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A b s t r a c t .  We introduce the concept of self-calibration of a 1D pro- 
jective camera from point correspondences, and describe a method for 
uniquely determining the two internal parameters  of a 1D camera based 
on the trifocal tensor of three 1D images. The method  requires the es- 
t imation of the trifocal tensor which can be achieved linearly with no 
approximation unlike the trifocal tensor of 2D images, and solving for 
the roots of a cubic polynomial in one variable. Interest ingly enough, we 
prove tha t  a 2D camera undergoing a planar  motion reduces to a 1D cam- 
era. From this observation, we deduce a new method for self-calibrating 
a 2D camera using planar motions. 
Both the self-calibration method for a 1D camera and its applications 
for 2D camera calibration are demonstrated on real image sequences. 
Other applications including 2D affine camera self-calibration are also 
discussed. 

1 Introduction 

A C C D  c a m e r a  is c o m m o n l y  mode led  as a 2D p r o j e c t i v e  device  t h a t  p ro jec t s  a 
po in t  in 5 ~ ( the  p ro jec t ive  space  of d imens ion  3) to  a po in t  in 502. By analogy,  
we can cons ider  wha t  we call  a 1D pro jec t ive  c a m e r a  which  p ro j ec t s  a po in t  in 7 :'2 
to a po in t  in 501 This  1D pro jec t ive  c a m e r a  m a y  seem very  a b s t r a c t ,  bu t  m a n y  
i m ag ing  sys t ems  using laser  beams ,  in f ra - red  or  u l t r a - s o u n d s  ac t ing  only  on a 
source  p lane  can be mode led  this  way. W h a t  is less obvious ,  bu t  more  in te res t ing  
for our  purpose ,  is t ha t  in some s i tua t ions ,  t he  usua l  2D c a m e r a  mode l  is also 
closely r e l a t ed  to  this  1D c a m e r a  model .  One  first  e x a m p l e  might  be the  case of 
the  2D affine c a m e r a  model  o p e r a t i n g  on l ine segments :  T h e  d i rec t ion  vectors  
of l ines in 3D space  and  in the  image  c o r r e s p o n d  t o  each o the r  v ia  this  1D 
p ro jec t ive  c a m e r a  mode l  [15, 14]. O the r  cases  will  be  d i scussed  la te r .  
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In this paper,  we first introduce the concept of self-calibration of a 1D pro- 
jective camera  by analogy to that  of a 2D projective camera  which is a very 
active topic [11,5, 9, 13, 1] since the pioneering work of [12]. It turns out that  
the theory of self-calibration of 1D camera is considerably simpler than the cor- 
responding one in 2D. It is essentially determined in a unique way by a linear 
algorithm using the trifocal tensor of 1D cameras.  After establishing this result, 
we further  investigate the relationship between the usual 2D camera and the 
1D camera.  It turns out that  a 2D camera undergoing a planar motion can be 
reduced to a 1D camera on the trifocal line of the 2D cameras.  This remarkable 
relationship allows us to calibrate a real 2D projective camera  using the theory 
of self-calibration of a 1D camera. The advantage of doing so is evident. Instead 
of solving complicated Kruppa  equations for 2D camera  self-calibration, exact 
linear algorithm can be used for 1D camera  self-calibration. The only constraint 
is that  the motion of the 2D camera  should be restricted to planar motions. 
The other  applications, including 2D affine camera  calibration, are also briefly 
discussed. 

Throughout  the paper,  vectors are denoted in lower case boldface x, u . . . ,  
matrices and tensors in upper case boldface A, T . . .  ; Scalars are any plain 
letters or lower case Greek a, u, A, )~ . . . .  The  geometric objects are some- 
times denoted by plain or Greek letters like l for a 2D line and L for a 3D line 
whenever it is necessary to distinguish the geometric object l from its coordi- 
nate representat ion by a vector 1. Some basic tensor notat ion is used sometimes: 
Covariant indices are Written as subscripts and contravariant  indices as super- 
scripts, e.g. the coordinates of a point x in p3  are writ ten with an upper index 
x = (x 1, x 2, x 3, x4) T. A matr ix  A is writ ten with two indices like A}, where i 
indexes rows and j columns. The implicit summat ion  convention is also adopted. 

