
Partial Order Reductions for Timed Systems

Johan Bengtsson1 Bengt Jonsson1 Johan Lilius2 Wang Yi1

1 Department of Computer Systems, Uppsala University, Sweden.
Email: {bengt,johanb,yi}@docs.uu.se

2 Department of Computer Science, TUCS, Åbo Akademi University, Finland.
Email: Johan.Lilius@abo.fi

Abstract. In this paper, we present a partial-order reduction method
for timed systems based on a local-time semantics for networks of timed
automata. The main idea is to remove the implicit clock synchronization
between processes in a network by letting local clocks in each process
advance independently of clocks in other processes, and by requiring
that two processes resynchronize their local time scales whenever they
communicate. A symbolic version of this new semantics is developed
in terms of predicate transformers, which enjoys the desired property
that two predicate transformers are independent if they correspond to
disjoint transitions in different processes. Thus we can apply standard
partial order reduction techniques to the problem of checking reachability
for timed systems, which avoid exploration of unnecessary interleavings
of independent transitions. The price is that we must introduce extra
machinery to perform the resynchronization operations on local clocks.
Finally, we present a variant of DBM representation of symbolic states
in the local time semantics for efficient implementation of our method.

1 Motivation

During the past few years, a number of verification tools have been developed for
timed systems in the framework of timed automata (e.g. Kronos and Uppaal)
[HH95,DOTY95,BLL+96]. One of the major problems in applying these tools
to industrial-size systems is the huge memory-usage (e.g. [BGK+96]) needed to
explore the state-space of a network (or product) of timed automata, since the
verification tools must keep information not only on the control structure of the
automata but also on the clock values specified by clock constraints.

Partial-order reduction (e.g., [God96,GW90,HP94,Pel93,Val90,Val93]) is a
well developed technique, whose purpose is to reduce the usage of time and
memory in state-space exploration by avoiding to explore unnecessary interleav-
ings of independent transitions. It has been successfully applied to finite-state
systems. However, for timed systems there has been less progress. Perhaps the
major obstacle to the application of partial order reduction to timed systems
is the assumption that all clocks advance at the same speed, meaning that all
clocks are implicitly synchronized. If each process contains (at least) one local
clock, this means that advancement of the local clock of a process is not indepen-
dent of time advancements in other processes. Therefore, different interleavings

of a set of independent transitions will produce different combinations of clock
values, even if there is no explicit synchronization between the processes or their
clocks.

A simple illustration of this problem is given in Fig. 1. In (1) of Fig. 1 is a
system with two automata, each of which can perform one internal local tran-
sition (α1 and α2 respectively) from an initial local state to a synchronization
state (m, s) where the automata may synchronize on label a (we use the syn-
chronization model of CCS). It is clear that the two sequences of transitions
(l, r) α1−→ (m, r) α2−→ (m, s) and (l, r) α2−→ (l, s) α1−→ (m, s) are different inter-
leavings of two independent transitions, both leading to the state (m, s), from
which a synchronization on a is possible. A partial order reduction technique
will explore only one of these two interleavings, after having analyzed that the
initial transitions of the two automata are independent.

mm
m
mm

m

(1)

l

m

n

r

s

t

α1

a

α2

a

m
m
m
m
mm

(2)

l

m

n

r

s

t

α1

x := 0

x > 5
a

α2

y := 0

y < 5

z ≤ 10
a

Fig. 1. Illustration of Partial Order Reduction

Let us now introduce timing constraints in terms of clocks into the example,
to obtain the system in (2) of Fig. 1 where we add clocks x, y and z. The left
automaton can initially move to node m, thereby resetting the clock x, after
waiting an arbitrary time. Thereafter it can move to node n after more than 5
time units. The right automaton can initially move to node s, thereby resetting
the clock y, after waiting an arbitrary time. Thereafter it can move to node t
within 5 time units, but within 10 time units of initialization of the system. We
note that the initial transitions of the two automata are logically independent of
each other. However, if we naively analyze the possible values of clocks after a
certain sequence of actions, we find that the sequence (l, r) α1−→ (m, r) α2−→ (m, s)
may result in clock values that satisfy x ≥ y (as x is reset before y) where the
synchronization on a is possible, whereas the sequence (l, r) α2−→ (l, s) α1−→ (m, s)
may result in clock values that satisfy x ≤ y (as x is reset after y) where the
synchronization on a is impossible. Now, we see that it is in general not sufficient
to explore only one interleaving of independent transitions.

In this paper, we present a new method for partial order reductions for timed
systems based on a new local-time semantics for networks of timed automata.

The main idea is to overcome the problem illustrated in the previous example by
removing the implicit clock synchronization between processes by letting clocks
advance independently of each other. In other words, we desynchronize local
clocks. The benefit is that different interleavings of independent transitions will
no longer remember the order in which the transitions were explored. In this
specific example, an interleaving will not “remember” the order in which the
clocks were reset, and the two initial transitions are independent. We can then
import standard partial order techniques, and expect to get the same reductions
as in the untimed case. We again illustrate this on system (2) of Fig. 1. Suppose
that in state (l, r) all clocks are initialized to 0. In the standard semantics, the
possible clock values when the system is in state (l, r) are those that satisfy
x = y = z. In the “desynchronized” semantics presented in this paper, any
combination of clock values is possible in state (l, r). After both the sequence
(l, r) α1−→ (m, r) α2−→ (m, s) and (l, r) α2−→ (l, s) α1−→ (m, s) the possible clock
values are those that satisfy y ≤ z.

