 4 .
Lemma 7.4. For anyt € Epy, t ARy (42,491,494, b,C) iff there is some u € Epp and

. Ag
some w € C such that u = t, u ALy qr, u FaZN qa, (b = false iff |w| =0) and t — q¢o.

Proof. Apost+[c] 18 Apost» equipped with a new component and the proof follows exactly
the lines of the proof of Lemma 5.3. We refer to this earlier proof and only explain how we
deal with the new C' components.

The (=) direction is as in lemma 5.3. The new observations in the 4 cases are:

1. k = 1: The type 0 and type 1 rules entail ¢ € C', so that we can take w = ¢.

2. k > 1 and the last rewrite step used a type 2 ¢-rule: Use the fact that w’ € C”
entail a.w’ € C.

3. k > 1 and the last rewrite step used a type 4 rule: Use the fact that C.C" C C".

4. k > 1 and the last rewrite step used a type 3 rule: Use the fact that w; € C and
wo € C' entail that there exists at least one shuffling w of w; and ws s.t. w € C”.
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The (<) direction is as in lemma 5.3. The new observations in the 5 cases are:
1. u = 0: The type 0 rules allow all C’s containing ¢.
2. u =X and p =0: Idem.

3. u= X and p > 0: Then the sequence has the form X 5 v’ % ¢t. Now if w = a.w’ € C,
there must be a (C’,C") in the seq-decomposition of C' s.t. a € C' and w' € C”. So
that there is a type 2 rule (..., gy, b, C") — (... ,¢x, true,C) we can use.

4. u = uj.us: Here u; 3 t1, usg B¢y and wiwaw € C. If 8, g Ly then wy = ¢, wy € C
and we have the type 4a rule we need. Otherwise there is a pair (C7,C2) in the seq-
decomposition of C' s.t. w; € C; (i = 1,2). This pair gives us the type 4b rule we
need.

5. u = uy || ug: Here uy t t1, us 28 ¢, and w € C is some shuffle of w; and wy. Therefore
there is a (C,C4) in the paral-decomposition of C' s.t. w; € C; (¢ = 1,2). This pair
gives us the type 3 rule we need.

O

If we now let the final states of Ap,s+[c) be all (¢o,qr,9a,b,C) s.t. qp is a final state of
AL, then Ap, (] accepts a term t iff £ € Post™[C](t). (The set of final states can easily be

adapted so that we recognize Post™[C](L).)

Ingredients for Ap,.+[c): Same as in the construction of Ape+, with an additional C' € C
component.

States of Ap,.+: A state of Apye+ is a 4-tuple (gz € Qa,,q9L € Qa,,b € {true, false}, C €
Q).
The final states are all (¢o, g1, b, C;) s.t. ¢ is a final state of Ap and C; the constraint
to satisfy.

Transition rules of Ap,.«: The transition rules of Ap,.+« are defined as follows:

type 0: all rules of the form 0 — (¢s, qr, false, C) s.t. 0 lg ¢e, 0 Az qr and € € C.

type la: all rules of the form X +— (ge, gz, true, C) s.t. there exists some u € Post™ [C](X)
with u ,ﬂ) e and u Az qr.

type 1b: all rules of the form X — (¢o, g1, false, C) s.t. X ﬁ> qo, X A qr and ¢ € C.

type 2: all rules of the form
(92, 90,0,C) || (¢%,495,0,C") — (go || 4,91 || 47,6 Vb ,C") s.t. (C,C") appears in
the paral-decomposition of C”.
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type 3a: all rules of the form
(92, 90,0,C) (¢4, 47,0, C') — (4o.9%, 9097, bV V', C") s.t. gz is a final state of Ay
and (C, C") appears in the seq-decomposition of C”

type 3b: all rules of the form
(QQ, qL, b: C)(Q;a: q/LafGZSGa C/) — (ng;aa qL'q/L: b: C)

Pre*[T]

A
Lemma 7.5. For anyt € Epa,t — (qo,q1,b, C) iff there is some u € Epp and some
Ag .
w € C such thatt 5 u, u ™ qo, u Az qr, and (b= false iff |lw|=0).