2 1 D  p r o j e c t i v e  c a m e r a  a n d  i t s  t r i f o c a l  t e n s o r  

We will first review the one-dimensionai camera  which was abstracted from the 
s tudy of the geometry of lines under affine cameras  [15, 14]. We can also introduce 
it directly by analogy to a 2D projective camera.  

A 1D projective camera projects a point x = (x 1, x 2, x3) T in p2  (projective 
plane) to a point u = (u 1, u2) T in :pl (projective line). This projection may be 
described by a 2 x 3 homogeneous matr ix  M as ,ku = M2x3X. 

We now examine the geometric constraints available for points seen in multi- 
ple views similar to the 2D camera case [17, 18, 9, 21, 7]. There  is a constraint only 
in the case of 3 views, as there is no any constraint  for 2 views (two projective 
lines always intersect in a point in a projective plane). 

Let the three views of the same point x be given as follows: 

$ u  = M x ,  
)~'u t = M ~ x ,  

)~"u II = M ' x .  

(1) 
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These can be rewritten in matr ix form as 

 ,ou, 
\ M "  0 0 u"  

The vector ( x , - A , - A ' , - A " )  T cannot be zero, so 

= o. (2) 

M u 0  0 
M'  0 u '  0 
M " 0  0 u"  

= 0. (3) 

The expansion of this determinant produces a trifocal constraint for the three 
views 

Tijkuiu'J u"k = 0, (4) 

where Tijk is a 2 x 2 x 2 homogeneous tensor whose components Tijk are 
3 • 3 minors (involving all three views) of the 6 x 3 joint projection matr ix by 
stacking M, M ' and M " .  

This trifocal tensor encapsulates exactly the information needed for projec- 
tive reconstruction in 7 '2 . Namely, it is the unique matching constraint, it min- 
imally parametrizes the three views and it can be estimated linearly. Contrast  
this to the 2D image case in which the multilinear constraints are algebraically 
redundant  and the linear estimation is only an approximation based on over- 
parametrization. 

Each point correspondence in 3 views u ~ u '  *-~ u"  yields one homogeneous 
linear equation for the unknown vector ts representing the 8 tensor components 
T/jk for i , j , k  = 1,2: 

(~1 u t l  U ItI , ?/,1Ur 1U tr2, ~t'/~12utll, '/~1Ur2U tr2 , ~2utl ' /L ttl ~ "/$2~1Utt2 ~ "/~2Ut2~tll, '/$2Bt2U*t2)t8 : 0. 

With at least 7 point correspondences, we can solve for the tensor components 
linearly. 

A careful normalisation of the measurement matrix is nevertheless necessary 
just like that  stressed in [8] for the linear estimation of the fundamental matrix. 
The points at each image are first translated so that the centroid of the points 
is the origin of the image coordinates, then scaled so that the average distance 
of the points from the origin is v/'2. This is achieved by an affine transformation 
of the image coordinates in each image: fi = Au,  fi' = Bu '  and fi" = Cu " .  

With these normalised image coordinates, the normMised tensor components 
7~ijk are linearly estimated by SVD from Tijk~zifi~Jfz ''k = O. 

The original tensor components Tijk are recovered by de-scaling the nor- 

malised tensor i~ijk as Tabc = T i j kA , ,BbC c i J k 
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3 S e l f - c a l i b r a t i o n  o f  a 1 D  c a m e r a  f r o m  3 v i e w s  

The concept of camera self-calibration using only point correspondences became 
popular in computer vision community following Maybank and Fangeras [12] by 
solving the so-called Kruppa equations. The basic assumption is that  the internal 
parameters of the camera remain invariant. In the case of the 2D projective 
camera, the internal calibration (the determination of the 5 internal parameters) 
is equivalent to the determination of the image ~ of the absolute conic. 

