
Automata and Coinduction
(An Exercise in Coalgebra)

J.J.M.M. Rutten

CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands*

Abstract. The classical theory of deterministic automata is presented
in terms of the notions of homomorphism and bisimulation, which a.re the
cornerstones of the theory of (universal) coalgebra. This leads to a trans
parent and uniform presentation of automata theory and yields some new
insights, amongst which coinduction proof methods for language equal
ity and language inclusion. At the same time, the present treatment of
automata theory may serve as an introduction to coalgebra.

1 Introduction

" ... in this case, as in many others, the process gives the mini
ma.I machine directly to anyone skilled in input differentiation.
The skill is worth acquiring · · · "

- J.H. Conway [Con71, chap. 5]

The classical theory of deterministic automata is presented in terms of the no
tions of homomorphism and bisimulation, which are the cornerstones of the
theory of (universal) coalgebra. This coalgebraic perspective leads to a transpar
ent and uniform theory, in which the observation that the set C of all languages
is a final automaton, plays a central role. The automaton structure on C is de
termined by the notion of (input) derivative, and gives rise to two new proof
principles: 1. a coinduction proof method in terms of bisimulations for demon
strating the equality of languages, which is complete and, for regular languages,
effective; and 2. a coinduction proof method in terms of simulations for proving
language inclusion.

The paper is intended to be self-contained, and no prior knowledge of coal
gebra is presupposed. Although the development of our theory has been entirely
dictated by a coalgebraic perspective, no explicit reference to coalgebraic notions
or results will be made (apart from Section 12). In this way, we hope that this
paper may also serve as an introduction to coalgebra.

Sections 2 through 11 deal with (complete) deterministic automata, regular
languages, minimization, and Kleene's theorem. Only after these sections, the
connection between automata theory and coalgebra is discussed in detail, in

* Email: janrCcvi.nl, URL: wvv .cvi.nl/....,janr.

195

Section 12. (For readers that do have some background in category theory and
coalgebra, it may be instructive to read Section 12 immediately after having read
Section 2.) In the remaining Sections 13 through 15, the coalgebraic approach
is further illustrated by the treatment of so-called partial automata, which have
transition functions that may be partial. Of special interest is an automaton of
languages with infinite words. References to the literature have been collected
in Section 16.

2 Deterministic automata

Let A be a (possibly infinite) set of input symbols. A (deterministic) automaton
with input alphabet A is a triple S = (S, o, t) consisting of a set S of states,
an output function 0 : s -t 2, and a transition function t : s -t sA. Here 2
denotes the set {O, 1 }, and SA is the set of all functions from A to S. The output
function o indicates whether a state s in S is terminating2 (o(s) = 1) or not
(o(s) = 0). The transition function t assigns to a states a function t(s): A -t S,
which specifies the state t(s)(a) that is reached after an input symbol a has been
consumed. We shall sometimes write s.J.. for o(s) = 1, st for o(s) = 0, and s-.!:...+s1

for t(s)(a) = s'.
Contrary to the standard definition, in the present setting both the state

space S of an automaton and the set A of input symbols may be infinite. If both
S and A are finite then we speak of a finite automaton. Another difference with
the standard approach is that our automata do not have an initial state. (See
Section 12 for a detailed motivation of the present definition of automaton.)

A bisimulation between two automata S = (S, o, t) and S 1 = (S', o', t') is a
relation R ~ S x S' with, for all s in S, s' in S', and a in A:

. / { o(s) = o'(s1) and
if sRs then t(s)(a) R t1 (81)(a).

A bisimulation between S and itself is called a bisimulation on S. Unions and
(relational) compositions of bisimulations are bisimulations again. We writes,...,
s1 whenever there exists a bisimulation R with s R s'. This relation ,...., is the
union of all bisimulations and, therewith, the greatest bisimulation. The greatest
bisimulation on one and the same automaton, again denoted by....,, is called the
bisimilarity relation. It is an equivalence relation.

The only thing one can 'observe' about a state of an automaton is whether it
is terminating or not. One can also perform 'experiments', by offering an input
symbol which then leads to a new state. Of this new state, we can of course
observe again whether it is terminating or not. Two states that are related by
a bisimulation relation are obseroationally indistinguishable in the sense that 1.
they give rise to the same observations, and 2. performing on both states the
same experiment will lead to two new states that are indistinguishable again.

2 Sometimes also called accepting or final.

196

A homomorphism between S and S' is any function f : S -+ S' with, for all
sin S, o(s) = o'(f(s)) and, for all a in A, f(t(s)(a)) = t'(f(s))(a).

An automaton S' = (S', o', t1} is a subautomaton of S = (S, o, t} if S' ~ S
and the inclusion function i : S' -+ S is a homomorphism. Given (S, o, t} and S',
the functions 0 1 and t' in that case are uniquely determined. For a state s in S,
(s} denotes the subautomaton generated by s: it is the smallest subautomaton
of S containing s, and can be obtained by including all states from S that are
reachable via a finite number of transitions from 8.

Homomorphisms map subautomata to subautomata: for a homomorphism
f: S--+ T and subautomaton S' ~ S, f(S') is a subautomaton of T. Fors in S,
moreover, f((s)) = (f(s)).

The notions of automaton, homomorphism and bisimulation are closely re
lated: a function f : S --+ S' is a homomorphism if and only if its graph re
lation { (8, /(8)) I s E S} is a bisimulation. And bisimulations are themselves
automata: if R is a bisimulation between S and S', then OR : R -+ 2 and
tR: R-+ RA, given for (s,s') in Rand a in A by OR((s,s')) = o(s) = o'(s') and
tR((s,s'})(a) = (t(s)(a), t'(s')(a)), define an automaton (R,oR, tR}·

For an example, let A = {a, b} and consider the automata S = { 81, s2, 83}
and T = { t1, t 2}, with transitions and termination as specified by the following
tables:

a b
81 82 83 t
82 82 83 .}

83 s2 S3.}

a b
t1 t2 t2 t
t2 t2 t2 +

where, for instance, the second row of the first table denotes 82 ~ s2, s2 ~
s3, and s2.}. Then { (s1, s1), (s2, s2), (s3, 83)} and { (82, s3), (s2, s2), (s3, 83}} are
bisimulations on S; { s2, 83} = (s2) = (83} is a subautomaton of S; and f : S-+ T
mapping s1 to ti, and s2 and 83 to t2 is a homomorphism.

3 Languages

Let A* be the set of all finite words over A. Prefixing a word w in A* with
an input symbol a in A is denoted by aw. Concatenation of words w and w'
is denoted by ww'. Let c denote the empty word. A language is any subset of
A*. The language accepted by a state 8 of an automaton S = (S, o, t) is ls(8) =
{a1 ···an Is~ s1 ~···~Sn.!.}, where 81 = t(s)(a1) and 8i+l = t(8;)(ai),
for 1 < i < n.

Let £ = {L I L ~ A*} be the set of all languages. For a word w in A*, the
w-derivative of a language L is Lw = { v E A* I wv E L}. A special case is the
a-derivative La = { v E A* I av E L }, for a in A, which can be used to turn the
set£ of languages into an automaton (£, o.c, t.c), defined, for L EC and a EA,
by

{ lifc:EL
o.c(L) = 0 if c: ~ L and: t.c(L)(a) =La.

