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Abstract. The classical theory of deterministic automata is presented 
in terms of the notions of homomorphism and bisimulation, which a.re the 
cornerstones of the theory of (universal) coalgebra. This leads to a trans
parent and uniform presentation of automata theory and yields some new 
insights, amongst which coinduction proof methods for language equal
ity and language inclusion. At the same time, the present treatment of 
automata theory may serve as an introduction to coalgebra. 

1 Introduction 

" ... in this case, as in many others, the process gives the mini
ma.I machine directly to anyone skilled in input differentiation. 
The skill is worth acquiring · · · " 

- J.H. Conway [Con71, chap. 5] 

The classical theory of deterministic automata is presented in terms of the no
tions of homomorphism and bisimulation, which are the cornerstones of the 
theory of (universal) coalgebra. This coalgebraic perspective leads to a transpar
ent and uniform theory, in which the observation that the set C of all languages 
is a final automaton, plays a central role. The automaton structure on C is de
termined by the notion of (input) derivative, and gives rise to two new proof 
principles: 1. a coinduction proof method in terms of bisimulations for demon
strating the equality of languages, which is complete and, for regular languages, 
effective; and 2. a coinduction proof method in terms of simulations for proving 
language inclusion. 

The paper is intended to be self-contained, and no prior knowledge of coal
gebra is presupposed. Although the development of our theory has been entirely 
dictated by a coalgebraic perspective, no explicit reference to coalgebraic notions 
or results will be made (apart from Section 12). In this way, we hope that this 
paper may also serve as an introduction to coalgebra. 

Sections 2 through 11 deal with (complete) deterministic automata, regular 
languages, minimization, and Kleene's theorem. Only after these sections, the 
connection between automata theory and coalgebra is discussed in detail, in 
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Section 12. (For readers that do have some background in category theory and 
coalgebra, it may be instructive to read Section 12 immediately after having read 
Section 2.) In the remaining Sections 13 through 15, the coalgebraic approach 
is further illustrated by the treatment of so-called partial automata, which have 
transition functions that may be partial. Of special interest is an automaton of 
languages with infinite words. References to the literature have been collected 
in Section 16. 

2 Deterministic automata 

Let A be a (possibly infinite) set of input symbols. A (deterministic) automaton 
with input alphabet A is a triple S = (S, o, t) consisting of a set S of states, 
an output function 0 : s -t 2, and a transition function t : s -t sA. Here 2 
denotes the set {O, 1 }, and SA is the set of all functions from A to S. The output 
function o indicates whether a state s in S is terminating2 (o(s) = 1) or not 
(o(s) = 0). The transition function t assigns to a states a function t(s): A -t S, 
which specifies the state t(s)(a) that is reached after an input symbol a has been 
consumed. We shall sometimes write s.J.. for o(s) = 1, st for o(s) = 0, and s-.!:...+s1 

for t(s)(a) = s'. 
Contrary to the standard definition, in the present setting both the state 

space S of an automaton and the set A of input symbols may be infinite. If both 
S and A are finite then we speak of a finite automaton. Another difference with 
the standard approach is that our automata do not have an initial state. (See 
Section 12 for a detailed motivation of the present definition of automaton.) 

A bisimulation between two automata S = (S, o, t) and S 1 = (S', o', t') is a 
relation R ~ S x S' with, for all s in S, s' in S', and a in A: 

. / { o(s) = o'(s1) and 
if sRs then t(s)(a) R t1 ( 81 )(a). 

A bisimulation between S and itself is called a bisimulation on S. Unions and 
(relational) compositions of bisimulations are bisimulations again. We writes,..., 
s1 whenever there exists a bisimulation R with s R s'. This relation ,...., is the 
union of all bisimulations and, therewith, the greatest bisimulation. The greatest 
bisimulation on one and the same automaton, again denoted by....,, is called the 
bisimilarity relation. It is an equivalence relation. 

The only thing one can 'observe' about a state of an automaton is whether it 
is terminating or not. One can also perform 'experiments', by offering an input 
symbol which then leads to a new state. Of this new state, we can of course 
observe again whether it is terminating or not. Two states that are related by 
a bisimulation relation are obseroationally indistinguishable in the sense that 1. 
they give rise to the same observations, and 2. performing on both states the 
same experiment will lead to two new states that are indistinguishable again. 

2 Sometimes also called accepting or final. 
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A homomorphism between S and S' is any function f : S -+ S' with, for all 
sin S, o(s) = o'(f(s)) and, for all a in A, f(t(s)(a)) = t'(f(s))(a). 

An automaton S' = (S', o', t1} is a subautomaton of S = (S, o, t} if S' ~ S 
and the inclusion function i : S' -+ S is a homomorphism. Given (S, o, t} and S', 
the functions 0 1 and t' in that case are uniquely determined. For a state s in S, 
(s} denotes the subautomaton generated by s: it is the smallest subautomaton 
of S containing s, and can be obtained by including all states from S that are 
reachable via a finite number of transitions from 8. 

Homomorphisms map subautomata to subautomata: for a homomorphism 
f: S--+ T and subautomaton S' ~ S, f(S') is a subautomaton of T. Fors in S, 
moreover, f((s)) = (f(s)). 

The notions of automaton, homomorphism and bisimulation are closely re
lated: a function f : S --+ S' is a homomorphism if and only if its graph re
lation { (8, /(8)) I s E S} is a bisimulation. And bisimulations are themselves 
automata: if R is a bisimulation between S and S', then OR : R -+ 2 and 
tR: R-+ RA, given for (s,s') in Rand a in A by OR((s,s')) = o(s) = o'(s') and 
tR((s,s'})(a) = (t(s)(a), t'(s')(a)), define an automaton (R,oR, tR}· 

For an example, let A = {a, b} and consider the automata S = { 81, s2, 83} 
and T = { t1, t 2}, with transitions and termination as specified by the following 
tables: 

a b 
81 82 83 t 
82 82 83 .} 

83 s2 S3.} 

a b 
t1 t2 t2 t 
t2 t2 t2 + 

where, for instance, the second row of the first table denotes 82 ~ s2, s2 ~ 
s3, and s2.}. Then { (s1, s1), (s2, s2), (s3, 83)} and { (82, s3), (s2, s2), (s3, 83}} are 
bisimulations on S; { s2, 83} = (s2) = (83} is a subautomaton of S; and f : S-+ T 
mapping s1 to ti, and s2 and 83 to t2 is a homomorphism. 

3 Languages 

Let A* be the set of all finite words over A. Prefixing a word w in A* with 
an input symbol a in A is denoted by aw. Concatenation of words w and w' 
is denoted by ww'. Let c denote the empty word. A language is any subset of 
A*. The language accepted by a state 8 of an automaton S = (S, o, t) is ls(8) = 
{a1 ···an Is~ s1 ~···~Sn.!.}, where 81 = t(s)(a1) and 8i+l = t(8;)(ai), 
for 1 < i < n. 