Proof. Apye+[q) is Aprer equipped with a new component and the proof follows exactly the
lines of the proof of Lemma 5.3. We refer to this earlier proof and only explain how we deal
with the new C' components.

1.t =0 or t = X: The conditions on the C' component for the existence of rules of type 0,
la and 1b agree with the statement of the lemma.

2.t =t1.ta: (=) Now, for i = 1,2, we have ¢; ey (¢%, ¢, b', C?) and there is a type 3

rule (...,CY).(...,C%) = (..., C). Also, the ind. hyp. gives t; = u; (i = 1,2) with
wy € O, In the type 3b case, wy € C. In the type 3a case, we use C1.C? C C.

(«<): Here we have either (1) ug = ¢3 and ¢, 5 uq, or (2) uy € Ly and t;.19 Doty 8
u1.us with w = wi.ws.

In the first case we apply the induction hypothesis with C itself on ¢; and some C’
containing ¢ on ts, then we can use a type 3b rule. In the second case, there must be
a pair (C!, C?) in the seq-decomposition of C, with w; € C* and we just have to use
the ind. hyp. and a type 3a rule.

3.t =1t || t2: This case is similar to the previous one. The (<) direction uses the pair
accouting for wy, ws in the paral-decomposition of C. The (=) direction uses the
crucial fact that whenever t; =% w; for i = 1,2, we have t; || 2 5wy || ug for any
shuffling w of w1 and ws, in particular for the w that C' must contain.

O

7.1 Applications to model-checking

The above results let us apply the model-checking method from section 6 to an extended
EF logic where we now allow all (C')¢ formulas for decomposable C. The semantics is given

by Mod({(C)¢) = Pre*[C](Mod(y)).
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Decomposability of C' is a quite general condition. It excludes the undecidable situations
that would exist in the general regular case and immediately includes the extensions propo-

sed in [May97b].

Observe that it is possible to combine decomposable constraints already in the model-
checking algorithm: when C' € C and C’ € €' are decomposable, we can deal with (C'N
C"Ye directly (i.e. without constructing a finite decomposition system containing C' and C")
because it is obvious how to extend the construction for Ap,.+[c) to some Ap,c+[c /] where
several C' components are dealt with simultaneously.

We can also deal with (C'U C")¢ and (C.C")¢ directly since Pre*[C' U C'](L) and
Pre*[C.C"|(L) are Pre*[C](L) U Pre*[C'](L) and Pre*[C](Pre*[C"](L)) for any C,C’" and
L.

8 Structural equivalence of PA terms

In this section we investigate the congruence = induced on PA terms by the following
equations:

(Cp) Lt = 1|t _

() e = e ey W L=t
(A) )" = (') () 01 =1 (Na) 0l

This choice of equations is motivated by the fact that several recent works on PA (and
extensions) only consider processes up-to this same congruence. Our techniques could deal
with variants.

It is useful to explain how our definition of PA compares with the definition used
in [May97c, May97b]. We consider a transition system between terms from Eps. The
terms Mayr considers for his transition system can be seen as equivalence classes, modulo
=, of our Epy terms. Write [t]z for the set {¢#' | ¢ = t'}. The transition relation used by
Mayr coincides with a transition relation defined by

[tz S uz & I eltlz, v € [ulzst. t’ S 4)
In the following, we speak of “PA=" when we mean the transition system one obtains with
=-classes of terms as states, and transitions given by (4).

Our approach is more general in the sense that we can define the other approach in
our framework. By contrast, if one reasons modulo = right from the start, one loses the
information required to revert to the other approach.

For example, the reachability problem “do we have t = u ?” from Theorem 4.7 asks for
a very precise form for u. The reachability problem solved in [May97c] asks for u modulo =.
In our framework, this can be stated as “given ¢ and u, do we have ¢/ 5 ' for some t' =t
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and v’ = u 7’ (see below). In the other framework, it is impossible to state our problem.
(But of course, the first motivation for our framework is that it allows the two regularity
theorems.)

The rest of this section is devoted to some applications of our tree-automata approach
to problems for PA=. The aim is not exhaustivity. Rather, we simply want to show that
our framework allows solving (not just stating) problems from the other framework and its
variants.