197

That is,
L.!. iff c EL, and: L ~ L' iff L' =La.

This automaton has the pleasing property that the language accepted by a state
L in C is precisely L itself. This will be proved in Section 7, but is already
illustrated by the following example. For L = {a, ab, ac}, there are the following
transitions:

{a,ab,ac} ~ {c,b,c}.!. ~ {c}.!.,

where ~ means that there is both a b and a c transition, and where we have

omitted transitions leading to the empty set, such as {a, ab, ac} -4 0. It follows
that lc(L) = L.

If the behaviour of a state is the language it accepts, then states in ,C could
be said to 'do as they are'. For them, in other words, 'being is doing'.

4 Coinduction

The automaton ,C = (£, oc, tc.} of languages satisfies, for all languages K and
L,

if K ,..., L then K = L.

(The converse trivially holds.) This gives rise to the following coinduction proof
principle: in order to prove the equality of languages K and L, it is sufficient
to establish the existence of a bisimulation relation on ,C that includes the pair
(K,L).

The above implication follows from the fact that for all words w in A* of
length n and for all languages K and L with K ,..., L: if w E K then w E L,
which we show next by induction on n. First note that a bisimulation on ,C is
any relation R such that for all K and L with K R L, K .!. iff L,J.., and for any a in
A, Ka R La. Now consider Kand L with K ""L. Because,.., is a bisimulation,
c E K implies c E L. Next consider a word w = aw', of length n + 1, in K.
Because K ,..., L also Ka "" La. Because w' E Ka and the length of w' is n, it
follows from the inductive hypothesis that w' E La. Thus w E L. This shows
that K"" L implies K ~ L. Since K,..., L implies L ""K, also L ~ K.

5 Regular expressions

Let the set R of regular expressions be given by the following syntax:

E ::= 0 I 1 I a E A I E + F I EF I E*

Let the funcion >. : R-+ C, which assigns to an expression E the language >.(E)
it represents, be defined by induction on the structure of E:

,\(0) = 0
,\(1) = {c}

198

,\(a)= {a}

,\(E + F) = ,\(E) + >.(F)

,\(EF) = ,\(E),\(F)

,\(E*) = ,\(E)*,

where on the right hand side of these equations the following so-called regular
operators are used: for languages K and L,

K+L=KUL

KL = { vw I v E K and w E L}

K*= LJ Kn,
n;::o

with K 0 = { c:} and Kn+l = K Kn. Languages L = >.(E) are called regular
languages. Whenever convenient and harmless, we shall simply write E for A(E).
Notably, 0, 1, and a will then denote the singleton sets mentioned above.

The following rules for calculating the a-derivative La of a language L are
easily verified:

Oa = 0

la= 0

b ={lifb=a
a Oifb#:a

(K+L)a =Ka+La

{ KaL if Kt
(KL)a = KaL+La if K.j..

(K"')a = KaK*

There are also the following rules for termination: Ot, 1.j.., at, K + L.j.. iff K .j, or
L..(.., KL..(.. iff K -1- and L.J,, K* +. All these rules will be of great help when proving
the equality of languages by means of coinduction, as we shall see in Section 6.

6 Proofs by coinduction

The use of coinduction is illustrated by first proving some of the familiar laws
for the regular operators, and next some equalities of concrete expressions. We
emphasize that the algebraic completeness of these laws in not the issue here.
They merely serve as examples, and some of them will be used as lemma's in
subsequent proofs.

The strength of the coinduction proof principle is that it works for any valid
equality, and that it works in a uniform way: first define a relation consisting
of the pair(s) of languages that you want to prove equal; then look at all pos
sible transitions and continue to add pairs of resulting languages if they were
not present yet. The original equality holds if and only if this process yields a

199

bisimulation. For regular languages, the coinduction proof principle is effective:
If the languages with which one starts are regular, then the construction of a
bisimulation relation terminates in finitely many steps. This will be proved in
Section 8.

Some laws

All the familiar laws for the regular operators can be proved by coinduction.
Some of them are easily proved directly on the basis of the definitions of the
regular operators, others are less straightforward. Below some of the following
will be proved by coinduction:

K+O= K

K+K= K

K+L=L+K

(K + L) + M = K + (L + M)

lK = K
Kl= K

KO= 0

OK= 0

(KL)M = K(LM)

1 + LL* = L*

K(L+M) = KL+KM

(L+M)K = LK+MK

Lt A (K = LK + M) =*- K = L* M
(K + L)* = K*(LK*)*

(K + L)* = (K* L)* K*

As a consequence of (4) and (9), brackets can often be omitted.

(1)
(2)

(3)
(4)
(5)

(6)

(7)

(8)
(9)

(10)
(11)

(12)
(13)
(14)
(15)

Although all of (1)-(9) are immediate from the definitions, we prove as an
example equation (1) by coinduction. We show that

R = { (K + 0, K) I K E .C}

is a bisimulation; then (1) follows by coinduction. First note that (K + 0).!. if
and only if K,i.. And for any a in A,

(K + O)a

=Ka+ Oa

=Ka+O

RKa·

200

Laws (2)-(9) can be proved similarly. Equality (10) follows by coinduction from
the fact that

{(1 + LL"', L*) I LE£} u {(L,L) I LE£}

is a bisimulation. For (11), one could try to prove that the relation { (K(L +
M), KL+ KM} I K, L, M E £} is a bisimulation. It turns out to be convenient
to consider the (by (1)) larger set

R= {(K(L+M) +N, KL+KM +N) I K,L,M,N E £}

instead. (Cf. the strengthening of the inductive hypothesis in an inductive argu
ment.) We show that R is a bisimulation. Consider a in A and a pair (K(L +
M) + N, KL+ KM+ N} in R. First note that K (L + M) + N terminates if and
only if KL+KM +N does. Suppose that K.!. (the case that Kt is similar and
a little easier). Then

(K(L + M) + N)a

= Ka (L + M) +La +Ma +Na

R KaL+ KaM +La +Ma +Na
= KaL +La+ KaM +Ma+ Na [by (3) and (4)]

= (KL)a + (KM)a +Na
= (KL+KM+N)a,

which concludes the proof that Risa bisimulation. Now (11) follows by coin
duction. Similarly for (12). For (13), let K, L, and M be expressions with Lt
and K = LK + M. Then K = L * M follows by coinduction from the fact that
{(UK+ V, UL* M + V} I U, V E ..C} is a bisimulation on .C. Equations (14) and
(15) follow from the fact that {(M(K + L)*, MK*(LK"')*) I K, L, ME .C} and
{(M(K+L)*, M(K*L)"'K"') I K,L,ME.C} arebisimulations.