Let £ = {L I L ~ A*} be the set of all languages. For a word w in A*, the 
w-derivative of a language L is Lw = { v E A* I wv E L}. A special case is the 
a-derivative La = { v E A* I av E L }, for a in A, which can be used to turn the 
set£ of languages into an automaton (£, o.c, t.c), defined, for L EC and a EA, 
by 

{ lifc:EL 
o.c(L) = 0 if c: ~ L and: t.c(L)(a) =La. 
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That is, 
L.!. iff c EL, and: L ~ L' iff L' =La. 

This automaton has the pleasing property that the language accepted by a state 
L in C is precisely L itself. This will be proved in Section 7, but is already 
illustrated by the following example. For L = {a, ab, ac}, there are the following 
transitions: 

{a,ab,ac} ~ {c,b,c}.!. ~ {c}.!., 

where ~ means that there is both a b and a c transition, and where we have 

omitted transitions leading to the empty set, such as {a, ab, ac} -4 0. It follows 
that lc(L) = L. 

If the behaviour of a state is the language it accepts, then states in ,C could 
be said to 'do as they are'. For them, in other words, 'being is doing'. 

4 Coinduction 

The automaton ,C = (£, oc, tc.} of languages satisfies, for all languages K and 
L, 

if K ,..., L then K = L. 

(The converse trivially holds.) This gives rise to the following coinduction proof 
principle: in order to prove the equality of languages K and L, it is sufficient 
to establish the existence of a bisimulation relation on ,C that includes the pair 
(K,L). 

The above implication follows from the fact that for all words w in A* of 
length n and for all languages K and L with K ,..., L: if w E K then w E L, 
which we show next by induction on n. First note that a bisimulation on ,C is 
any relation R such that for all K and L with K R L, K .!. iff L,J.., and for any a in 
A, Ka R La. Now consider Kand L with K ""L. Because,.., is a bisimulation, 
c E K implies c E L. Next consider a word w = aw', of length n + 1, in K. 
Because K ,..., L also Ka "" La. Because w' E Ka and the length of w' is n, it 
follows from the inductive hypothesis that w' E La. Thus w E L. This shows 
that K"" L implies K ~ L. Since K,..., L implies L ""K, also L ~ K. 

5 Regular expressions 

Let the set R of regular expressions be given by the following syntax: 

E ::= 0 I 1 I a E A I E + F I EF I E* 

Let the funcion >. : R-+ C, which assigns to an expression E the language >.(E) 
it represents, be defined by induction on the structure of E: 

,\(0) = 0 
,\(1) = {c} 



198 

,\(a)= {a} 

,\(E + F) = ,\(E) + >.(F) 

,\(EF) = ,\(E),\(F) 

,\(E*) = ,\(E)*, 

where on the right hand side of these equations the following so-called regular 
operators are used: for languages K and L, 

K+L=KUL 

KL = { vw I v E K and w E L} 

K*= LJ Kn, 
n;::o 

with K 0 = { c:} and Kn+l = K Kn. Languages L = >.( E) are called regular 
languages. Whenever convenient and harmless, we shall simply write E for A(E). 
Notably, 0, 1, and a will then denote the singleton sets mentioned above. 

The following rules for calculating the a-derivative La of a language L are 
easily verified: 

Oa = 0 

la= 0 

b ={lifb=a 
a Oifb#:a 

(K+L)a =Ka+La 

{ KaL if Kt 
(KL)a = KaL+La if K.j.. 

(K"')a = KaK* 

There are also the following rules for termination: Ot, 1.j.., at, K + L.j.. iff K .j, or 
L..(.., KL..(.. iff K -1- and L.J,, K* +. All these rules will be of great help when proving 
the equality of languages by means of coinduction, as we shall see in Section 6. 

6 Proofs by coinduction 

The use of coinduction is illustrated by first proving some of the familiar laws 
for the regular operators, and next some equalities of concrete expressions. We 
emphasize that the algebraic completeness of these laws in not the issue here. 
They merely serve as examples, and some of them will be used as lemma's in 
subsequent proofs. 

The strength of the coinduction proof principle is that it works for any valid 
equality, and that it works in a uniform way: first define a relation consisting 
of the pair(s) of languages that you want to prove equal; then look at all pos
sible transitions and continue to add pairs of resulting languages if they were 
not present yet. The original equality holds if and only if this process yields a 
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bisimulation. For regular languages, the coinduction proof principle is effective: 
If the languages with which one starts are regular, then the construction of a 
bisimulation relation terminates in finitely many steps. This will be proved in 
Section 8. 

Some laws 

All the familiar laws for the regular operators can be proved by coinduction. 
Some of them are easily proved directly on the basis of the definitions of the 
regular operators, others are less straightforward. Below some of the following 
will be proved by coinduction: 

K+O= K 

K+K= K 

K+L=L+K 

(K + L) + M = K + (L + M) 

lK = K 
Kl= K 

KO= 0 

OK= 0 

(KL)M = K(LM) 

1 + LL* = L* 

K(L+M) = KL+KM 

(L+M)K = LK+MK 

Lt A (K = LK + M) =*- K = L* M 
(K + L)* = K*(LK*)* 

(K + L)* = (K* L)* K* 

As a consequence of (4) and (9), brackets can often be omitted. 

(1) 
(2) 

(3) 
(4) 
(5) 

(6) 

(7) 

(8) 
(9) 

(10) 
(11) 

(12) 
(13) 
(14) 
(15) 

Although all of (1)-(9) are immediate from the definitions, we prove as an 
example equation (1) by coinduction. We show that 

R = { (K + 0, K) I K E .C} 

is a bisimulation; then (1) follows by coinduction. First note that (K + 0).!. if 
and only if K,i.. And for any a in A, 

(K + O)a 

=Ka+ Oa 

=Ka+O 

RKa· 
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Laws (2)-(9) can be proved similarly. Equality (10) follows by coinduction from 
the fact that 

{(1 + LL"', L*) I LE£} u {(L,L) I LE£} 

is a bisimulation. For (11), one could try to prove that the relation { (K(L + 
M), KL+ KM} I K, L, M E £} is a bisimulation. It turns out to be convenient 
to consider the (by (1)) larger set 

R= {(K(L+M) +N, KL+KM +N) I K,L,M,N E £} 

instead. ( Cf. the strengthening of the inductive hypothesis in an inductive argu
ment.) We show that R is a bisimulation. Consider a in A and a pair (K(L + 
M) + N, KL+ KM+ N} in R. First note that K (L + M) + N terminates if and 
only if KL+KM +N does. Suppose that K.!. (the case that Kt is similar and 
a little easier). Then 

(K(L + M) + N)a 

= Ka (L + M) +La +Ma +Na 

R KaL+ KaM +La +Ma +Na 
= KaL +La+ KaM +Ma+ Na [by (3) and (4)] 

= (KL)a + (KM)a +Na 
= (KL+KM+N)a, 

which concludes the proof that Risa bisimulation. Now (11) follows by coin
duction. Similarly for (12). For (13), let K, L, and M be expressions with Lt 
and K = LK + M. Then K = L * M follows by coinduction from the fact that 
{(UK+ V, UL* M + V} I U, V E ..C} is a bisimulation on .C. Equations (14) and 
(15) follow from the fact that {(M(K + L)*, MK*(LK"')*) I K, L, ME .C} and 
{(M(K+L)*, M(K*L)"'K"') I K,L,ME.C} arebisimulations. 