Note that the desynchronization will give rise to many new global states in
which automata have “executed” for different amounts of time. We hope that
this larger set of states can be represented symbolically more compactly than the
original state-space. For example, in system (2), our desynchronized semantics
gives rise to the constraint y ≤ z at state (m, s), whereas the standard semantics
gives rise to the two constraints x ≤ y ≤ z and y ≤ x ∧ y ≤ z. However,
as we have removed the synchronization between local time scales completely,
we also lose timing information required for synchronizaton between automata.
Consider again system (2) and look at the clock z of the right automaton. Since
z = 0 initially, the constraint z ≤ 10 requires that the synchronization on a
should be within 10 time units from system initialization. Implicitly, this then
becomes a requirement on the left automaton. A naive desynchronization of
local clocks including z will allow the left process to wait for more than 10 time
units, in its local time scale, before synchronizing. Therefore, before exploring
the effect of a transition in which two automata synchronize, we must explicitly
“resynchronize” the local time scales of the participating automata. For this
purpose, we add to each automaton a local reference clock, which measures
how far its local time has advanced in performing local transitions. To each
synchronization between two automata, we add the condition that their reference
clocks agree. In the above example, we add c1 as a reference clock to the left
automaton and c2 as a reference clock to the right automaton. We require c1 =
c2 at system initialization. After any interleaving of the first two independent
transitions, the clock values may satisfy y ≤ z and x−c1 ≤ z−c2. To synchronize
on a they must also satisfy the constraint c1 = c2 in addition to x > 5, y < 5
and z ≤ 10. This implies that x ≤ 10 when the synchronization occurs. Without
the reference clocks, we would not have been able to derive this condition.

The idea of introducing local time is related to the treatment of local time
in the field of parallel simulation (e.g., [Fuj90]). Here, a simulation step involves
some local computation of a process together with a corresponding update of its
local time. A snapshot of the system state during a simulation will be composed

of many local time scales. In our work, we are concerned with verification rather
than simulation, and we must therefore represent sets of such system states
symbolically. We shall develop a symbolic version for the local-time semantics in
terms of predicate transformers, in analogy with the ordinary symbolic semantics
for timed automata, which is used in several tools for reachability analysis. The
symbolic semantics allows a finite partitioning of the state space of a network
and enjoys the desired property that two predicate transformers are indepen-
dent if they correspond to disjoint transitions in different component automata.
Thus we can apply standard partial order reduction techniques to the problem
of checking reachability for timed systems, without disturbance from implicit
synchronization of clocks.

The paper is organized as follows: In section 2, we give a brief introduction
to the notion of timed automata and its standard semantics i.e. the global time
semantics. Section 3 develops a local time semantics for networks of timed au-
tomata and a finite symbolic version of the new semantics, analogous to the
region graph for timed automata. Section 4 presents a partial order search al-
gorithm for reachability analysis based on the symbolic local time semantics;
together with necessary operations to represent and manipulate distributed sym-
bolic states. Section 5 concludes the paper with a short summary on related work,
our contribution and future work.

2 Preliminaries

2.1 Networks of Timed Automata

Timed automata was first introduced in [AD90] and has since then established
itself as a standard model for timed systems. For the reader not familiar with
the notion of timed automata we give a short informal description. In this paper,
we will work with networks of timed automata [YPD94,LPY95] as the model
for timed systems.

Let Act be a finite set of labels ranged over by a, b etc. Each label is either
local or synchronizing. If a is a synchronizing label, then it has a complement,
denoted a, which is also a synchronizing label with a = a.

A timed automaton is a standard finite–state automaton over alphabet Act,
extended with a finite collection of real–valued clocks to model timing. We use
x, y etc. to range over clocks, C and r etc. to range over finite sets of clocks, and
R to stand for the set of non-negative real numbers.

A clock assignment u for a set C of clocks is a function from C to R. For
d ∈ R, we use u+ d to denote the clock assignment which maps each clock x in
C to the value u(x) + d and for r ⊆ C, [r 7→ 0]u to denote the assignment for C
which maps each clock in r to the value 0 and agrees with u on C\r.

We use B(C) ranged over by g (and later by D), to stand for the set of
conjunctions of atomic constraints of the form: x ∼ n or x− y ∼ n for x, y ∈ C,
∼∈ {≤, <,>,≥} and n being a natural number. Elements of B(C) are called
clock constraints or clock constraint systems over C. We use u |= g to denote
that the clock assignment u ∈ RC satisfies the clock constraint g ∈ B(C).