Some regular languages

Below the language J..(E) of a regular expression E will be simply denoted by E
itself. Similarly, Ea denotes J..(E)a· Let A= {a,b}. As an example, we want to
show

[(b"a)*ab"]* = 1 + a(a + b)* +(a+ b)*aa(a + b)*. (16)

Let Ei = [(b*a)"'ab"]* and Fi = 1 + a(a + b)* +(a+ b)*aa(a + b)*. Using the
calculation rules for a-derivatives of Section 5, the following tables are easily
computed:

a b a b
Ei Bi E4.!. F1 F2 F4 .!.
Ei E2 Ea.!. F2 F2 Fa.!.
Es E2 Ea.!. Fa F2 Fa.!.
E4 E5 E4 t F4 F5 F4 t
E& Bi E4 t Fs F2 F4 t

where

201

E2 = [(b*a)*ab* + b*]E1 ,

E3 = [(b*a)(b*a)*ab* + b*]E1 ,

E4 = [(b*a)(b*a)*ab*]E1 ,

E5 = [(b*a)*ab*]E1 ,

F2 =(a+ b)* +(a+ b)*aa(a + b)* + a(a + b)*,

F3 =(a+ b)* +(a+ b)*aa(a + b)*,

F4 =(a+ b)*aa(a + b)*,

F5 =(a+ b)*aa(a + b)* + a(a + b)*.

As a consequence, T = { (Ei, Fi) I 1 :::; i :::; 5} is a bisimulation. Hence Ei = Fi,
by coinduction, for 1 :::; i:::; 5. This proves (16).

It follows from the tables above that { (E2 , E3}, (E2 , E2), (E3 , E3)} is a bisim
ulation as well. Thus E2 = E3 , by coinduction, and similarly F2 = F3 • There is,
therefore, some redundancy in the representation of the bisimulation T, which
turns out to consist of only 4 different pairs. The interesting point of this obser
vation is that this knowledge was not needed for the conclusion above that T is
a bisimulation.

Because ((a+b)*)a = (a+b)* and ((a+b)*)b = (a+b)* imply that { (F2 , (a+
b)*), (Fa, (a + b)*)} is a bisimulation, we also have, as another example, the
following equalities:

E2 = Ea = F2 = F3 = (a + b) *.

Inequalities

The coinduction proof method is clearly also of help in proving that two lan
guages are different. In order to prove E 1 =j:. E 2 in the example above, it is suf
ficient to show that there is no bisimulation relation containing (E1 ,E2). Now
the assumption that (E1 , E2) is in some bisimulation leads to a contradiction,
since (E1)b = E4 and (E2)b = E3, but (E4)t and (E3)..l-.

7 Finality and minimization

We can use coinduction to prove that the automaton £ is final among all au
tomata, i.e., for any automaton S = (S, o, t) there exists a unique homomor
phism from S to£: the existence follows from the observation that the function
ls : S-+ £(which assigns to a state the language it accepts) is a homomorphism.
For uniqueness, suppose f and g are homomorphisms from S to£. The equality
off and g follows by coinduction from the fact that R = { (! (s), g(s)) I s E S} is a
bisimulation on£, which is proved next. Because f and g are homomorphisms, we
have, for any sin S, f(s)+ iff s+ iff g(s)..j... For any a in A, f(s) ~ Liff L = f(s'),

202

where s' = ts(s)(a), and similarly g(s) ~ g(s'). Because (f(s'),g(s')) is in R,
this shows that R is a bisimulation.

The unique homomorphism ls : S -t .C has the property that it identifies
two states in S precisely when they are bisimilar: for all s and s' in S, s "' s'
if and only if ls(s) = ls(s'). From left to right, this follows by coinduction from
the general property of homomorphisms that for any bisimulation R on S the
set {(ls(s),ls(s')) I sRs'} is a bisimulation on .C. For the converse, note that
{ (s, s') I ls(s) = ls(s')} is a bisimulation on S.

By the finality of .C, the identity function is the only homomorphism from .C
to itself. It follows that the language accepted by a state L in .C is L itself, as
was announced in Section 3.

The subautomaton (L) ~ .C generated by L, which is given by

(£) = {Lw I WE A*},

is moreover a minimal automaton for L in the following sense. Let S be any
automaton and s a state in S such that the language accepted by s is L. That
is, ls(s) = L, where ls : S -t .C is the (unique) homomorphism from S to£ that
assigns to each state the language it accepts. Because ls is a homomorphism,
ls((s)) = (ls{s)), whence ls{(s)) = (L). Therefore the size of (L) is at most that
of S. Since Sand s were arbitrary, (L) is of minimal size.

It follows that for any automaton S and state s in S, the minimization of
the automaton (s) is (ls(s)). Another consequence is that

L is accepted by a finite automaton iff

(L) is a finite subautomaton of .C. (17)

This is in fact equivalent to the following classical theorem by N erode and My hill.
Let RL be an equivalence relation on A* defined, for v and w in A*, by

vRLw iff 'Vu EA*, vu EL~ wuEL.

The index of RL is defined as the number of its equivalence classes. The theorem
of Nerode and Myhill now says that

L is accepted by a finite automaton iff

RL is of finite index. {18)

The equivalence of (17) and (18) follows from the observation that the corre
spondence between equivalence classes of RL and elements of (L), given for w
in A* by [w]RL ~ Lw, is bijective: for v and win A*,

[v]RL = [w]RL
iff v RL w

iff'v'u EA*, vu EL <:==>- wu EL

iff'v'u EA*, u E £ 11 <===>- u E Lw

iff L 11 = Lw.

203

8 Kleene's theorem

Kleene's celebrated theorem states that a language is regular if and only if it
is accepted by a finite automaton. In view of (17), Kleene's theorem can be
expressed in terms of subautmnata of the automaton £ of languages, as follows.
Let A be finite. For any language L ~A*,

L is regular iff (L) is a finite subautomaton of C. (19)

As a corollary of (19), it will be shown below that the coinduction proof principle
is effective for regular languages (as was announced in Section 6).

In order to prove (19) from left to right, consider >.(E), for some regular
expression E. One can show by induction on the syntactic structure of E that
(>.(E)) is finite. Consider, for instance, EF and assume that (>-.(E)) and (>.(F))
are finite. It follows from the rules for a-derivatives that the general format of
a state reachable from >-.(EF) is K' M + M' + · · · + M", for K' in (>.(E)) and
M', ... , M" in (>.(F)). Using (some of) the laws (1)-(8), it follows from the
inductive hypothesis that (>.(EF)) ~ {K 1 M + M 1 + · · · + M" I K' E (>-.(E))} is
finite. The other cases are dealt with similarly.

Conversely, we have to show that for a language L for which (L) is finite,
there exists a regular expression E with >.(E) = L. Rather than proving this
part of the theorem for arbitrary languages, we consider an example that can be
easily generalized to the general case. The following law, which can be readily
proved by coinduction, will be helpful: If A = {a, ... , b} then for all languages
L,

L _ { aLa + · · · + bLb + 1 if L..j..
- aLa + · · · + bLb if Lt. (20)

For an example, let A = {a,b} and Kin ,C with (K) = {K,L,M,N}, for
languages L, M, and N, with transitions and termination as specified by the
following table:

a b
K L Mt
L L M_j..
M M N_j..
N N Nt

By (20), there are the following equations:

K=aL+bM

L=aL+bM + 1

M=aM+bN+l

N=aN+bN

Because N = aN + bN = (a+ b)N + 0, law (13) implies N = (a+ b)*O = 0.
Thus M = aM + 1 which, again by (13) gives M = a*. Similarly it follows that

204

L = a*(ba* + 1) and K = aa*(ba* + 1) + ba*, which proves that K is regular,
indeed. This completes the proof of (19).