Some regular languages 

Below the language J..(E) of a regular expression E will be simply denoted by E 
itself. Similarly, Ea denotes J..(E)a· Let A= {a,b}. As an example, we want to 
show 

[(b"a)*ab"]* = 1 + a(a + b)* +(a+ b)*aa(a + b)*. (16) 

Let Ei = [(b*a)"'ab"]* and Fi = 1 + a(a + b)* +(a+ b)*aa(a + b)*. Using the 
calculation rules for a-derivatives of Section 5, the following tables are easily 
computed: 

a b a b 
Ei Bi E4.!. F1 F2 F4 .!. 
Ei E2 Ea.!. F2 F2 Fa.!. 
Es E2 Ea.!. Fa F2 Fa.!. 
E4 E5 E4 t F4 F5 F4 t 
E& Bi E4 t Fs F2 F4 t 
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E2 = [(b*a)*ab* + b*]E1 , 

E3 = [(b*a)(b*a)*ab* + b*]E1 , 

E4 = [(b*a)(b*a)*ab*]E1 , 

E5 = [(b*a)*ab*]E1 , 

F2 =(a+ b)* +(a+ b)*aa(a + b)* + a(a + b)*, 

F3 =(a+ b)* +(a+ b)*aa(a + b)*, 

F4 =(a+ b)*aa(a + b)*, 

F5 =(a+ b)*aa(a + b)* + a(a + b)*. 

As a consequence, T = { (Ei, Fi) I 1 :::; i :::; 5} is a bisimulation. Hence Ei = Fi, 
by coinduction, for 1 :::; i:::; 5. This proves (16). 

It follows from the tables above that { (E2 , E3}, (E2 , E2 ), (E3 , E3)} is a bisim
ulation as well. Thus E2 = E3 , by coinduction, and similarly F2 = F3 • There is, 
therefore, some redundancy in the representation of the bisimulation T, which 
turns out to consist of only 4 different pairs. The interesting point of this obser
vation is that this knowledge was not needed for the conclusion above that T is 
a bisimulation. 

Because ((a+b)*)a = (a+b)* and ((a+b)*)b = (a+b)* imply that { (F2 , (a+ 
b)*), (Fa, (a + b)*)} is a bisimulation, we also have, as another example, the 
following equalities: 

E2 = Ea = F2 = F3 = (a + b) *. 

Inequalities 

The coinduction proof method is clearly also of help in proving that two lan
guages are different. In order to prove E 1 =j:. E 2 in the example above, it is suf
ficient to show that there is no bisimulation relation containing (E1 ,E2). Now 
the assumption that (E1 , E2 ) is in some bisimulation leads to a contradiction, 
since (E1)b = E4 and (E2)b = E3, but (E4)t and (E3)..l-. 

7 Finality and minimization 

We can use coinduction to prove that the automaton £ is final among all au
tomata, i.e., for any automaton S = (S, o, t) there exists a unique homomor
phism from S to£: the existence follows from the observation that the function 
ls : S-+ £(which assigns to a state the language it accepts) is a homomorphism. 
For uniqueness, suppose f and g are homomorphisms from S to£. The equality 
off and g follows by coinduction from the fact that R = { (! ( s), g( s)) I s E S} is a 
bisimulation on£, which is proved next. Because f and g are homomorphisms, we 
have, for any sin S, f(s)+ iff s+ iff g(s)..j... For any a in A, f(s) ~ Liff L = f(s'), 
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where s' = ts(s)(a), and similarly g(s) ~ g(s'). Because (f(s'),g(s')) is in R, 
this shows that R is a bisimulation. 

The unique homomorphism ls : S -t .C has the property that it identifies 
two states in S precisely when they are bisimilar: for all s and s' in S, s "' s' 
if and only if ls(s) = ls(s'). From left to right, this follows by coinduction from 
the general property of homomorphisms that for any bisimulation R on S the 
set {(ls(s),ls(s')) I sRs'} is a bisimulation on .C. For the converse, note that 
{ (s, s') I ls(s) = ls(s')} is a bisimulation on S. 

By the finality of .C, the identity function is the only homomorphism from .C 
to itself. It follows that the language accepted by a state L in .C is L itself, as 
was announced in Section 3. 

The subautomaton (L) ~ .C generated by L, which is given by 

(£) = {Lw I WE A*}, 

is moreover a minimal automaton for L in the following sense. Let S be any 
automaton and s a state in S such that the language accepted by s is L. That 
is, ls(s) = L, where ls : S -t .C is the (unique) homomorphism from S to£ that 
assigns to each state the language it accepts. Because ls is a homomorphism, 
ls((s)) = (ls{s)), whence ls{(s)) = (L). Therefore the size of (L) is at most that 
of S. Since Sand s were arbitrary, (L) is of minimal size. 

It follows that for any automaton S and state s in S, the minimization of 
the automaton (s) is (ls(s)). Another consequence is that 

L is accepted by a finite automaton iff 

(L) is a finite subautomaton of .C. (17) 

This is in fact equivalent to the following classical theorem by N erode and My hill. 
Let RL be an equivalence relation on A* defined, for v and w in A*, by 

vRLw iff 'Vu EA*, vu EL~ wuEL. 

The index of RL is defined as the number of its equivalence classes. The theorem 
of Nerode and Myhill now says that 

L is accepted by a finite automaton iff 

RL is of finite index. {18) 

The equivalence of (17) and (18) follows from the observation that the corre
spondence between equivalence classes of RL and elements of (L), given for w 
in A* by [w]RL ~ Lw, is bijective: for v and win A*, 

[v]RL = [w]RL 
iff v RL w 

iff'v'u EA*, vu EL <:==>- wu EL 

iff'v'u EA*, u E £ 11 <===>- u E Lw 

iff L 11 = Lw. 
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8 Kleene's theorem 

Kleene's celebrated theorem states that a language is regular if and only if it 
is accepted by a finite automaton. In view of (17), Kleene's theorem can be 
expressed in terms of subautmnata of the automaton £ of languages, as follows. 
Let A be finite. For any language L ~A*, 

L is regular iff (L) is a finite subautomaton of C. (19) 

As a corollary of (19), it will be shown below that the coinduction proof principle 
is effective for regular languages (as was announced in Section 6). 

In order to prove (19) from left to right, consider >.(E), for some regular 
expression E. One can show by induction on the syntactic structure of E that 
(>.(E)) is finite. Consider, for instance, EF and assume that (>-.(E)) and (>.(F)) 
are finite. It follows from the rules for a-derivatives that the general format of 
a state reachable from >-.(EF) is K' M + M' + · · · + M", for K' in (>.(E)) and 
M', ... , M" in (>.(F)). Using (some of) the laws (1)-(8), it follows from the 
inductive hypothesis that (>.(EF)) ~ {K 1 M + M 1 + · · · + M" I K' E (>-.(E))} is 
finite. The other cases are dealt with similarly. 