A network of timed automata is the parallel composition A1 | · · · |An of a
collection A1, . . . , An of timed automata. Each Ai is a timed automaton over
the clocks Ci, represented as a tuple 〈Ni, l0i , Ei, Ii〉, where Ni is a finite set of
(control) nodes, l0i ∈ Ni is the initial node, and Ei ⊆ Ni×B(Ci)×Act×2Ci×Ni
is a set of edges. Each edge 〈li, g, a, r, l′i〉 ∈ Ei means that the automaton can
move from the node li to the node l′i if the clock constraint g (also called the
enabling condition of the edge) is satisfied, thereby performing the label a and
resetting the clocks in r. We write li

g,a,r−→ l′i for 〈li, g, a, r, l′i〉 ∈ Ei. A local action

is an edge li
g,a,r−→ l′i of some automaton Ai with a local label a. A synchronizing

action is a pair of matching edges, written li
gi,a,ri−→ l′i|lj

gj ,a,rj−→ l′j where a is a

synchronizing label, and for some i 6= j, li
gi,a,ri−→ l′i is an edge of Ai and lj

gj ,a,rj−→ l′j
is an edge of Aj . The Ii : Ni → B(Ci) assigns to each node an invariant condition
which must be satisfied by the system clocks whenever the system is operating
in that node. For simplicity, we require that the invariant conditions of timed
automata should be the conjunction of constraints in the form: x ≤ n where x is
a clock and n is a natural number. We require the sets Ci to be pairwise disjoint,
so that each automaton only references local clocks. As a technical convenience,
we assume that the sets Ni of nodes are pairwise disjoint.

Global Time Semantics. A state of a network A = A1| · · · |An is a pair (l, u)
where l, called a control vector, is a vector of control nodes of each automaton,
and u is a clock assignment for C = C1 ∪ · · · ∪ Cn. We shall use l[i] to stand
for the ith element of l and l[l′i/li] for the control vector where the ith element
li of l is replaced by l′i. We define the invariant I(l) of l as the conjuction
I1(l[1]) ∧ · · · ∧ In(l[n]). The initial state of A is (l0, u0) where l0 is the control
vector such that l[i] = l0i for each i, and u0 maps all clocks in C to 0.

A network may change its state by performing the following three types of
transitions.

– Delay Transition: (l, u)−→(l, u+ d) if I(l)(u+ d)
– Local Transition: (l, u)−→(l[l′i/li], u

′) if there exists a local action li
g,a,r−→ l′i

such that u |= g and u′ = [r 7→ 0]u.
– Synchronizing Transition: (l, u)−→(l[l′i/li][l

′
j/lj], u

′) if there exists a syn-

chronizing action li
gi,a,ri−→ l′i|lj

gj ,a,rj−→ l′j such that u |= gi, u |= gj , and
u′ = [ri 7→ 0][rj 7→ 0]u.

We shall say that a state (l, u) is reachable, denoted (l0, u0) −→∗ (l, u) if
there exists a sequence of (delay or discrete) transitions leading from (l0, u0) to
(l, u).

2.2 Symbolic Global–Time Semantics

Clearly, the semantics of a timed automaton yields an infinite transition system,
and is thus not an appropriate basis for verification algorithms. However, efficient

algorithms may be obtained using a symbolic semantics based on symbolic states
of the form (l,D), where D ∈ B(C), which represent the set of states (l, u) such
that u |= D. Let us write (l, u) |= (l′, D) to denote that l = l′ and u |= D.

We perform symbolic state space exploration by repeatedly taking the strongest
postcondition with respect to an action, or to time advancement. For a constraint
D and set r of clocks, define the constraints D↑ and r(D) by

– for all d ∈ R we have u+ d |= D↑ iff u |= D, and
– [r 7→ 0]u |= r(D) iff u |= D

It can be shown that D↑ and r(D) can be expressed as clock constraints whenever
D is a clock constraint. We now define predicate transformers corresponding to
strongest postconditions of the three types of transitions:

– For global delay, sp(δ)(l,D)
def
=
(
l,D↑ ∧ I(l)

)
– For a local action li

g,a,r−→ l′i sp(li
g,a,r−→ l′i)(l,D)

def
=
(
l[l′i/li], r(g ∧D)

)
– For a synchronizing action li

gi,a,ri−→ l′i|lj
gj ,a,rj−→ l′j ,

sp(li
gi,a,ri−→ l′i|lj

gj ,a,rj−→ l′j)(l,D)
def
=
(
l[l′i/li][l

′
j/lj], (ri ∪ rj)(gi ∧ gj ∧D)

)
It turns out to be convenient to use predicate transformers that correspond to
first executing a discrete action, and thereafter executing a delay. For predicate
transformers τ1, τ2, we use τ1; τ2 to denote the composition τ2 ◦ τ1. For a (local

or synchronizing) action α, we define spt(α)
def
= sp(α); sp(δ).

From now on, we shall use (l0, D0) to denote the initial symbolic global time
state for networks, where D0 = ({u0})↑ ∧ I(l0). We write (l,D) ⇒ (l′, D′) if
(l′, D′) = spt(α)(l,D) for some action α. It can be shown (e.g. [YPD94]) that
the symbolic semantics characterizes the concrete semantics given earlier in the
following sense:

Theorem 1. A state (l, u) of a network is reachable if and only if (l0, D0)(⇒
)∗(l,D) for some D such that u |= D.

The above theorem can be used to construct a symbolic algorithm for reach-
ability analysis. In order to keep the presentation simple, we will in the rest of
the paper only consider a special form of local reachability, defined as follows.
Given a control node lk of some automaton Ak, check if there is a reachable
state (l, u) such that l[k] = lk. It is straight-forward to extend our results to
more general reachability problems. The symbolic algorithm for checking local
reachability is shown in Figure 2 for a network of timed automata. Here, the set
enabled(l) denotes the set of all actions whose source node(s) are in the control
vector l i.e., a local action li

g,a,r−→ l′i is enabled at l if l[i] = li, and a synchronizing

action li
gi,a,ri−→ l′i|lj

gj ,a,rj−→ l′j is enabled at l if l[i] = li and l[j] = lj .