A consequence of (19) is that the coinduction proof principle is effective for
regular languages).(E) and >.(F): In order to construct a bisimulation relation
that includes the pair ().(E), .X(F)), one has to add all pairs of states that are
(pair-wise) reachable from >.(E) and >.(F). Since both (>.(E)} and (.X(F)) are
finite, by (19), it follows that in finitely many steps, either such a bisimula
tion is constructed (whence >.(E) = >.(F)) or the conclusion is reached that no
bisimulation for .A(E) and .X(F) exists (whence >.(E) ¥:- .X(F)).

Note that the use of the simplification laws (1)-(8) is crucial for termination;
for instance, they are needed to conclude that all languages occurring in the
sequence

>.(a*) ~ lA(a*) ~ O>.(a*) + lA(a*) ~ O>.(a*) + O>.(a*) + 1>.{a*) ~ · · ·

are equal, and hence that (>.(a*)) consists of only one state.

9 N onregular languages

An immediate consequence of Kleene's theorem in the formulation of (19) above
is that in order to show that a language Lis nonregular, it is sufficient to prove
that (L) is not finite. This method is equivalent, by the equivalence of (17) and
(18), to the traditional approach of showing that RL is of infinite index. Here
are three classical examples, in which the following shorthand will be used. For a
language Kand k ;::: 0, let the language Kk be the resulting state after k a-steps:
Kk =Ka"·

Let L = {anbn I n ~ O}, where as usual a0 = 1 and an+l = aan. Clearly,
Lk = {an-kbn I n ~ k} and thus Lk and Lk' are different whenever k and k'
are. This shows that (L} is infinite, hence L is nonregular.

For a second example, consider M = { w E A* I lta (w) = ltb (w)} consisting
of all words with an equal number of a's and b's. All languages Mk are different
because for any n and k, the word bn is in Mk iff k = n. Thus (M} is infinite
and M is nonregular.

Finally, let N = {an2 In;?: O}. Note that for any n the length of the shortest
word in Nn2+1 is ja(n+1)2-n2- 1J = ja2nl = 2n. Therefore Nn2 and Nm2 are
different whenever n and mare. Thus (N) is infinite and N is nonregular.

10 Definitions by coinduction

The fact that C is final gives rise to the following coinductive definition principle:
in order to define a function from a given set S to C, we can turn S into an
automaton by defining an output function o and a transition function t on S.
A function ls : S -+ C is then obtained by the finality of C as the unique
homomorphism between the automata S and £, which assigns to each element,
that is, state s in S the language it accepts.

205

As an example, we shall apply the above principle to obtain a coinductive
definition of the shuffle of two languages. To this end, let the set £ of expressions
be given by the following syntax:

E ::= L. (for L E £) I E + F I E II F

Note that £ contains a symbol L_ for any language L in C. The set E can be
turned into an automaton(£, oe, te), defined by the following axioms and rules
(using the arrow notation introduced in Section 2):

L_.j_ {:> € E L, (E + F).j_ {:> E .j, or F .j,, (E II F).J. {:> E .j, and F .j_

E~E' F~F'

E+F~E1 +F1

E~E' F~F'

E II F~ E' II F+ E llF'
Note that the above axioms and rules uniquely determine two functions oe : E 4

2 and te : E 4 £A. By the coinduction definition principle, there exists a unique
homomorphism l : E -+ .C, giving for each expression E, that is, state of the
automaton£, the language l(E) it accepts. One readily proves (by coinduction)
that l(L_) = L and l(E + F) = l(E) + l(F).

The shuffle of two languages Kand L can now be defined as KllL = l(K II L_).
Its a-derivative, for a in A, can be computed as follows:

(KllL)a
= (l(K II L_))a
= tc(l(K II L))(a)

= l(te(K II L)(a)) [l is a homomorphism]

= l(Ka II L_ + K JI La) [definition te]
= l(Ka II L_) + l(K IJ La)

= KallL + KllLa. (21)

This characterization is useful for proving properties by coinduction, such as
KllL = LllK, Kll(L + M) = KllL + KJIM, and (KllL)JIM = Kll(LllM). For
instance, the latter equality follows by coinduction from the fact that

{((KllL)IJM + ... + (K'llL')llM', KJl(LllM) + ... + K'll(L'llM')) I
K,L,M,K1,L1,M1 E .C}

is readily shown to be a bisimulation.
Let us, once more, make a case for the importance of coinduction by inviting

the reader to prove the associativity of the shuffle operator by induction, using
the following inductive definition:

KIJL = LJ{vllw Iv EK, w EL}, with

vllw=vll_w+wll_v, c:ll_v={v}, (av)u_w=a(vllw),

and to compare the inductive proof to the coinductive one above.

206

11 Simulation

The notion of bisimulation is a special case of the more general notion of simu
lation, which will be introduced below. Simulation is used in the formulation of
yet another coinduction principle on [, which generalizes that of Section 4.

A simulation between two automata S = (S, o, t) and S' = (S', o', t') is any
relation R ~ S x S' with, for all s in S, s' in S', and a in A:

. , { o(s) < o'(s') and
if sRs then t(s)(aj R t'(s')(a).

Thus if s R s' then s.j.. implies s' .j... A simulation between S and itself is called a
simulation on S. Unions and (relational) compositions of simulations are simu
lations again. We write s :::; s' whenever there exists a simulation R with s R s'.
This relation $ is the union of all simulations and, therewith, the greatest sim
ulation. The greatest simulation on one and the same automaton S, denoted
by $ (or $s, if the name of the automaton is relevant), is called the similarity
relation. It is a preorder: s $ s and if s $ t and t :::; u then s $ u.

Clearly every bisimulation is a simulation. The converse does not hold but
s $ t and t :::; s imply s ,....., t: if s R t and t T s for two simulations R and T then
R n T- 1 is a bisimulation with s(Rn T-1)t. It follows that "'=:::; n $-1 .

The automaton C = (.C, or.., tr..) satisfies the following proof principle, which
is again called coinduction: for all languages Kand L,

if K :::; L then K ~ L.

(The converse trivially holds.) The proof principle says that in order to prove
the inclusion of a language K in a language L, it is sufficient to establish the
existence of a simulation relation R on C with K R L. Inspecting the proof of
the previous coinduction principle in Section 4, we see that it contains a proof
of the statement above.

The regular operations on languages can be easily shown to be monotonic
with respect to~· For instance, if K ~ K' and L ~ L' then KL~ K'L'. Also
K ~ L implies Ka ~ La.

The above coinduction principle is often best applied in combination with the
following weakening of the notion of simulation. A simulation up-to-similarity
on automata S = (S, o, t) and S' = (S', o', t1) is any relation R ~ S x S' with,
for alls in S, s' in S', and a in A:

. , { o(s) < o'(s1) and
if sRs then t(s)(aj R$ t'(s')(a),

where R$ =$so Ro $s1 (o denotes composition of relations). Interestingly, if
sRt for a simulation up-to-similarity R then s :$ t, since in that case R< is a
simulation and R ~ R<. Thus in order to prove K ~ L it suffices to point to a
simulation up-to-similarlty R with K R L.