Conversely, we have to show that for a language L for which (L) is finite, 
there exists a regular expression E with >.(E) = L. Rather than proving this 
part of the theorem for arbitrary languages, we consider an example that can be 
easily generalized to the general case. The following law, which can be readily 
proved by coinduction, will be helpful: If A = {a, ... , b} then for all languages 
L, 

L _ { aLa + · · · + bLb + 1 if L..j.. 
- aLa + · · · + bLb if Lt. (20) 

For an example, let A = {a,b} and Kin ,C with (K) = {K,L,M,N}, for 
languages L, M, and N, with transitions and termination as specified by the 
following table: 

a b 
K L Mt 
L L M_j.. 
M M N_j.. 
N N Nt 

By (20), there are the following equations: 

K=aL+bM 

L=aL+bM + 1 

M=aM+bN+l 

N=aN+bN 

Because N = aN + bN = (a+ b)N + 0, law (13) implies N = (a+ b)*O = 0. 
Thus M = aM + 1 which, again by (13) gives M = a*. Similarly it follows that 
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L = a*(ba* + 1) and K = aa*(ba* + 1) + ba*, which proves that K is regular, 
indeed. This completes the proof of (19). 

A consequence of (19) is that the coinduction proof principle is effective for 
regular languages ).(E) and >.(F): In order to construct a bisimulation relation 
that includes the pair ().(E), .X(F)), one has to add all pairs of states that are 
(pair-wise) reachable from >.(E) and >.(F). Since both (>.(E)} and (.X(F)) are 
finite, by (19), it follows that in finitely many steps, either such a bisimula
tion is constructed (whence >.(E) = >.(F)) or the conclusion is reached that no 
bisimulation for .A(E) and .X(F) exists (whence >.(E) ¥:- .X(F)). 

Note that the use of the simplification laws (1)-(8) is crucial for termination; 
for instance, they are needed to conclude that all languages occurring in the 
sequence 

>.(a*) ~ lA(a*) ~ O>.(a*) + lA(a*) ~ O>.(a*) + O>.(a*) + 1>.{a*) ~ · · · 

are equal, and hence that (>.(a*)) consists of only one state. 

9 N onregular languages 

An immediate consequence of Kleene's theorem in the formulation of (19) above 
is that in order to show that a language Lis nonregular, it is sufficient to prove 
that (L) is not finite. This method is equivalent, by the equivalence of (17) and 
(18), to the traditional approach of showing that RL is of infinite index. Here 
are three classical examples, in which the following shorthand will be used. For a 
language Kand k ;::: 0, let the language Kk be the resulting state after k a-steps: 
Kk =Ka"· 

Let L = {anbn I n ~ O}, where as usual a0 = 1 and an+l = aan. Clearly, 
Lk = {an-kbn I n ~ k} and thus Lk and Lk' are different whenever k and k' 
are. This shows that (L} is infinite, hence L is nonregular. 

For a second example, consider M = { w E A* I lta ( w) = ltb ( w)} consisting 
of all words with an equal number of a's and b's. All languages Mk are different 
because for any n and k, the word bn is in Mk iff k = n. Thus (M} is infinite 
and M is nonregular. 

Finally, let N = {an2 In;?: O}. Note that for any n the length of the shortest 
word in Nn2+1 is ja(n+1)2-n2- 1J = ja2nl = 2n. Therefore Nn2 and Nm2 are 
different whenever n and mare. Thus (N) is infinite and N is nonregular. 

10 Definitions by coinduction 

The fact that C is final gives rise to the following coinductive definition principle: 
in order to define a function from a given set S to C, we can turn S into an 
automaton by defining an output function o and a transition function t on S. 
A function ls : S -+ C is then obtained by the finality of C as the unique 
homomorphism between the automata S and £, which assigns to each element, 
that is, state s in S the language it accepts. 
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As an example, we shall apply the above principle to obtain a coinductive 
definition of the shuffle of two languages. To this end, let the set £ of expressions 
be given by the following syntax: 

E ::= L. (for L E £) I E + F I E II F 

Note that £ contains a symbol L_ for any language L in C. The set E can be 
turned into an automaton(£, oe, te), defined by the following axioms and rules 
(using the arrow notation introduced in Section 2): 

L_.j_ {:> € E L, (E + F).j_ {:> E .j, or F .j,, (E II F).J. {:> E .j, and F .j_ 

E~E' F~F' 

E+F~E1 +F1 

E~E' F~F' 

E II F~ E' II F+ E llF' 
Note that the above axioms and rules uniquely determine two functions oe : E 4 

2 and te : E 4 £A. By the coinduction definition principle, there exists a unique 
homomorphism l : E -+ .C, giving for each expression E, that is, state of the 
automaton£, the language l(E) it accepts. One readily proves (by coinduction) 
that l(L_) = L and l(E + F) = l(E) + l(F). 

The shuffle of two languages Kand L can now be defined as KllL = l(K II L_). 
Its a-derivative, for a in A, can be computed as follows: 

(KllL)a 
= (l(K II L_))a 
= tc(l(K II L))(a) 

= l(te(K II L)(a)) [l is a homomorphism] 

= l(Ka II L_ + K JI La) [definition te] 
= l(Ka II L_) + l(K IJ La) 

= KallL + KllLa. (21) 

This characterization is useful for proving properties by coinduction, such as 
KllL = LllK, Kll(L + M) = KllL + KJIM, and (KllL)JIM = Kll(LllM). For 
instance, the latter equality follows by coinduction from the fact that 

{( (KllL)IJM + ... + (K'llL')llM', KJl(LllM) + ... + K'll(L'llM')) I 
K,L,M,K1,L1,M1 E .C} 

is readily shown to be a bisimulation. 
Let us, once more, make a case for the importance of coinduction by inviting 

the reader to prove the associativity of the shuffle operator by induction, using 
the following inductive definition: 

KIJL = LJ{vllw Iv EK, w EL}, with 

vllw=vll_w+wll_v, c:ll_v={v}, (av)u_w=a(vllw), 

and to compare the inductive proof to the coinductive one above. 
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11 Simulation 

The notion of bisimulation is a special case of the more general notion of simu
lation, which will be introduced below. Simulation is used in the formulation of 
yet another coinduction principle on [, which generalizes that of Section 4. 

A simulation between two automata S = (S, o, t) and S' = (S', o', t') is any 
relation R ~ S x S' with, for all s in S, s' in S', and a in A: 

. , { o(s) < o'(s') and 
if sRs then t(s)(aj R t'(s')(a). 

Thus if s R s' then s.j.. implies s' .j... A simulation between S and itself is called a 
simulation on S. Unions and (relational) compositions of simulations are simu
lations again. We write s :::; s' whenever there exists a simulation R with s R s'. 
This relation $ is the union of all simulations and, therewith, the greatest sim
ulation. The greatest simulation on one and the same automaton S, denoted 
by $ (or $s, if the name of the automaton is relevant), is called the similarity 
relation. It is a preorder: s $ s and if s $ t and t :::; u then s $ u. 