Passed:= {}
Waiting:= {(l0, D0)}
repeat

begin

get (l,D) from Waiting

if l[k] = lk then return “YES”
else if D 6⊆ D′ for all (l,D′) ∈ Passed then

begin

add (l,D) to Passed

:={spt(α)(l,D) : α ∈ enabled(l)}
for all (l′, D′) in do

put (l′, D′) to Waiting

end

end
until Waiting={}
return “NO”

Fig. 2. An Algorithm for Symbolic Reachability Analysis.

3 Partial Order Reduction and Local–Time Semantics

The purpose of partial-order techniques is to avoid exploring several interleavings
of independent transitions, i.e., transitions whose order of execution is irrelevant,
e.g., because they are performed by different processes and do not affect each
other. Assume for instance that for some control vector l, the set enabled(l) con-
sists of the local action αi of automaton Ai and the local action αj of automaton
Aj . Since executions of local actions do not affect each other, we might want to
explore only the action αi, and defer the exploration of αj until later. The jus-
tification for deferring to explore αj would be that any symbolic state which is
reached by first exploring αj and thereafter αi can also be reached by exploring
these actions in reverse order, i.e., first αi and thereafter αj .

Let τ1 and τ2 be two predicate transformers. We say that τ1 and τ2 are
independent if (τ1; τ2)((l,D)) = (τ2; τ1)((l,D)) for any symbolic state (l,D). In
the absence of time, local actions of different processes are independent, in the
sense that sp(αi) and sp(αj) are independent. However, in the presence of time,
we do not have independence. That is, spt(αi) and spt(αj) are in general not
independent, as illustrated e.g., by the example in Figure 1.

If timed predicate transformers commute only to a rather limited extent, then
partial order reduction is less likely to be successful for timed systems than for
untimed systems. In this paper, we present a method for symbolic state-space
exploration of timed systems, in which predicate transformers commute to the
same extent as they do in untimed systems. The main obstacle for commuta-
tivity of timed predicate transformers is that timed advancement is modeled by
globally synchronous transitions, which implicitly synchronize all local clocks,
and hence all processes. In our approach, we propose to replace the global time-
advancement steps by local-time advancement. In other words, we remove the

constraint that all clocks advance at the same speed and let clocks of each au-
tomaton advance totally independently of each other. We thus replace one global
time scale by a local-time scale for each automaton. When exploring local actions,
the corresponding predicate transformer affects only the clocks of that automa-
ton in its local-time scale; the clocks of other automata are unaffected. In this
way, we have removed any relation between local-time scales. However, in order
to explore pairs of synchronizing actions we must also be able to “resynchronize”
the local-time scales of the participating automata, and for this purpose we add
a local reference clock to each automaton. The reference clock of automaton
Ai represents how far the local-time of Ai has advanced, measured in a global
time scale. In a totally unsynchronized state, the reference clocks of different
automata can be quite different. Before a synchronization between Ai and Aj ,
we must add the condition that the reference clocks of Ai and Aj are equal.

To formalize the above ideas further, we present a local-time semantics for
networks of timed automata, which allows local clocks to advance independently
and resynchronizing them only at synchronization points.

Consider a network A1| · · · |An. We add to the set Ci of clocks of each Ai a
reference clock, denoted ci. Let us denote by u +i d the time assignment which
maps each clock x in Ci (including ci) to the value u(x) + d and each clock x
in C \ Ci to the value u(x). In the rest of the paper, we shall assume that the
set of clocks of a network include the reference clocks and the initial state is
(l0, u0) where the reference clock values are 0, in both the global and local time
semantics.

Local Time Semantics. The following rules define that networks may change
their state locally and globally by performing three types of transitions:

– Local Delay Transition: (l, u)7→(l, u+i d) if Ii(li)(u+i d)
– Local Discrete Transition: (l, u)7→(l[l′i/li], u

′) if there exists a local action
li
g,a,r−→ l′i such that u |= g and u′ = [r 7→ 0]u

– Synchronizing Transition: (l, u)7→(l[l′i/li][l
′
j/lj], u

′) if there exists a synchro-

nizing action li
gi,a,ri−→ l′i|lj

gj ,a,rj−→ l′j such that u |= gi, u |= gj , and u′ = [ri 7→
0][rj 7→ 0]u, and u(ci) = u(cj)

Intuitively, the first rule says that a component may advance its local clocks
(or execute) as long as the local invariant holds. The second rule is the stan-
dard interleaving rule for discrete transitions. When two components need to
synchronize, it must be checked if they have executed for the same amount of
time. This is specified by the last condition of the third rule which states that
the local reference clocks must agree, i.e. u(ci) = u(cj).

We call (l, u) a local time state. Obviously, according to the above rules, a
network may reach a large number of local time states where the reference clocks
take different values. To an external observer, the interesting states of a network
will be those where all the reference clocks take the same value.

Definition 1. A local time state (l, u) with reference clocks c1 · · · cn is synchro-
nized if u(c1) = · · · = u(cn).

Now we claim that the local-time semantics simulates the standard global
time semantics in which local clocks advance concurrently, in the sense that
they can generate precisely the same set of reachable states of a timed system.

Theorem 2. For all networks, (l0, u0)(−→)∗(l, u) iff for all synchronized local
time states (l, u) (l0, u0)(7→)∗(l, u).