207

We treat a few examples. The following inclusions and equational implica
tions can all be proved by coinduction:

For (22), we show that

KL~ KllL
KL ~ L => K* L ~ L

LK + M ~ K => L * M ~ K

KL~ LM => K* L ~ LM*

R ={(KL+ ... +K'L', KllL+ .. ·+K'llL') I K,L,K',L' E .C}

(22)

(23)

(24)

(25)

is a simulation up-to-similarity. Consider (KL, KllL) in R (the other cases of
pairs of longer sums are similar). Suppose K{. (the case of Kt being simpler). If
(KL).!. then (KllL){.. And for a in A,

(KL)a

=KaL+La

= KaL+ lLa

~ KaL + KLa [1 ~ K since K.!.]

R KallL + KllLa

= (KllL)a [by (21)],

which shows that R is a simulation up-to-similarity. Now (22) follows by coin
duction. For (23) consider K and L with KL ~ L. Then

S = {(M K* L-:+- N, ML + N) I M, N E .C}

is a simulation up-to-similarity: if (MK*L + N)-l. then (ML+ N){.. And for a
in A,

(MK*L+N)a

= MaK* L + KaK* L + La +Na [supposing that M .J.]
=(Ma+ Ka)K*L +La+ Na

S (Ma + Ka)L + La +Na

= MaL+KaL+La +Na

~ MaL +La+ Na [KL~ L implies (KL)a. ~La. whence KaL +La~ La]

= (ML+N)a-

Thus (23) follows by coinduction. Law (24), which refines equation (13) in Section
6, and law (25) are proved similarly.

As another example, we prove the inclusion of the following regular languages:

[(b*a)*ab*]* ~ [(b*a)*ab* + b*][(b*a)*ab*]*,

which we recognize as E 1 and Ei from Section 6. The inclusion follows by coin
duction from the fact that we have a simulation

208

12 Automata are coalgebras

Classically, an automaton over a (finite) fixed input alphabet A is defined as a
4-tuple

(S, s0 ES, F~S, 6:SxA-+S),

consisting of a finite set S of states, an initial state s0 , a set F of terminating (or
accepting) states, and a transition function 6. Below our definition of automa
ton, as given in Section 2, is compared to the one above. It is explained that
our definition in essence is coalgebraic, and that the notions of homomorphism,
bisimulation, and coinduction as introduced in the preceding sections, are special
instances of general coalgebraic definitions.

First of all, there is no reason to restrict oneself to finite sets A and S. On
the contrary, allowing an infinite set of states makes it possible to consider, for
instance, the set C of languages as an automaton. Secondly, we have not included
an initial state in our definition, simply because there is no reason to focus
attention to one particular state. In the classical theory of automata, initial states
play a role, for instance, in the definition of the sequential composition of two
automata, where all the terminating states of the first automaton are connected
to the initial state of the second automaton (usually by an f-transition). As we
have seen, there is no need for such a construction in the present theory.

Allowing infinite sets and forgetting about the initial state, the classical defi
nition of course becomes equivalent to the definition of Section 2, because of the
existence of bijections

P(S) ~ (S-+ 2) and (S x A-+ S) ~ (S ---t sA).

Thus there is a one-to-one correspondence between triples (S, F, 6) and triples
(S, o, t). The choice of working with the latter representation is motivated by
the observation that in this way, automata can be viewed as coalgebras: Let
F : Set -+ Set be a functor on the category of sets and functions. An F -coalgebra
is a pair (S, as) consisting of a set S and a function as : S -+ F(S). Automata
are coalgebras of the following functor D : Set ---t Set, which is defined on sets
S by D(S) = 2 x SA (below we shall define how D acts on functions). Now for
an automaton (S, o, t), the functions o : S -+ 2 and t : S -+ SA can be combined
into one function (o, t): S-+ 2 x SA, which sends sin S to the pair (o(s), t(s)).
In this way, the automaton (S, o, t) has been represented as a D-coalgebra

(o, t) : S-+ D(S).

The reason to be interested in this coalgebraic representation of automata is
that there exists a number of notions and results on coalgebras in general, which
can now be applied to automata.

Notably there is the following definition. Consider again an arbitrary functor
F: Set-+ Set and let (S,o:) and (S',a') be two F-coalgebras. A function
f: S-+ S' is a homomorphism of F-coalgebros, or F-homomorphism, if F(f) o
a = a' o f. In order to apply this definition to the case of automata, we still
have to give the definition of the functor D on functions, which is as follows.

209

For a function f : s -t S'' the function D(f) : (2 x sA) -t (2 x s 1A) is defined,
for any x in 2 and h in sA by D(f)((x,h)) = (x, I 0 h). Now consider two
automata, i.e., D-coalgebras, (S, (o, t)) and (81 , (o', t')), where (o, t) : S -t D(S)
and (o', t') : S' -t D(S'). According to the definition, a function f : S -t S' is a
homomorphism of D-coalgebras if D(f) o (o, t) = (o', t') of, which is equivalent
to o(s) = o'(f(s)) and f(t(s)(a)) = t'(f(s))(a), for alls and a. Note that this is
precisely the definition of homomorphism given in Section 2. Indeed, even if we
did not mention this before, the general coalgebraic definition of homomorphism
has been our starting point.

Also the notion of bisimulation introduced in Section 2 is an instance of a
general coalgebraic definition: A relation R ~ S x S' is called an F-bisimulation
between F-coalgebras (S, a) and (81 , a') if there exists an F-coalgebra structure
etR: R--+ F(R) on R such that the projections ?r1 : R -t Sand 71"2 : R -t S' are
F-homomorphisms. It is left to the reader to verify that applying this definition
to the functor D yields our original definition of bisimulation of automata.

For a functor F: Set--+ Set, the family of F-coalgebras together with the F
homomorphisms between them, forms a category (indentity functions are homo
morphisms, and the composition of homomorphisms is again a homomorphism).
In this category, final coalgebras are of special interest (if they exist at all): a
coalgebra (P, 7r) is final if there exists from any coalgebra precisely one homo
morphism into (P;rr). The interest of final coalgebras lies in the fact that they
satisfy the following coinduction proof principle: if there exists an F-bisimulation
between p and p' in P then p and p' are equal. This is immediate by the finality
of (P, 7r).

Many functors have a final coalgebra (final coalgebras are unique up to iso
morphism), and for many functors it can be constructed in a canonical way. For
our functor D, this construction yields the set A* -t 2, which is isomorphic to
the set C of all languages. Indeed, we have seen in Sections 7 and 4 that .C is a
final automaton and satisfies the coinduction proof principle3 .

Summarizing the above, we hope to have explained the subtitle of the present
paper. The treatment of automata in the preceding sections has been coalgebraic:
the definitions of automaton, homomorphism, and bisimulation, as well as the
focus on finality and coinduction, all have been derived from or motivated by
very general definitions and observations from coalgebra.

As such, this coalgebraic story of automata is just one out of many, in prin
ciple as many as there are functors (on Set but also on other categories). Many
other examples have been studied in considerable detail already, including tran
sition systems, data types (such as streams and trees), dynamical systems, prob
abilistic systems, object-based systems, and many more. And many more are still
to follow. It is to be expected that the theory of several other kinds of automata
may benefit from a coalgebraic treatment.

In the remaining sections of the present paper, the coalgebraic approach is
further illustrated by the treatment of automata with partial transition func-

3 We have proved that C satisfies the coinduction proof principle before proving its
finality for didactical reasons.

210

tions. These partial automata are coalgebras of a functor D' : Set -+ Set, which
is defined as a minor variation of the functor D: for a set S, D' (S) = 2 x (1 + S)A.
As before, our presentation will make no explicit reference to coalgebra.