Clearly every bisimulation is a simulation. The converse does not hold but 
s $ t and t :::; s imply s ,....., t: if s R t and t T s for two simulations R and T then 
R n T- 1 is a bisimulation with s( Rn T-1 )t. It follows that "'=:::; n $-1 . 

The automaton C = (.C, or.., tr..) satisfies the following proof principle, which 
is again called coinduction: for all languages Kand L, 

if K :::; L then K ~ L. 

(The converse trivially holds.) The proof principle says that in order to prove 
the inclusion of a language K in a language L, it is sufficient to establish the 
existence of a simulation relation R on C with K R L. Inspecting the proof of 
the previous coinduction principle in Section 4, we see that it contains a proof 
of the statement above. 

The regular operations on languages can be easily shown to be monotonic 
with respect to~· For instance, if K ~ K' and L ~ L' then KL~ K'L'. Also 
K ~ L implies Ka ~ La. 

The above coinduction principle is often best applied in combination with the 
following weakening of the notion of simulation. A simulation up-to-similarity 
on automata S = (S, o, t) and S' = (S', o', t1) is any relation R ~ S x S' with, 
for alls in S, s' in S', and a in A: 

. , { o(s) < o'(s1 ) and 
if sRs then t(s)(aj R$ t'(s')(a), 

where R$ =$so Ro $s1 (o denotes composition of relations). Interestingly, if 
sRt for a simulation up-to-similarity R then s :$ t, since in that case R< is a 
simulation and R ~ R<. Thus in order to prove K ~ L it suffices to point to a 
simulation up-to-similarlty R with K R L. 
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We treat a few examples. The following inclusions and equational implica
tions can all be proved by coinduction: 

For (22), we show that 

KL~ KllL 
KL ~ L => K* L ~ L 

LK + M ~ K => L * M ~ K 

KL~ LM => K* L ~ LM* 

R ={(KL+ ... +K'L', KllL+ .. ·+K'llL') I K,L,K',L' E .C} 

(22) 

(23) 

(24) 

(25) 

is a simulation up-to-similarity. Consider (KL, KllL) in R (the other cases of 
pairs of longer sums are similar). Suppose K{. (the case of Kt being simpler). If 
(KL).!. then (KllL){.. And for a in A, 

(KL)a 

=KaL+La 

= KaL+ lLa 

~ KaL + KLa [1 ~ K since K.!.] 

R KallL + KllLa 

= (KllL)a [by (21)], 

which shows that R is a simulation up-to-similarity. Now (22) follows by coin
duction. For (23) consider K and L with KL ~ L. Then 

S = {( M K* L-:+- N, ML + N) I M, N E .C} 

is a simulation up-to-similarity: if (MK*L + N)-l. then (ML+ N){.. And for a 
in A, 

(MK*L+N)a 

= MaK* L + KaK* L + La +Na [supposing that M .J.] 
=(Ma+ Ka)K*L +La+ Na 

S (Ma + Ka)L + La +Na 

= MaL+KaL+La +Na 

~ MaL +La+ Na [KL~ L implies (KL)a. ~La. whence KaL +La~ La] 

= (ML+N)a-

Thus (23) follows by coinduction. Law (24), which refines equation (13) in Section 
6, and law (25) are proved similarly. 

As another example, we prove the inclusion of the following regular languages: 

[(b*a)*ab*]* ~ [(b*a)*ab* + b*][(b*a)*ab*]*, 

which we recognize as E 1 and Ei from Section 6. The inclusion follows by coin
duction from the fact that we have a simulation 
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12 Automata are coalgebras 

Classically, an automaton over a (finite) fixed input alphabet A is defined as a 
4-tuple 

(S, s0 ES, F~S, 6:SxA-+S), 

consisting of a finite set S of states, an initial state s0 , a set F of terminating (or 
accepting) states, and a transition function 6. Below our definition of automa
ton, as given in Section 2, is compared to the one above. It is explained that 
our definition in essence is coalgebraic, and that the notions of homomorphism, 
bisimulation, and coinduction as introduced in the preceding sections, are special 
instances of general coalgebraic definitions. 

First of all, there is no reason to restrict oneself to finite sets A and S. On 
the contrary, allowing an infinite set of states makes it possible to consider, for 
instance, the set C of languages as an automaton. Secondly, we have not included 
an initial state in our definition, simply because there is no reason to focus 
attention to one particular state. In the classical theory of automata, initial states 
play a role, for instance, in the definition of the sequential composition of two 
automata, where all the terminating states of the first automaton are connected 
to the initial state of the second automaton (usually by an f-transition). As we 
have seen, there is no need for such a construction in the present theory. 

Allowing infinite sets and forgetting about the initial state, the classical defi
nition of course becomes equivalent to the definition of Section 2, because of the 
existence of bijections 

P(S) ~ (S-+ 2) and (S x A-+ S) ~ (S ---t sA). 

Thus there is a one-to-one correspondence between triples (S, F, 6) and triples 
(S, o, t). The choice of working with the latter representation is motivated by 
the observation that in this way, automata can be viewed as coalgebras: Let 
F : Set -+ Set be a functor on the category of sets and functions. An F -coalgebra 
is a pair (S, as) consisting of a set S and a function as : S -+ F(S). Automata 
are coalgebras of the following functor D : Set ---t Set, which is defined on sets 
S by D(S) = 2 x SA (below we shall define how D acts on functions). Now for 
an automaton (S, o, t), the functions o : S -+ 2 and t : S -+ SA can be combined 
into one function (o, t): S-+ 2 x SA, which sends sin S to the pair (o(s), t(s)). 
In this way, the automaton (S, o, t) has been represented as a D-coalgebra 

(o, t) : S-+ D(S). 

The reason to be interested in this coalgebraic representation of automata is 
that there exists a number of notions and results on coalgebras in general, which 
can now be applied to automata. 

Notably there is the following definition. Consider again an arbitrary functor 
F: Set-+ Set and let (S,o:) and (S',a') be two F-coalgebras. A function 
f: S-+ S' is a homomorphism of F-coalgebros, or F-homomorphism, if F(f) o 
a = a' o f. In order to apply this definition to the case of automata, we still 
have to give the definition of the functor D on functions, which is as follows. 
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For a function f : s -t S'' the function D(f) : (2 x sA) -t (2 x s 1A) is defined, 
for any x in 2 and h in sA by D(f)((x,h)) = (x, I 0 h). Now consider two 
automata, i.e., D-coalgebras, (S, (o, t)) and (81 , (o', t') ), where (o, t) : S -t D(S) 
and (o', t') : S' -t D(S'). According to the definition, a function f : S -t S' is a 
homomorphism of D-coalgebras if D(f) o (o, t) = (o', t') of, which is equivalent 
to o(s) = o'(f(s)) and f(t(s)(a)) = t'(f(s))(a), for alls and a. Note that this is 
precisely the definition of homomorphism given in Section 2. Indeed, even if we 
did not mention this before, the general coalgebraic definition of homomorphism 
has been our starting point. 