8.1 Structural equivalence and regularity

(A)), (C))) and (A})) are the associativity-commutativity axioms satisfied by . and ||. We call
them the permutative arioms and write t —p u when t and ¢’ are permutatively equivalent.

(N71) to (Na) are the axioms defining 0 as the neutral element of . and ||. We call them the
simplification azioms and write ¢ \, u when u is a simplification of ¢, i.e. u can be obtained
by applying the simplification axioms from left to right at some positions in ¢. Note that
N\ is a (well-founded) partial ordering. We write /" for (\,)~!. The simplification normal
form of t, written t|, is the unique u one obtains by simplifying ¢ as much as possible (no
permutation allowed).

Such axioms are classical in rewriting and have been extensively studied [BN98]. =
coincide with (=p U \y U )*. Now, because the permutative axioms commute with the
simplification axioms, we have

t=t iff t N\ u=pu /t' for some u,u’ iff tl =pt'l. (5)

This lets us decompose questions about = into questions about =p and questions about “\.
We start with =p.

Lemma 8.1. For any t, the set [t]—, = {u |t =p u} is a reqular tree language, and an

automaton for [t]=, needs only have m.(m/2)! states if |[t| = m.

Proof. (Sketch) This is because [t]=, is a finite set with at most (m/2)! elements. (The
exponential blowup cannot be avoided.) O

The simplification axioms do not have the nice property that they only allow finitely
many combinations, but they behave better w.r.t. regularity. Write [L]\, for {u | t
u for some t € L}, [L], for {u | u \ t for some t € L}, and [L]] for {t] |t € L}.

Lemma 8.2. For any regular L, the sets [L] /, [L]\,, and [L]| are regular tree languages.
From an automaton Ay, recognizing L, we can build automata of size O(|A|) for these three
languages in polynomial time.

Proof. 1. [L]: uisin [L], iff u is some t € L with additional 0’s that can be simplified
out. Hence an automaton accepting [L] is obtained from .47 by adding a new state g
for the subterms that will be simplified. We also add rules 0 — ¢q, qo || g0 — o, and
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qo-qo — qo for accepting these subterms, and, for any ¢ in Ay, rules q.q0 — ¢, qo.¢ — ¢,
q ]| g0 — ¢ and qq || ¢ — ¢ for simulating simplification.

2. [L]\: uis in [L]\, iff u is some t € L where some 0’s have been simplified. A simple
way to obtain an automaton for [L]\, is to synchronize the automaton Ay, accepting L with
the complete automaton .Ag recognizing terms built with 0, . and || only. Ag has only two
states: ¢° and ¢7°.

Once the two automata are synchronized, we have t — (¢, ¢’) iff ¢ Az q and t Aoy q.
We simulate simplification of nullable terms with additional e-rules. Namely, whenever there
is a rule (g1, ¢}) || (g2.95) — (g3.95) with ¢4 = ¢°, we add an e-rule (g1, ¢}) — (g3.95). We
add a symmetric rule if ¢} = ¢° and do the same for . instead of ||.

Now a routine induction on the length of derivations shows that s — (¢,¢') iff It € L

s.t.t\,sandhi)q.

3. [L]}: The simplest way to see regularity is to note that [L]] is [L]\, N [Epall- O

Note that for a regular L, [L]=, and [L]= are not necessarily regular [GD89]. However we
have

Proposition 8.3. For any t, the set [t]= is a regular tree language, and an automaton for
[t]= needs only have m.(m/2)! states if |t| = m.

Proof. Combine (5) with lemmas 8.1 and 8.2. O

8.2 Structural equivalence and behaviour

Seeing terms modulo = does not modify the observable behaviour because of the following
standard result:

Proposition 8.4. = is a bisimulation relation, i.e. for all t = t' and t = u there is a
t' % u' with u = v’ (and vice versa).

The proof is standard but tedious. We shall only give a proof sketch.

Proof. For any single equation ! = 7 in the definition of =, we show that the set R =
{(lo, 7o)} of all instances of the equation is a bisimulation relation. A complete proof of this
for (A)) takes the better part of p 95 of the book [Mil89] and the other equations can be
dealt with similarly, noting that IsNil() is compatible with =. Then there only remains to
prove that the generated congruence is a bisimulation. This too is standard: the SOS rules
for PA obey a format ensuring that the behaviour of a term depends on the behaviour of its
subterms, not their syntax. [l

We may now define a new transition relation between terms: ¢ = ' iff t = u = u’ = ¢’ for
some u,u’. This amounts to the “[t]=z = [u]=” from (4) and is the simplest way to translate
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problems for PA= into problems for our set of terms.