13 Partial automata

A partial automaton with input alphabet A is a triple S = (S, o, t) consisting,
as before, of a set S of states and an output function o : S -+ 2, but now with
a transition function t that assigns to each state a partial function. That is,
t : S -+ (1 + S)A, where 1 = { 11}, and where for a function f in (1 + S)A and
input symbol a in A, f(a) ='ft means that f is undefined in a, sometimes simply
denoted by f(a)'ft. Dually, f (a).t). denotes that f (a) is defined. (These conventions
will more generally be used for functions from X to 1 + Y, for arbitrary sets X
and Y.)

As before, we shall sometimes write s.i for o(s) = 1, st for o(s) = 0, and
s--2:..+s' for t(s)(a) = s'. In addition, s-74 denotes t(s)(a)ir.

A bisimulation between partial automata S = (S, o, t) and S' = (S', o', t') is
now a relation R ~ S x S' with, for all s in S, s' in S', and a in A:

• 1 { o(s) = o'(s') and
if s R s then t(s)(a) (l + R) t'(s')(a),

where t(s)(a) (1 + R) t'(s')(a) holds iff either both sides are undefined or both
sides are defined and related by R. Note that as a consequence, s R s' implies
s-74 iff s' -74.

The notions of bisimilarity, homomorphism and subautomaton are defined
as before, and the various properties given in Section 2 again apply.

Due to the possibility of refusing certain input symbols, the language ls(s)
accepted by a state s of a partial automaton S = (S, o, t) may now consist of
three different kind of words:

1. Ifs ~ s1 ~ · · · ~ sn.i then ai ···an E ls(s), as before.
2. Ifs~ S1 ~···~Sn t and for all a in A, sn-74, then ai ···an·<> E ls(s).

Here the postfix 6 (which is supposed not to be an element of A) is used to
register the fact that after the last input symbol (an), a so-called deadlock
occurs: the automaton has reached a state (sn) which is not terminating,
and from which no further steps are possible.

3. Ifs~ s1 ~ s2 ~ ···then the infinite word a1a2a3 · · · E ls(s).

In order to define the collection of all acceptable languages, let

A8 =A* u AW u A*. 6,

where A* is as before, Aw is the set of all infinite words over A, and A* ·8 = { w·6 I
w E A*}. Sometimes A00 is used as a shorthand for A* U Aw. For an infinite
word w = a1a2a3 ···in Aw and natural number n ~ 1, the n-th truncation of w
is given by w[n] = a1 • · ·a11 •

211

We shall again need the notion of derivative. For a word win A* and a subset
L ~ A8, let the w-derivative of L be defined by

Lw = { V E A:5° J WV E L},

where concatenation of words is extended to A:f' in the obvious way.
A set L ~ A8 is closed4 if for all infinite words w in Aw,

w E L {:::::} Vn 2 1, Lw[n] -:/:- 0.

Typically, a00 is closed, whereas a* is not. A set L ~ A8 is consistent if for all
words w in A:f,

8 E Lw {:::::} Lw = { 8}.

For instance, { ab, ac, M} is consistent whereas { ab, at>} is not.
A language (of partial automata) is next defined as a non-empty, closed,

and consistent subset of A8. Let .Cp denote the set of all languages (of partial
automata):

.Cp ={LI L ~ A:f', L is non-empty, closed, and consistent}.

It is not difficult to verify that the set ls(s) above indeed belongs to Lp- We shall
see that, conversely, any language in .Cp is accepted by some partial automaton.

The set .Cp can be turned into a partial automaton .Cp = (£p, o.c,P, t.cp) by
defining, for L in £p and a in A,

That is,

{ lifc:EL
0 .c,, (L) = 0 ifc rt. L

d (L)() { La if La -:/:- 0
an : t.c,p a = 11 if La = 0.

L .!- iff c E L, L ~ La iff La # 0, L-o/+ iff La = 0.

Again the coinduction principle holds: for all languages K and L in .Cp,

if K ,...., L then K = L.

It is identical in shape to the principle of Section 4, but note that the languages
under consideration are now living in Lp instead of£, and that a different notion
of bisimilarity is involved. A new proof of the principle is therefore required but
nevertheless omitted. It is not very difficult, and one needs to use the fact that
the languages in Lp are both closed and consistent.

As before, it follows by coinduction that the automaton Lp is final among
the collection of all partial automata: the unique homomorphism from a partial
automaton S to the automaton Lp is given by the function ls : S -t Lp described
above. Because Lp is final, the coinduction definition principle (Section 10) holds
again. It will be used in the next section.

4 The terminology is explained by the fact that this definition is equivalent to being
closed with respect to the metric topology on Ar' induced by the Baire metric.

212

14 Regular expressions for partial automata

In order to formulate a Kleene theorem for partial automata, which will be
proved in the next section, a notion of regular expression for partial automata
is introduced, as a minor variation on the classical definition (given in Section
5). Next regular languages and regular operators are defined by coinduction, in
the same style as the definitions given in Section 10.

The set 'Rp of regular expressions (for partial automata) is defined by the
following syntax:

E ::= 0 I 1 I a E A I E + F I EF I E 00

The only difference with the previous definition is the absence of E*, which has
been replaced by E00 •

Both the language l (E) of a regular expression E in 'Rp and the regular
operators will be defined by coinduction. To this end, a class ep of expressions
(for partial automata) is introduced, given by the following syntax:

E ::= L_ (for L E .Cp) I E + F I EF I E 00

where an underscore is used to distinguish between the syntactic symbol Id and
the language L. However, the underscore will be omitted whenever possible with
out creating confusion.

The set 'Rp of regular expressions can be viewed as a subset of ep by making
the following identifications: 0 ={a}, 1 = {e}, and a= {a}.

In order to apply the coinduction definition principle, the set ep is turned
into a partial automaton ep = (ep, Oep, tep), where the functions Oep and tep are
defined by the following axioms and rules:

Id .l. iff c E L, (E00).j.., (E + F).l. *> E .l. or F +, (EF)+ *> E _j.. and F .l.

!d_-4 La iff La =f:. 0

E~E' F~F'

E+F~ E 1 +F1

E -!4 E' F-o/t E-o/t F ~ F'

E+F~ E' E+F~ F'

E~ E' Et E~ E' F-o/t E.l.

EF~ E'F EF~ E'F

E ~ E' F ~ F' E.l. E-o/+ F -!4 F' E.l. E ~ E'
EF ~ E'F+F' EF ~ F' E 00 ~ E 1E 00

These axioms and rules uniquely define two functions osp and tep, essentially by
induction on the syntactic structure of expressions. For instance, oep (E00) = 1,
and tep(E00)(a) = (tep (E)(a))E00 •

By the finality of the partial automaton of languages .Cp, there exists a unique
homomorphism l : £,, -+ .Cp, which gives for any expression in ep, notably for
each regular expression E in 'Rp, the language l(E) it represents. As before, a
language Lis called regular if it equals l(E), for some E in 'Rp.

213

The homomorphism l : £p -t .Cp can also be used to define the regular
operators: for languages Kand Lin .Cp, let

K + L = l(K + L_)

KL=l(KL)

K 00 = l((K)°").