Also the notion of bisimulation introduced in Section 2 is an instance of a 
general coalgebraic definition: A relation R ~ S x S' is called an F-bisimulation 
between F-coalgebras (S, a) and (81 , a') if there exists an F-coalgebra structure 
etR: R--+ F(R) on R such that the projections ?r1 : R -t Sand 71"2 : R -t S' are 
F-homomorphisms. It is left to the reader to verify that applying this definition 
to the functor D yields our original definition of bisimulation of automata. 

For a functor F: Set--+ Set, the family of F-coalgebras together with the F
homomorphisms between them, forms a category (indentity functions are homo
morphisms, and the composition of homomorphisms is again a homomorphism). 
In this category, final coalgebras are of special interest (if they exist at all): a 
coalgebra (P, 7r) is final if there exists from any coalgebra precisely one homo
morphism into (P;rr). The interest of final coalgebras lies in the fact that they 
satisfy the following coinduction proof principle: if there exists an F-bisimulation 
between p and p' in P then p and p' are equal. This is immediate by the finality 
of (P, 7r). 

Many functors have a final coalgebra (final coalgebras are unique up to iso
morphism), and for many functors it can be constructed in a canonical way. For 
our functor D, this construction yields the set A* -t 2, which is isomorphic to 
the set C of all languages. Indeed, we have seen in Sections 7 and 4 that .C is a 
final automaton and satisfies the coinduction proof principle3 . 

Summarizing the above, we hope to have explained the subtitle of the present 
paper. The treatment of automata in the preceding sections has been coalgebraic: 
the definitions of automaton, homomorphism, and bisimulation, as well as the 
focus on finality and coinduction, all have been derived from or motivated by 
very general definitions and observations from coalgebra. 

As such, this coalgebraic story of automata is just one out of many, in prin
ciple as many as there are functors (on Set but also on other categories). Many 
other examples have been studied in considerable detail already, including tran
sition systems, data types (such as streams and trees), dynamical systems, prob
abilistic systems, object-based systems, and many more. And many more are still 
to follow. It is to be expected that the theory of several other kinds of automata 
may benefit from a coalgebraic treatment. 

In the remaining sections of the present paper, the coalgebraic approach is 
further illustrated by the treatment of automata with partial transition func-

3 We have proved that C satisfies the coinduction proof principle before proving its 
finality for didactical reasons. 
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tions. These partial automata are coalgebras of a functor D' : Set -+ Set, which 
is defined as a minor variation of the functor D: for a set S, D' (S) = 2 x (1 + S)A. 
As before, our presentation will make no explicit reference to coalgebra. 

13 Partial automata 

A partial automaton with input alphabet A is a triple S = (S, o, t) consisting, 
as before, of a set S of states and an output function o : S -+ 2, but now with 
a transition function t that assigns to each state a partial function. That is, 
t : S -+ (1 + S)A, where 1 = { 11}, and where for a function f in (1 + S)A and 
input symbol a in A, f(a) ='ft means that f is undefined in a, sometimes simply 
denoted by f(a)'ft. Dually, f (a).t). denotes that f (a) is defined. (These conventions 
will more generally be used for functions from X to 1 + Y, for arbitrary sets X 
and Y.) 

As before, we shall sometimes write s.i for o(s) = 1, st for o(s) = 0, and 
s--2:..+s' for t(s)(a) = s'. In addition, s-74 denotes t(s)(a)ir. 

A bisimulation between partial automata S = (S, o, t) and S' = (S', o', t') is 
now a relation R ~ S x S' with, for all s in S, s' in S', and a in A: 

• 1 { o(s) = o'(s') and 
if s R s then t(s)(a) (l + R) t'(s')(a), 

where t(s)(a) (1 + R) t'(s')(a) holds iff either both sides are undefined or both 
sides are defined and related by R. Note that as a consequence, s R s' implies 
s-74 iff s' -74. 

The notions of bisimilarity, homomorphism and subautomaton are defined 
as before, and the various properties given in Section 2 again apply. 

Due to the possibility of refusing certain input symbols, the language ls(s) 
accepted by a state s of a partial automaton S = (S, o, t) may now consist of 
three different kind of words: 

1. Ifs ~ s1 ~ · · · ~ sn.i then ai ···an E ls(s), as before. 
2. Ifs~ S1 ~···~Sn t and for all a in A, sn-74, then ai ···an·<> E ls(s). 

Here the postfix 6 (which is supposed not to be an element of A) is used to 
register the fact that after the last input symbol (an), a so-called deadlock 
occurs: the automaton has reached a state (sn) which is not terminating, 
and from which no further steps are possible. 

3. Ifs~ s1 ~ s2 ~ ···then the infinite word a1a2a3 · · · E ls(s). 

In order to define the collection of all acceptable languages, let 

A8 =A* u AW u A*. 6, 

where A* is as before, Aw is the set of all infinite words over A, and A* ·8 = { w·6 I 
w E A*}. Sometimes A00 is used as a shorthand for A* U Aw. For an infinite 
word w = a1a2a3 ···in Aw and natural number n ~ 1, the n-th truncation of w 
is given by w[n] = a1 • · ·a11 • 
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We shall again need the notion of derivative. For a word win A* and a subset 
L ~ A8, let the w-derivative of L be defined by 

Lw = { V E A:5° J WV E L}, 

where concatenation of words is extended to A:f' in the obvious way. 
A set L ~ A8 is closed4 if for all infinite words w in Aw, 

w E L {:::::} Vn 2 1, Lw[n] -:/:- 0. 

Typically, a00 is closed, whereas a* is not. A set L ~ A8 is consistent if for all 
words w in A:f, 

8 E Lw {:::::} Lw = { 8}. 

For instance, { ab, ac, M} is consistent whereas { ab, at>} is not. 
A language (of partial automata) is next defined as a non-empty, closed, 

and consistent subset of A8. Let .Cp denote the set of all languages (of partial 
automata): 

.Cp ={LI L ~ A:f', L is non-empty, closed, and consistent}. 

It is not difficult to verify that the set ls(s) above indeed belongs to Lp- We shall 
see that, conversely, any language in .Cp is accepted by some partial automaton. 

The set .Cp can be turned into a partial automaton .Cp = (£p, o.c,P, t.cp) by 
defining, for L in £p and a in A, 

That is, 

{ lifc:EL 
0 .c,, ( L) = 0 ifc rt. L 

d (L)( ) { La if La -:/:- 0 
an : t.c,p a = 11 if La = 0. 

L .!- iff c E L, L ~ La iff La # 0, L-o/+ iff La = 0. 

Again the coinduction principle holds: for all languages K and L in .Cp, 

if K ,...., L then K = L. 