3.1 Symbolic Local–Time Semantics

We can now define a local-time analogue of the symbolic semantics given in
Section 2.2 to develop a symbolic reachability algorithm with partial order re-
duction. We need to represent local time states by constraints. Let us first assume
that the constraints we need for denote symbolic local time states are different
from standard clock constraints, and use D̂, D̂′ etc to denote such constraints.
Later, we will show that such constraints can be expressed as a clock constraint.

We use D̂↑i to denote the clock constraint such that for all d ∈ R we have
u+i d |= D̂↑i iff u |= D̂. For local-time advance, we define a local-time predicate
transformer, denoted ŝpt(δi), which allows only the local clocks Ci including the
reference clock ci to advance as follows:

– ŝpt(δi)(l, D̂)
def
=
(
l, D̂↑i ∧ I(l)

)
For each local and synchronizing action α, we define a local-time predicate trans-
former, denoted ŝpt(α), as follows:

– If α is a local action li
g,a,r−→ l′i, then ŝpt(α)

def
= sp(α); ŝpt(δi)

– If α is a synchronizing action li
gi,a,r−→ l′i|lj

gj ,a,rj−→ l′j , then

ŝpt(α)
def
= {ci = cj}; sp(α); ŝpt(δi); ŝpt(δj)

Note that in the last definition, we treat a clock constraint like ci = cj as a

predicate transformer, defined in the natural way by {ci = cj}(l, D̂)
def
= (l, D̂ ∧

(ci = cj)).
We use (l0, D̂0) to denote the initial symbolic local time state of networks

where D̂0 = ŝpt(δ1); · · · ; ŝpt(δn)({u0}). We shall write (l, D̂) |=⇒ (l′, D̂′) if (l′, D̂′) =
ŝpt(α)(l, D̂) for some action α.

Then we have the following characterization theorem.

Theorem 3. For all networks, a synchronized state (l, u), (l0, u0) −→∗ (l, u)
if and only if (l0, D̂0)(|=⇒)∗(l, D̂) for a symbolic local time state (l, D̂) such that
u |= D̂.

The above theorem shows that the symbolic local time semantics fully char-
acterizes the global time semantics in terms of reachable states. Thus we can
perform reachability analysis in terms of the symbolic local time semantics.
However, it requires to find a symbolic local time state that is synchronized

in the sense that it constains synchronized states. The searching for such a syn-
chronized symbolic state may be time and space-consuming. Now, we relax the
condition for a class of networks, namely those containing no local time-stop.

Definition 2. A network is local time-stop free if for all (l, u), (l0, u0)(7→)∗(l, u)
implies (l, u)(7→)∗(l′, u′) for some synchronized state (l′, u′).

The local time-stop freeness can be easily guaranteed by syntactical restric-
tion on component automata of networks. For example, we may require that at
each control node of an automaton there should be an edge with a local label
and a guard weaker than the local invariant. This is precisely the way of mod-
elling time-out handling at each node when the invariant is becoming false and
therefore it is a natural restriction.

The following theorem allows us to perform reachability analysis in terms of
symbolic local time semantics for local time-stop free networks without searching
for synchronized symbolic states.

Theorem 4. Assume a local time-stop free network A and a local control node
lk of Ak. Then (l0, D0)(⇒)∗(l,D) for some (l,D) such that l[k] = lk if and only
if (l0, D̂0)(|=⇒)∗(l′, D̂′) for some (l′, D̂′) such that l′[k] = lk.

We now state that the version of the timed predicate transformers based on
local time semantics enjoy the commutativity properties that were missing in
the global time approach.

Theorem 5. Let α1 and α2 be two actions of a network A of timed automata.
If the sets of component automata of A involved in α1 and α2 are disjoint, then
ŝpt(α1) and ŝpt(α2) are independent.

3.2 Finiteness of the Symbolic Local Time Semantics

We shall use the symbolic local time semantics as the basis to develop a partial
order search algorithm in the following section. To guarantee termination of the
algorithm, we need to establish the finiteness of our local time semantics, i.e.
that the number of equivalent symbolic states is finite. Observe that the number
of symbolic local time states is in general infinite. However, we can show that
there is finite partitioning of the state space. We take the same approach as for
standard timed automata, that is, we construct a finite graph based on a notion
of regions.

We first extend the standard region equivalence to synchronized states. In
the following we shall use Cr to denote the set of reference clocks.

Definition 3. Two synchronized local time states (with the same control vector)
(l, u) and (l, u′) are synchronized-equivalent if ([Cr 7→ 0]u) ∼ ([Cr 7→ 0]u′) where
∼ is the standard region equivalence for timed automata.

Note that ([Cr 7→ 0]u) ∼ ([Cr 7→ 0]u′) means that only the non-reference
clock values in (l, u) and (l, u′) are region-equivalent. We call the equivalence
classes w.r.t. the above equivalence relation synchronized regions. Now we ex-
tend this relation to cope with local time states that are not synchronized. Intu-
itively, we want two non-synchronized states, (l, u) and (l′, u′) to be classified as
equivalent if they can reach sets of equivalent synchronized states just by letting
the automata that have lower reference clock values advance to catch up with
the automaton with the highest reference clock value.

Definition 4. A local delay transition (l, u) 7→ (l, u′) of a network is a catch-up
transition if max(u(Cr)) ≤ max(u′(Cr)).