The bisimilarity relation ,..., on £p can, with a little bit of patience, be shown to
be a congruence with respect to the regular operators: if E ,..., G and F ,..., H
then E + F ,..., G + H, EF ,..., GH, and E 00 ,...., G00 • Combining this with the
observations that E ,...., l(E), and that l(E) = l(F) iff E ,..., F, the following
equalities can be readily proved:

l(O) = {8}

l(l) = {e}

l(a) ={a}

l(E + F) = l(E) + l(F)

l(EF) = l(E)l(F)

l(E00) = l(E) 00 •

For instance, l(E+F) = l(l(E) +l(F)) = l(E) +l(F). Whenever convenient and
harmless, we shall simply write E for l(E). Notably, 0, 1, and a will then denote
the three singleton sets mentioned above. Note that the language represented
by 0 is no longer the empty set, as it is in Section 5, but the singleton set {8},
representing deadlock.

The regular operators could again have been defined 'elementwise', but things
would have been slightly more complicated than before. The sum of two lan
guages can no longer be defined as their union, nor does their concatenation
consist of the pairwise concatenation of their respective elements. This is illus
trated by the following equalities, which are an immediate consequence of the
coinductive definitions above:

{8} +{a}= {a}

{a8} + {aa} = {aa}

{ a8, c }{ ab} = { ab}.

The intuition here is that (a possibly nested occurrence of) the deadlock symbol
8 should disappear in the presence of an alternative transition step. Also the
definition of K 00 is essentially more complicated than that of K*, since the
latter could be defined as the union of an inductively defined sequence (Kn)n

of finite powers of K. This is not possible for K 00 , which should include also
infinite words composed of infinitely many finite words from K. Although K 00

can be defined using, for instance, least upperbounds of chains in K* with the
familiar prefix ordering, the above coinductive definition of K 00 is simpler in the
sense that it is purely set-theoretic.

214

Equalities of expressions can again be proved by coinduction, by establishing
the existence of bisimulation relations. Note that a bisimulation on Cp is any
relation R such that for K and L with K R L, K .j.. iff L.j.., and for any a in
A, tcp (K)(a) (1 + R) tcp (L)(a). It follows from the definitions that the latter
formula means that either both Ka and La are empty, or both are non-empty
and related by R.

The following calculation rules for a-derivatives will again be helpful when
proving the existence of bisimulation relations. They follow from the coinductive
definition above by exploiting the fact that l : £p ~ Cp is a homomorphism:

b -{{t}ifb=a
a - 11' otherwise

(K + L)a =Ka+ La

{ KaL if Kt
(KL)a= KaL+LaifK.j..

(K 00)a = Ka K 00 ,

where the latter three equalities are as before (Section 5) but now have to be read
with the following conventions in mind: for all languages Kand input symbols
a,

Ka + 0 = 0 + Ka = Ka, 0K = 0.
All the laws (1)-(15) listed in Section 6 are valid for Cp (replacing, of course,
occurrences of(-)* by (-)00 , everywhere), but for law (7). The proofs are only
slightly more involved due to a greater number of case distinctions. For instance,
K (L + M) = KL + KM (11) will now follow from the fact that

{(K(L+ M) +N, KL+ KM +N} I K,L,M,N E £p} u {(K, K} IKE .Cp}

is a bisimulation. Interestingly, the following equation

Lt /\ (K = LK + M) =* K = L00 M {26)

is proved in essentially the same way as law (13). Law number (7) is no longer
valid: with the present interpretation of O, KO is generally different from 0.
For instance, aO = {a}{<)} = {aa}. More interestingly, there is the following
equation:

(27)

which can be taken either as a definition of Kw, or as a theorem once Kw has
been defined first. A coinductive definition of Kw could be given by extending
the set cp of expressions with Ew, and by specifying the following transitions
and termination condition:

(Note that this definition is the same as for E00 , but for the fact that (E00).j...)

215

15 Kleene's theorem for partial automata

Kleene's theorem, as formulated in Section 8, also holds for partial automata:
For all languages Lin Cp,

L is regular iff (£) is a finite subautomaton of Cp· (28)

It can be proved in almost exactly the same way as before, now using law (26)
and the following variant of law (20). Let A be a finite alphabet and consider L
in Cw If B = {a, ... , b} is defined as the subset of A containing all input symbols
c in A for which Le =f. 0, then:

L = { aLa + · · · + bLb + 1 if £.j..
aLa + · · · + bLb + 0 if Lt.

(Note that if the set B is empty then the second expression is equal to 0.)

16 Notes and discussion

(29)

As we have seen in Section 12, most notions and observations of the present paper
are instances of far more general ones, belonging to a theory called (univer.sal)
coalgebra. See [Rut96, JR97] and the references therein for more information on
coalgebra. In [JMRR98], many recent developments in coalgebra are described.

The coalgebraic definition of bisimulation is a categorical generalization, due
to Aczel and Mendler [AM89), of Park's [Par81] and Milner's [Mil80] notion of
bisimulation for concurrent branching processes. This general categorical defi
nition applies to many different examples, including nondeterministic (possibly
probabilistic) transition systems, object-based systems, infinite data structures,
various other types of automata, and dynamical systems. See [Rut96, JR97) for
many examples and pointers to the literature.

The notions of homomorphism and (generated) subautomaton occur at var
ious places in the literature (usually inspired by universal algebra), for instance
in [Gec86].

The coinduction principle of Section 4 for the final automaton £, together
with the corresponding 'being is doing' characterization, applies more generally
to any final coalgebra. Coinduction as a proof principle for greatest fixed points
of monotone operators is already around for some time. For final coalgebras of
the powerset functor, it has been introduced in [Acz88]. In [RT93], the principle
is stated in its generality for arbitrary functors.

The word coinduction suggests a duality between induction and coinduction.
This is explained by the observation that induction principles apply to initial
algebra.s. Somewhat more concretely, the duality can be understood as follows. It
is not difficult to prove that coinduction on £ is equivalent to the statement that
£ has no proper quotient.s, that is, if f : £ -+ Sis a surjective homomorphism
then £ ~ S. This property is dual to the principle of mathematical induction
on the algebra of natural numbers, which essentially states that the algebra

216

of natural numbers has no proper subalgebras. See [Rut96, Sec.13] for a more
detailed explanation.

The use of coinduction, both as a proof and as a definition method, is by
now widespread (see for instance [BM96], which is a recent textbook on nonwell
founded set theory, and [JR97], for an introductory overview). Its application
to languages and regular expressions, in Sections 6 and 10, is to the best of our
knowledge new.

The calculation rules for a-derivatives (Section 5) of regular combinations of
languages are well-known, have been reinvented several times, and are originally
due to Brzozowski [Brz64] (see also [Con71] and [BS86]). Both Brzozowski's
paper [Brz64] and Conway's book [Con71] contain, more generally, many of the
ingredients that have been used in the present paper.

A well-known way of proving equality of regular expressions is to use a com
plete axiom system (of which the laws in Section 6 form a subset), such as given
by Salomaa in [Sal66), and apply purely algebraic reasoning. The reader is in
vited to consult [Gin68, pp.68-69], from which the example E 1 = F1 in Section
6 was taken, and convince himself of the greater complexity of that approach.