It is identical in shape to the principle of Section 4, but note that the languages 
under consideration are now living in Lp instead of£, and that a different notion 
of bisimilarity is involved. A new proof of the principle is therefore required but 
nevertheless omitted. It is not very difficult, and one needs to use the fact that 
the languages in Lp are both closed and consistent. 

As before, it follows by coinduction that the automaton Lp is final among 
the collection of all partial automata: the unique homomorphism from a partial 
automaton S to the automaton Lp is given by the function ls : S -t Lp described 
above. Because Lp is final, the coinduction definition principle (Section 10) holds 
again. It will be used in the next section. 

4 The terminology is explained by the fact that this definition is equivalent to being 
closed with respect to the metric topology on Ar' induced by the Baire metric. 



212 

14 Regular expressions for partial automata 

In order to formulate a Kleene theorem for partial automata, which will be 
proved in the next section, a notion of regular expression for partial automata 
is introduced, as a minor variation on the classical definition (given in Section 
5). Next regular languages and regular operators are defined by coinduction, in 
the same style as the definitions given in Section 10. 

The set 'Rp of regular expressions (for partial automata) is defined by the 
following syntax: 

E ::= 0 I 1 I a E A I E + F I EF I E 00 

The only difference with the previous definition is the absence of E*, which has 
been replaced by E00 • 

Both the language l ( E) of a regular expression E in 'Rp and the regular 
operators will be defined by coinduction. To this end, a class ep of expressions 
(for partial automata) is introduced, given by the following syntax: 

E ::= L_ (for L E .Cp) I E + F I EF I E 00 

where an underscore is used to distinguish between the syntactic symbol Id and 
the language L. However, the underscore will be omitted whenever possible with
out creating confusion. 

The set 'Rp of regular expressions can be viewed as a subset of ep by making 
the following identifications: 0 ={a}, 1 = {e}, and a= {a}. 

In order to apply the coinduction definition principle, the set ep is turned 
into a partial automaton ep = (ep, Oep, tep), where the functions Oep and tep are 
defined by the following axioms and rules: 

Id .l. iff c E L, (E00 ).j.., (E + F).l. *> E .l. or F +, (EF)+ *> E _j.. and F .l. 

!d_-4 La iff La =f:. 0 

E~E' F~F' 

E+F~ E 1 +F1 

E -!4 E' F-o/t E-o/t F ~ F' 

E+F~ E' E+F~ F' 

E~ E' Et E~ E' F-o/t E.l. 

EF~ E'F EF~ E'F 

E ~ E' F ~ F' E.l. E-o/+ F -!4 F' E.l. E ~ E' 
EF ~ E'F+F' EF ~ F' E 00 ~ E 1E 00 

These axioms and rules uniquely define two functions osp and tep, essentially by 
induction on the syntactic structure of expressions. For instance, oep (E00 ) = 1, 
and tep(E00 )(a) = (tep (E)(a))E00 • 

By the finality of the partial automaton of languages .Cp, there exists a unique 
homomorphism l : £,, -+ .Cp, which gives for any expression in ep, notably for 
each regular expression E in 'Rp, the language l(E) it represents. As before, a 
language Lis called regular if it equals l(E), for some E in 'Rp. 
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The homomorphism l : £p -t .Cp can also be used to define the regular 
operators: for languages Kand Lin .Cp, let 

K + L = l(K + L_) 

KL=l(KL) 

K 00 = l((K)°"). 

The bisimilarity relation ,..., on £p can, with a little bit of patience, be shown to 
be a congruence with respect to the regular operators: if E ,..., G and F ,..., H 
then E + F ,..., G + H, EF ,..., GH, and E 00 ,...., G00 • Combining this with the 
observations that E ,...., l(E), and that l(E) = l(F) iff E ,..., F, the following 
equalities can be readily proved: 

l(O) = {8} 

l(l) = {e} 

l(a) ={a} 

l(E + F) = l(E) + l(F) 

l(EF) = l(E)l(F) 

l(E00 ) = l(E) 00 • 

For instance, l(E+F) = l(l(E) +l(F)) = l(E) +l(F). Whenever convenient and 
harmless, we shall simply write E for l(E). Notably, 0, 1, and a will then denote 
the three singleton sets mentioned above. Note that the language represented 
by 0 is no longer the empty set, as it is in Section 5, but the singleton set {8}, 
representing deadlock. 

The regular operators could again have been defined 'elementwise', but things 
would have been slightly more complicated than before. The sum of two lan
guages can no longer be defined as their union, nor does their concatenation 
consist of the pairwise concatenation of their respective elements. This is illus
trated by the following equalities, which are an immediate consequence of the 
coinductive definitions above: 

{8} +{a}= {a} 

{a8} + {aa} = {aa} 

{ a8, c }{ ab} = { ab}. 

The intuition here is that (a possibly nested occurrence of) the deadlock symbol 
8 should disappear in the presence of an alternative transition step. Also the 
definition of K 00 is essentially more complicated than that of K*, since the 
latter could be defined as the union of an inductively defined sequence (Kn)n 

of finite powers of K. This is not possible for K 00 , which should include also 
infinite words composed of infinitely many finite words from K. Although K 00 

can be defined using, for instance, least upperbounds of chains in K* with the 
familiar prefix ordering, the above coinductive definition of K 00 is simpler in the 
sense that it is purely set-theoretic. 
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Equalities of expressions can again be proved by coinduction, by establishing 
the existence of bisimulation relations. Note that a bisimulation on Cp is any 
relation R such that for K and L with K R L, K .j.. iff L.j.., and for any a in 
A, tcp (K)(a) (1 + R) tcp (L)(a). It follows from the definitions that the latter 
formula means that either both Ka and La are empty, or both are non-empty 
and related by R. 

The following calculation rules for a-derivatives will again be helpful when 
proving the existence of bisimulation relations. They follow from the coinductive 
definition above by exploiting the fact that l : £p ~ Cp is a homomorphism: 

b -{{t}ifb=a 
a - 11' otherwise 

(K + L)a =Ka+ La 

{ KaL if Kt 
(KL)a= KaL+LaifK.j.. 

(K 00 )a = Ka K 00 , 

where the latter three equalities are as before (Section 5) but now have to be read 
with the following conventions in mind: for all languages Kand input symbols 
a, 

Ka + 0 = 0 + Ka = Ka, 0K = 0. 
All the laws (1)-(15) listed in Section 6 are valid for Cp (replacing, of course, 
occurrences of(-)* by (-)00 , everywhere), but for law (7). The proofs are only 
slightly more involved due to a greater number of case distinctions. For instance, 
K ( L + M) = KL + KM (11) will now follow from the fact that 

{(K(L+ M) +N, KL+ KM +N} I K,L,M,N E £p} u {(K, K} IKE .Cp} 

is a bisimulation. Interestingly, the following equation 

Lt /\ (K = LK + M) =* K = L00 M {26) 

is proved in essentially the same way as law (13). Law number (7) is no longer 
valid: with the present interpretation of O, KO is generally different from 0. 
For instance, aO = {a}{<)} = {aa}. More interestingly, there is the following 
equation: 

(27) 

which can be taken either as a definition of Kw, or as a theorem once Kw has 
been defined first. A coinductive definition of Kw could be given by extending 
the set cp of expressions with Ew, and by specifying the following transitions 
and termination condition: 

(Note that this definition is the same as for E00 , but for the fact that (E00 ).j...) 
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15 Kleene's theorem for partial automata 

Kleene's theorem, as formulated in Section 8, also holds for partial automata: 
For all languages Lin Cp, 

L is regular iff (£) is a finite subautomaton of Cp· (28) 

It can be proved in almost exactly the same way as before, now using law (26) 
and the following variant of law (20). Let A be a finite alphabet and consider L 
in Cw If B = {a, ... , b} is defined as the subset of A containing all input symbols 
c in A for which Le =f. 0, then: 

L = { aLa + · · · + bLb + 1 if £.j.. 
aLa + · · · + bLb + 0 if Lt. 