Intuitively a catch-up transition corresponds to running one of the automata
that lags behind, and thus making the system more synchronized in time.

Definition 5. Let (l, u) be a local time state of a network of timed automata.
We use R((l, u)) to denote the set of synchronized regions reachable from (l, u)
only by discrete transitions or catch-up transitions.

We now define an equivalence relation between local time states.

Definition 6. Two local time states (l, u) and (l′, u′) are catch-up equivalent
denoted (l, u) ∼c (l′, u′) if R((l, u) = R((l′, u′)). We shall use |(l, u)|∼c to denote
the equivalence class of local time states w.r.t. ∼c.

Intuitively two catch-up equivalent local time states can reach the same set
of synchronized states i.e. states where all the automata of the network have
been synchronized in time.

Note that the number of synchronized regions is finite. This implies that the
number of catch-up classes is also finite. On the other hand, there is no way to
put an upper bound on the reference clocks ci, since that would imply that for
every process there is a point in time where it stops evolving which is generally
not the case. This leads to the conclusion that there must be a periodicity in the
region graph, perhaps after some initial steps. Nevertheless, we have a finiteness
theorem.

Theorem 6. For any network of timed automata, the number of catch-up equiv-
alence classes |(l, u)|∼c for each vector of control nodes is bounded by a function
of the number of regions in the standard region graph construction for timed
automata.

As the number of vectors of control nodes for each network of automata is
finite, the above theorem demonstrates the finiteness of our symbolic local time
semantics.

4 Partial Order Reduction in Reachability Analysis

The preceding sections have developed the necessary machinery for presenting
a method for partial-order reduction in a symbolic reachability algorithm. Such
an algorithm can be obtained from the algorithm in Figure 2 by replacing the
initial symbolic global time state (l0, D0) by the initial symbolic local time state
(l0, D̂0) (as defined in Theorem 4), and by replacing the statement

:={spt(α)(l,D) : α ∈ enabled(l)}

by :={ŝpt(α)(l,D) : α ∈ ample(l)} where ample(l) ⊆ enabled(l) is a subset of the
actions that are enabled at l. Hopefully the set ample(l) can be made significantly
smaller than enabled(l), leading to a reduction in the explored symbolic state-
space.

In the literature on partial order reduction, there are several criteria for
choosing the set ample(l) so that the reachability analysis is still complete. We
note that our setup would work with any criterion which is based on the notion
of “independent actions” or “independent predicate transformers”. A natural
criterion which seems to fit our framework was first formulated by Overman
[Ove81]; we use its formulation by Godefroid [God96].

The idea in this reduction is that for each control vector l we choose a subset
A of the automata A1, . . . , An, and let ample(l) be all enabled actions in which
the automata in A participate. The choice of A may depend on the control node
lk that we are searching for. The set A must satisfy the criteria below. Note
that the conditions are formulated only in terms of the control structure of the
automata. Note also that in an implementation, these conditions will be replaced
by conditions that are easier to check (e.g. [God96]).

C0 ample(l) = ∅ if and only if enabled(l) = ∅.
C1 If the automaton Ai ∈ A from its current node l[i] can possibly synchro-

nize with another process Aj , then Aj ∈ A, regardless of whether such a
synchronization is enabled or not.

C2 From l, the network cannot reach a control vector l′ with l′[k] = lk without
performing an action in which some process in A participates.

Criteria C0 and C2 are obviously necessary to preserve correctness. Criterion C1
can be intuitively motivated as follows: If automaton Ai can possibly synchronize
with another automaton Aj , then we must explore actions by Aj to allow it to
“catch up” to a possible synchronization with Ai. Otherwise we may miss to
explore the part of the state-space that can be reached after the synchronization
between Ai and Aj .

A final necessary criterion for correctness is fairness, i.e., that we must not
indefinitly neglect actions of some automaton. Otherwise we may get stuck ex-
ploring a cyclic behavior of a subset of the automata. This criterion can be
formulated in terms of the global control graph of the network. Intuitively, this
graph has control vectors as nodes, which are connected by symbolic transitions
where the clock constraints are ignored. The criterion of fairness then requires
that

C3 In each cycle of the global control graph, there must be at least one control
vector at which ample(l) = enabled(l).

In the following theorem, we state correctness of our criteria.

Theorem 7. A partial order reduction of the symbolic reachability in Figure 2,
obtained by replacing

1. the initial symbolic global time state (l0, D0) with the initial symbolic local
time state (l0, D̂0) (as defined in theorem 4)

2. the statement :={spt(α)(l,D) : α ∈ enabled(l)} with the statement :={ŝpt(α)(l,D) :
α ∈ ample(l)} where the function ample(·) satisfies the criteria C0 - C3,

3. and finally the inclusion checking i.e. D 6⊆ D′ between constraints with an
inclusion checking that also takes ∼c into account1.

is a correct and complete decision procedure for determining whether a local state
lk in Ak is reachable in a local time-stop free network A.

The proof of the above theorem follows similar lines as other standard proofs of
correctness for partial order algorithms. See e.g., [God96].

4.1 Operations on Constraint Systems

Finally, to develop an efficient implementation of the search algorithm presented
above, it is important to design efficient data structures and algorithms for the
representation and manipulation of symbolic distributed states i.e. constraints
over local clocks including the reference clocks.