We adopt the usual abbreviations =, =, £ for w € Act™, k € N, etc.
Proposition 8.5. For any w € Act®, t = u iff t = u’ for some v’ = u.

Proof. By induction on the length of w, and using Proposition 8.4. |

8.3 Reachability modulo =

Now it is easy to prove decidability of the reachability problem modulo =: ¢ = u iff Post* N
[u]=z # @. Recall that [u]= and Post™(t) are regular tree-languages one can build effectively.
Hence it is decidable whether they have a non-empty intersection.

This gives us a simple algorithm using exponential time (because of the size of [u]=).
Actually we can have a better result 3:

Theorem 8.6. The reachability problem in PA=, “given t and u, do we have t = u ?7, is
in NP.

Proof. NP-easiness is straightforward in the automata framework: We have ¢ = u iff t = o’
for some v’ s.t. v’} =p u). Write u” for u'| and note that |u”| < |u|. A simple algorithm
is to compute ul, then guess non-deterministically a permutation u”, then build automata
Ay for [u"]\, and A; for Post™(t). These automata have polynomial-size. There remains to
checks whether .4; and A5 have a non-empty intersection to know whether the required u’
exists. |

Corollary 8.7. The reachability problem in PA= is NP-complete.

Proof. NP-hardness of reachability for BPP’s is proved in [Esp97] and the proof idea can be
reused in our framework. We reduce 3SAT to reachability in PA=. Consider an instance P
of 3SAT. P has m variables and n clauses, so that it is some A]_; \/?:1 €i,jTr; ; Where, for
every i,j, 1 <r;; < mand ¢; ; € {+,—}. We define the following Ap:

(R1) X, — X for 1 <r<mande € {+,-},
Ap =< (R2) X0 for 1 <r<mandeé€{+,-},
(R3) Xih = Gy || X5 for1<i<nand1<j<3.

(Note that |Ap| = O(|P]).) The (R1) rules pick a valuation v for the X,’s, the (R3) rules

use v to list satisfied clauses, the (R2) rules discard unnecessary elements. Finally

(X || (X2 ][ G 1] X)) = (CLI(Co || (- || Ca)...)) iff P is satisfiable.

Other applications are possible, e.g.:

3First proved in [May97c]
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Proposition 8.8. The boundedness problem in PA= is decidable in polynomial-time.

Proof. [t]= can only reach a finite number of states in PA= iff ¢ can only reach a finite
number of non-= terms in PA. Now because the permutative axioms only allow finitely
many variants of any given term, Post™(L) contains a finite number of non-= processes iff

[Post™(L)]| is finite. O

8.4 Model-checking modulo =

The model-checking problem solved in [May97b] considers the EF logic over PA=. Translated
into our framework, this amounts to interpret the temporal connectives in terms of = instead
of —: if we write Mod=(yp) for the interpretation modulo =, we have

Mod=((C)p) = {t |t 2 u for some u € Mod=(y¢) and some w € C}.

Additionally, we only consider atomic propositions P compatible with =, i.e. where t | P
and t = u imply u = P.

Model-checking in PA= is as simple as model-checking in PA:
Lemma 8.9. For any EF-formula ¢ we have Mod=(p) = Mod(p) = [Mod(¢)]=.

Proof. By structural induction over ¢, using Prop. 8.5 and closure w.r.t. = for the (C)¢
case. |

The immediate corollary is that we can use exactly the same approach for model-checking
in PA with or without =.

Conclusion

In this paper we showed how tree-automata techniques are a powerful tool for the analysis
of the PA process algebra. Our main results are two general Regularity Theorems with
numerous immediate applications, including model-checking of PA with an extended EF
logic.

The tree-automata viewpoint has many advantages. It gives simpler and more general
proofs. It helps understand why some problems can be solved in P-time, some others in
NP-time, etc. It is quite versatile and many variants of PA can be attacked with the same
approach.
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