(Note that if the set B is empty then the second expression is equal to 0.) 

16 Notes and discussion 

(29) 

As we have seen in Section 12, most notions and observations of the present paper 
are instances of far more general ones, belonging to a theory called (univer.sal) 
coalgebra. See [Rut96, JR97] and the references therein for more information on 
coalgebra. In [JMRR98], many recent developments in coalgebra are described. 

The coalgebraic definition of bisimulation is a categorical generalization, due 
to Aczel and Mendler [AM89), of Park's [Par81] and Milner's [Mil80] notion of 
bisimulation for concurrent branching processes. This general categorical defi
nition applies to many different examples, including nondeterministic (possibly 
probabilistic) transition systems, object-based systems, infinite data structures, 
various other types of automata, and dynamical systems. See [Rut96, JR97) for 
many examples and pointers to the literature. 

The notions of homomorphism and (generated) subautomaton occur at var
ious places in the literature (usually inspired by universal algebra), for instance 
in [Gec86]. 

The coinduction principle of Section 4 for the final automaton £, together 
with the corresponding 'being is doing' characterization, applies more generally 
to any final coalgebra. Coinduction as a proof principle for greatest fixed points 
of monotone operators is already around for some time. For final coalgebras of 
the powerset functor, it has been introduced in [Acz88]. In [RT93], the principle 
is stated in its generality for arbitrary functors. 

The word coinduction suggests a duality between induction and coinduction. 
This is explained by the observation that induction principles apply to initial 
algebra.s. Somewhat more concretely, the duality can be understood as follows. It 
is not difficult to prove that coinduction on £ is equivalent to the statement that 
£ has no proper quotient.s, that is, if f : £ -+ Sis a surjective homomorphism 
then £ ~ S. This property is dual to the principle of mathematical induction 
on the algebra of natural numbers, which essentially states that the algebra 
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of natural numbers has no proper subalgebras. See [Rut96, Sec.13] for a more 
detailed explanation. 

The use of coinduction, both as a proof and as a definition method, is by 
now widespread (see for instance [BM96], which is a recent textbook on nonwell
founded set theory, and [JR97], for an introductory overview). Its application 
to languages and regular expressions, in Sections 6 and 10, is to the best of our 
knowledge new. 

The calculation rules for a-derivatives (Section 5) of regular combinations of 
languages are well-known, have been reinvented several times, and are originally 
due to Brzozowski [Brz64] (see also [Con71] and [BS86]). Both Brzozowski's 
paper [Brz64] and Conway's book [Con71] contain, more generally, many of the 
ingredients that have been used in the present paper. 

A well-known way of proving equality of regular expressions is to use a com
plete axiom system (of which the laws in Section 6 form a subset), such as given 
by Salomaa in [Sal66), and apply purely algebraic reasoning. The reader is in
vited to consult [Gin68, pp.68-69], from which the example E 1 = F1 in Section 
6 was taken, and convince himself of the greater complexity of that approach. 

The most common and practical way of proving equality of two expressions is 
firstly, to construct for each expression an automaton that accepts the language 
it represents, and secondly, to minimize both automata. The two expressions are 
then equal iff the two resulting automata are isomorphic. For both the construc
tion and the minimization step, many different and efficient algorithms exist (see 
[Wat95] for an extensive overview and comparison). 

This classical approach is related to the coinduction proof method by the 
observation, in Section 2, that bisimulations are automata themselves. Thus also 
a proof by coinduction consists of the construction of an automaton. Our way of 
constructing this 'bisimulation automaton' is essentially based on Brzozowski's 
algorithm, using a-derivatives, but note that only one automaton is constructed 
for both expressions at the same time. Another difference is that this automaton 
need not be minimized in order to conclude that the two expressions are equal 
(this was illustrated by the bisimulation T used for the proof of E 1 = F1 at 
the end of Section 6). The question whether this can lead to (more) efficient 
algorithms is yet to be addressed. 

The connection between finality and minimality in Section 7 can already be 
found in [Gog73). Our formulation of Kleene's theorem in Section 8 and its use as 
a criterion for nonregularity in Section 9 may be new, though the proofs involved 
are of course built from well-known ingredients. 

Classically, the minimization of an automaton is obtained by identifying all 
states that are observationally equivalent. Referring to the notation of Section 
12, two states s and s' are equivalent iff for all words win A*, 

8(s, w) E F {::==}- J(s', w) E F, 

where 8(s, i::) = s and 8(s, wa) = 8(J(s, w), a). This notion of equivalence corre
sponds to our notion of greatest bisimulation relation (bisimilarity). Note that 
in the present theory, bisimulation relations are considered that generally are 



217 

not maximal. This is yet another and maybe the most important difference with 
the classical approach. 

Simulation relations have been studied in several forms and ways. We believe 
the present definition in Section 11, as well as the coinduction principle based on 
it, to be new. The definition of simulation up-to-similarity is a straightforward 
variation of Milner's notion of bisimulation up-to-bisimilarity [Mil80]. Some of 
the laws of Section 11 have been taken from [Koz94], where a complete axiom 
system for equality of regular expressions is presented in terms of equational 
implications. 

The treatment of partial automata, which are coalgebras of the set functor 
D'(S) = 2 x (1 + S)A, has been inspired by a recent paper [vB98] of Franck 
van Breugel, in which a related functor (on metric spaces) is studied. It comes 
somewhat as a surprise that the set .Cp, which is a final coalgebra of the set 
functor D', consists of metrically closed subsets. Such sets have been used at 
various places in the work of the French and Dutch schools of Nivat and De 
Bakker on metric semantics (cf. the recent textbook [BV96]). The notion of 
consistent language corresponds to the notion of reduced set in [dB91]. 

Automata theory has been and still is commonly understood as essentially 
algebraic. Cf. Ginzburg's Algebraic theory of automata [Gin68], Conway's Regu
lar algebra and finite machines [Con71], and Kozen's recent textbook Automata 
and computability, from which the following quotation is taken [Koz97, p. 112]: 
"It should be pretty apparent by now that much of automata theory is just 
algebra." We hope to have shown that the coalgebraic treatment of automata 
theory offers, at least, an interesting alternative. 
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