In the standard approach to verification of timed systems, one such well-
known data structure is the Difference Bound Matrix (DBM), due to Bell-
man [Bel57], which offers a canonical representation for clock constraints. Vari-
ous efficient algorithms to manipulate (and analyze) DBM’s have been developed
(e.g [LLPY97]).

However when we introduce operations of the form ŝpt(δi), the standard
clock constraints are no longer adequate for describing possible sets of clock
assignments, because it is not possible to let only a subset of the clocks grow.
This problem can be circumvented by the following. Instead of considering values
of clocks x as the basic entity in a clock constraint, we work in terms of the
relative offset of a clock from the local reference clock. For a clock xli ∈ Ci, this
offset is represented by the difference xli− ci. By analogy, we must introduce the
constant offset 0−ci. An offset constraint is then a conjunction of inequalities of
form xi ∼ n or (xli − ci)− (xkj − cj) ∼ n for xli ∈ Ci, xkj ∈ Cj , where ∼∈ {≤,≥}.
Note that an inequality of the form xli ∼ n is also an offset, since it is the same as
(xli− ci)− (0− ci) ∼ n. It is important to notice, that given an offset constraint
1 This last change is only to guarantee the termination but not the soundness of the

algorithm. Note that in this paper, we have only shown that there exists a finite
partition of the local time state space according to ∼c, but not how the partitioning
should be done. This is our future work.

(xli−ci)− (xkj −cj) ∼ n we can always recover the absolute constraint by setting
ci = cj .

The nice feature of these constraints is that they can be represented by
DBM’s, by changing the interpretation of a clock from being its value to being
its local offset. Thus given a set of offset constraints D over a C, we construct a
DBM M as follows. We number the clocks in Ci by x0

i , . . . , x
|Ci|−2, ci. An offset

of the form xli− ci we denote by x̂li and a constant offset 0− ci by ĉi. The index
set of the matrix is then the set of offsets x̂li and ĉi for xli, ci ∈ Ci for all Ci ∈ C,
while an entry in M is defined by M(x̂, ŷ) = n if x̂− ŷ ≤ n ∈ D and M(x̂, ŷ) =∞
otherwise. We say that a clock assignment u is a solution of a DBM M , u |= M ,
iff ∀x, y ∈ C : u(x̂) − u(ŷ) ≤ M(x̂, ŷ), where u(x̂) = u(x) − u(ci) with ci the
reference clock of x.

The operation D↑i now corresponds to the deletion of all constraints of the
form ĉi ≥ x̂ + n. The intuition behind this is that when we let the clocks in i
grow, we are keeping the relative offsets x̂ki constant, and only the clock ĉi will
decrease, because this offset is taken from 0. D↑i can be defined as an operation
on the corresponding DBM M : M↑i(x̂, ŷ) =∞ if ŷ = ĉi and M↑i(x̂, ŷ) = M(x̂, ŷ)
otherwise. It then easy to see that u |= M iff u+i d |= M↑i .

Resetting of a clock xki corresponds to the deletion of all constraints regarding
x̂ki and then setting x̂ki − ĉi = 0. This can be done by an operation [xki →
0](M)(x̂, ŷ) = 0 if x̂ = x̂ki and ŷ = ĉi or x̂ = ĉi and ŷ = x̂ki , ∞ if x̂ =
x̂ki and ŷ 6= ĉi or x̂ 6= ĉi and ŷ = x̂ki , and M(x̂, ŷ) otherwise. Again it is easy
to see, that [xki → 0]u |= [xki → 0](M) iff u |= M .

5 Conclusion and Related Work

In this paper, we have presented a partial-order reduction method for timed sys-
tems, based on a local-time semantics for networks of timed automata. We have
developed a symbolic version of this new (local time) semantics in terms of pred-
icate transformers, in analogy with the ordinary symbolic semantics for timed
automata which is used in current tools for reachability analysis. This symbolic
semantics enjoys the desired property that two predicate transformers are in-
dependent if they correspond to disjoint transitions in different processes. This
allows us to apply standard partial order reduction techniques to the problem
of checking reachability for timed systems, without disturbance from implicit
synchronization of clocks. The advantage of our approach is that we can avoid
exploration of unnecessary interleavings of independent transitions. The price is
that we must introduce extra machinery to perform the resynchronization oper-
ations on local clocks. On the way, we have established a theorem about finite
partitioning of the state space, analogous to the region graph for ordinary timed
automata. For efficient implementation of our method, we have also presented
a variant of DBM representation of symbolic states in the local time semantics.
We should point out that the results of this paper can be easily extended to
deal with shared variables by modifying the predicate transformer in the form
ci = cj) for clock resynchronization to the form ci ≤ cj properly for the read-

ing and writing operations. Future work naturally include an implementation
of the method, and experiments with case studies to investigate the practical
significance of the approach.

Related Work Currently we have found in the literature only two other pro-
posals for partial order reduction for real time systems: The approach by Pagani
in [Pag96] for timed automata (timed graphs), and the approach of Yoneda et
al. in [YSSC93,YS97] for time Petri nets.

In the approach by Pagani a notion of independence between transitions is
defined based on the global-time semantics of timed automata. Intuitively two
transitions are independent iff we can fire them in any order and the resulting
states have the same control vectors and clock assignments. When this idea is
lifted to the symbolic semantics, it means that two transitions can be indepen-
dent only if they can happen in the same global time interval. Thus there is a
clear difference to our approach: Pagani’s notion of independence requires the
comparison of clocks, while ours doesn’t.