The most common and practical way of proving equality of two expressions is
firstly, to construct for each expression an automaton that accepts the language
it represents, and secondly, to minimize both automata. The two expressions are
then equal iff the two resulting automata are isomorphic. For both the construc
tion and the minimization step, many different and efficient algorithms exist (see
[Wat95] for an extensive overview and comparison).

This classical approach is related to the coinduction proof method by the
observation, in Section 2, that bisimulations are automata themselves. Thus also
a proof by coinduction consists of the construction of an automaton. Our way of
constructing this 'bisimulation automaton' is essentially based on Brzozowski's
algorithm, using a-derivatives, but note that only one automaton is constructed
for both expressions at the same time. Another difference is that this automaton
need not be minimized in order to conclude that the two expressions are equal
(this was illustrated by the bisimulation T used for the proof of E 1 = F1 at
the end of Section 6). The question whether this can lead to (more) efficient
algorithms is yet to be addressed.

The connection between finality and minimality in Section 7 can already be
found in [Gog73). Our formulation of Kleene's theorem in Section 8 and its use as
a criterion for nonregularity in Section 9 may be new, though the proofs involved
are of course built from well-known ingredients.

Classically, the minimization of an automaton is obtained by identifying all
states that are observationally equivalent. Referring to the notation of Section
12, two states s and s' are equivalent iff for all words win A*,

8(s, w) E F {::==}- J(s', w) E F,

where 8(s, i::) = s and 8(s, wa) = 8(J(s, w), a). This notion of equivalence corre
sponds to our notion of greatest bisimulation relation (bisimilarity). Note that
in the present theory, bisimulation relations are considered that generally are

217

not maximal. This is yet another and maybe the most important difference with
the classical approach.

Simulation relations have been studied in several forms and ways. We believe
the present definition in Section 11, as well as the coinduction principle based on
it, to be new. The definition of simulation up-to-similarity is a straightforward
variation of Milner's notion of bisimulation up-to-bisimilarity [Mil80]. Some of
the laws of Section 11 have been taken from [Koz94], where a complete axiom
system for equality of regular expressions is presented in terms of equational
implications.

The treatment of partial automata, which are coalgebras of the set functor
D'(S) = 2 x (1 + S)A, has been inspired by a recent paper [vB98] of Franck
van Breugel, in which a related functor (on metric spaces) is studied. It comes
somewhat as a surprise that the set .Cp, which is a final coalgebra of the set
functor D', consists of metrically closed subsets. Such sets have been used at
various places in the work of the French and Dutch schools of Nivat and De
Bakker on metric semantics (cf. the recent textbook [BV96]). The notion of
consistent language corresponds to the notion of reduced set in [dB91].

Automata theory has been and still is commonly understood as essentially
algebraic. Cf. Ginzburg's Algebraic theory of automata [Gin68], Conway's Regu
lar algebra and finite machines [Con71], and Kozen's recent textbook Automata
and computability, from which the following quotation is taken [Koz97, p. 112]:
"It should be pretty apparent by now that much of automata theory is just
algebra." We hope to have shown that the coalgebraic treatment of automata
theory offers, at least, an interesting alternative.

Acknowledgements

Many thanks to Dora Giammarresi for pointers to the literature, and to Jaco de
Bakker, Marcello Bonsangue, Franck van Breugel, and Bart Jacobs for discus
sions and detailed comments.

References

[Acz88] P. Aczel. Non-well-founded sets. Number 14 in CSL! Lecture Notes. Center
for the Study of Languages and Information, Stanford, 1988.

[AM89] P. Aczel and N. Mendler. A final coalgebra theorem. In D.H. Pitt, D.E.
Ryeheard, P. Dybjer, A. M. Pitts, and A. Poigne, editors, Proceedings cate
gory theory and computer science, Lecture Notes in Computer Science, pages
357-365, 1989.

[BM96] J. Barwise and L.S. Moss. Vicious Circles, On the Mathematics of Non
wellfounded Phenomena. CSLI Lecture Notes. Center for the Study of Lan
guage and Information, Stanford, 1996.

[Brz64] J.A. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
11(4):481-494, 1964.

(BS86] G. Berry and R. Sethi. From regular expressions to deterministic automata.
Theoretical Computer Science, 48:117-126, 1986.

218

[BV96] J.W. de Bakker and E. de Vink. Control Flow Semantics. Foundations of
Computing Series. The MIT Press, 1996.

[Con71] J.H. Conway. Regular algebra and finite machines. Chapman and Hall,
1971.

[dB91] J.W. de Bakker. Comparative semantics for flow of control in logic program
ming without logic. Information and Computation, 94(2): 123-179, October
1991.

[Gec86] F. Gecseg. Products of automata, volume 7 of EATCS Monographs on The
oretical Computer Science. Springer-Verlag, 1986.

[Gin68] A. Ginzburg. Algebraic theory of automata. ACM Monograph series. Aca
demic Press, 1968.

[Gog73] J. Goguen. Realization is universal. Mathematical System Theory, 6:359-
374, 1973.

[JMRR98] B. Jacobs, L. Moss, H. Reichel, and J.J.M.M. Rutten, editors. Proceed
ings of the first international workshop on Coalgebraic Methods in Com
puter Science (CMCS '98}, volume 11 of Electronic Notes in Theoreti
cal Computer Science. Elsevier Science B.V., 1998. Available at URL:
www.elsevier.nl/locate/entcs.

[JR97] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction.
Bulletin of EATCS, 62:222-259, 1997.

[Kle56] S.C. Kleene. Representation of events in nerve nets and finite automata. In
Shannon and McCarthy, editors, Automata Studies, pages 3-41. Princeton
Univ. Press, 1956.

[Koz94] D. Kozen. A completeness theorem for Kleene algebras and the algebra of
regular events. Information and Computation, 110:366-390, 1994.

[Koz97] D.C. Kozen. Automata and computability. Undergraduate Texts in Com
puter Science. Springer-Verlag, 1997.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 1980.

[Ner58] A. Nerode. Linear automaton transformations. Proc. Amer. Math. Soc.,
9:541-544, 1958.

[Par81] D.M.R. Park. Concurrency and automata on infinite sequences. In
P. Deussen, editor, Proceedings 5th GI conference, volume 104 of Lecture
Notes in Computer Science, pages 15-32. Springer-Verlag, 1981.

[RS59] M.O. Rabin and D. Scott. Finite automata and their decision problems.
IBM J. Res. Develop., 3(2):114-125, 1959.

[RT93] J.J.M.M. Rutten and D. Turi. On the foundations of final semantics: non
standard sets, metric spaces, partial orders. In J.W. de Bakker, W.-P. de
Roever, and G. Rozenberg, editors, Proceedings of the REX Workshop on
Semantics, volume 666 of Lecture Notes in Computer Science, pages 477-
530. Springer-Verlag, 1993.

[Rut96] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Report CS
R9652, CWI, 1996. Available at Vll'W.cwi.nl/~janr. To appear in Theoret
ical Computer Science.

[Sal66] A. Salomaa. Two complete axiom systems for the algebra of regular events.
Journal of the ACM, 13(1):158-169, 1966.

[vB98] F. van Breugel. Terminal metric spaces of finitely branching and image
finite linear processes. Theoretical Computer Science, 202:193-222, 1998.

[Wat95] B.W. Watson. Taxonomies and toolkits of regular language algorithms. PhD
thesis, Eindhoven University of Technology, 1995.