Yoneda et al. present a partial order technique for model checking a timed
LTL logic on time Petri nets [BD91]. The symbolic semantics consists of con-
straints on the differences on the possible firing times of enabled transitions
instead of clock values. Although the authors do not give an explicit definition
of independence (like our Thm. 5) their notion of independence is structural like
ours, because the persistent sets, ready sets, are calculated using the structure
of the net. The difference to our approach lies in the calculation of the next state
in the state-space generation algorithm. Yoneda et al. store the relative firing
order of enabled transitions in the clock constraints, so that a state implicitly
remembers the history of the system. This leads to branching in the state space,
a thing which we have avoided. A second source of branching in the state space
is synchronization. Since a state only contains information on the relative differ-
ences of firing times of transitions it is not possible to synchronize clocks.

Acknowledgement: We would like to thank Paul Gastin, Florence Pagani and
Stavros Tripakis for their valuable comments and discussions.

References

[AD90] R. Alur and D. Dill. Automata for Modelling Real-Time Systems. In Proc. of
of International Colloquium on Algorithms, Languages and Programming,
vol. 443 of LNCS, pp. 322–335. Springer Verlag, 1990.

[BD91] B. Berthomieu and M. Diaz. Modelling and verification of time dependent
systems using time Petri nets. IEEE Transactions on Software Engineering,
17(3):259–273, 1991.

[Bel57] R. Bellman. Dynamic Programming. Princeton University Press, 1957.
[BGK+96] J. Bengtsson, D. Griffioen, K. Kristoffersen, K. G. Larsen, F. Larsson,

P. Pettersson, and W. Yi. Verification of an Audio Protocol with Bus
Collision Using Uppaal. In Proc. of 9th Int. Conf. on Computer Aided
Verification, vol. 1102 of LNCS, pp. 244–256. Springer Verlag, 1996.

[BLL+96] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal

in 1995. In Proc. of the 2nd Workshop on Tools and Algorithms for the Con-
struction and Analysis of Systems, vol. 1055 of Lecture Notes in Computer
Science, pp. 431–434. Springer Verlag, 1996.

[DOTY95] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos. In Proc.
of Workshop on Verification and Control of Hybrid Systems III, vol. 1066
of LNCS, pp. 208–219. Springer Verlag, 1995.

[Fuj90] R. M. Fujimoto. Parallel discrete event simulation. Communications of the
ACM, 33(10):30–53, Oct. 1990.

[God96] P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem, vol. 1032 of LNCS.
Springer Verlag, 1996.

[GW90] P. Godefroid and P. Wolper. Using partial orders to improve automatic
verification methods. In Proc. of Workshop on Computer Aided Verification,
1990.

[HH95] T. A. Henzinger and P.-H. Ho. HyTech: The Cornell HYbrid TECHnology
Tool. Proc. of Workshop on Tools and Algorithms for the Construction and
Analysis of Systems, 1995. BRICS report series NS–95–2.

[HP94] G. J. Holzmann and D. A. Peled. An improvement in formal verification. In
Proc. of the 7th International Conference on Formal Description Techniques,
pp. 197–211, 1994.

[LLPY97] F. Larsson, K. G. Larsen, P. Pettersson, and W. Yi. Efficient Verification
of Real-Time Systems: Compact Data Structures and State-Space Reduc-
tion. In Proc. of the 18th IEEE Real-Time Systems Symposium, pp. 14–24,
December 1997.

[LPY95] K. G. Larsen, P. Pettersson, and W. Yi. Compositional and Symbolic Model-
Checking of Real-Time Systems. In Proc. of the 16th IEEE Real-Time
Systems Symposium, pp. 76–87, December 1995.

[Ove81] W. Overman. Verification of Concurrent Systems: Function and Timing.
PhD thesis, UCLA, Aug. 1981.

[Pag96] F. Pagani. Partial orders and verification of real-time systems. In Proc. of
Formal Techniques in Real-Time and Fault-Tolerant Systems, vol. 1135 of
LNCS, pp. 327–346. Springer Verlag, 1996.

[Pel93] D. Peled. All from one, one for all, on model-checking using representatives.
In Proc. of 5th Int. Conf. on Computer Aided Verification, vol. 697 of LNCS,
pp. 409–423. Springer Verlag, 1993.

[Val90] A. Valmari. Stubborn sets for reduced state space generation. In Advances
in Petri Nets, vol. 483 of LNCS, pp. 491–515. Springer Verlag, 1990.

[Val93] A. Valmari. On-the-fly verification with stubborn sets. In Proc. of 5th Int.
Conf. on Computer Aided Verification, vol. 697 of LNCS, pp. 59–70, 1993.

[YPD94] W. Yi, P. Pettersson, and M. Daniels. Automatic Verification of Real-
Time Communicating Systems By Constraint-Solving. In Proc. of the 7th
International Conference on Formal Description Techniques, 1994.

[YS97] T. Yoneda and H. Schlingloff. Efficient verification of parallel real-time
systems. Journal of Formal Methods in System Design, 11(2):187–215, 1997.

[YSSC93] T. Yoneda, A. Shibayama, B.-H. Schlingloff, and E. M. Clarke. Efficient
verification of parallel real-time systems. In Proc. of 5th Int. Conf. on Com-
puter Aided Verification, vol. 697 of LNCS, pp. 321–332. Springer Verlag,
1993.