3.1 T h e  i n t e r n a l  p a r a m e t e r s  o f  a 1D c a m e r a  a n d  t h e  c i r c u l a r  p o i n t s  

For a 1D camera represented by a 2 x 3 projection matr ix M2• this projection 
matrix can always be decomposed into 

where 

M2• = K2• (R~• te•  , 

0) 
represents the two internal parameters: a the focal length in pixels and uo the 
position of the principal point; the external parameters are represented by a 2 x 2 
rotation matrix R2• 

R 2 x 2 =  - s i n 0 c o s  

and the translation vector t2xl .  
The  object space for a 1D camera is a projective plane, and any rigid motion 

on the plane leaves the two circular points I and J invariant (a pair of complex 
conjugate points on the line at infinity) of the plane. Similar to the 2D camera 
case where the knowledge of the internal parameters is equivalent to that  of the 
image of the absolute conic, the knowledge of the internal parameters of a 1D 
camera is equivalent to that  of the image points i and j of the circular points in 
7~ 2 ' 

The  relationship between the image of the circular points and the internal 
parameters of the 1D camera follows directly by projecting one of the circular 
points I = (i, 1, 0) T, where i = x /Z]  -, by the camera M2x3: 

1 = \ 0  1 / t)  . 

It clearly appears that the real part of the ratio of the homogeneous coordi- 
nates of the image of the circular point i is the position of the principal point 
u0 and the imaginary part is the focal length a.  



40 

3.2 D e t e r m i n a t i o n  o f  t h e  images  o f  t h e  c i r c u l a r  p o i n t s  

Our next task is to locate the circular points in the images. Let us consider one 
of the circular points, say I.  This circular point is projected onto i, i' and i" in 
the three views. As they should be invariant because of our assumption that the 
internal parameters of the camera are constant, we have: 

) d  = .Vi '  = ) J ' i "  = u ,  

where u -- (u I , u2) T = p(a + ib, 1) T for A, A', A", p E C. 
The triplet of corresponding points i ~ i' ~ i" satisfies the trilinear con- 

straint (4) as all corresponding points do, therefore, 

Tijkiii 'Ji ''k = O, 

i .e .  
T~jkuiuJu k = O. 

This yields the following cubic equation in the unknown x -.= u l /u2:  

T n l z a  + (T~ll + Tll~ + T l ~ ) z 2  + (T~12 + T~21+ T122)z + T2~2 = O. (5) 

A cubic polynomial in one unknown with real coefficients has in general either 
three real roots or one real root and a pair of complex conjugate roots. The 
latter case of one real and a pair of complex conjugates is obviously the case of 
interest here. In fact, Equation (5) characterizes all the points of the projective 
plane which have the same coordinates in three views. This is reminiscent of the 
3D case where one is interested in the locus of all points in space that  project 
onto the same point in two views (see Section 5.2). The  result that  we have 
just obtained is that  in the case where the internal parameters  of the camera are 
constant, there are in general three such points: the two circular points which are 
complex conjugate, and a real point with the following geometric interpretation. 

Consider first the case of two views and let us ask the question, what is the 
set of points such that  their images in the two views are the same? This set of 
points can be called the 2D horopter (h) of the set of two 1D views. Since the 
two cameras have the same internal parameters we can ignore them and assume 
that  we work with the calibrated pixel coordinates. In that  case, a camera can 
be identified to an orthonormal system of coordinates centered at the optical 
center, one axis is parallel to the retina, the other one is the optical axis. The 
two views correspond to each other via a rotation followed by a translation. This 
can always be described in general as a pure rotation around a point A. A simple 
computation then shows that  the horopter (h) is the circle going through the 
two optical centers and A, as illustrated in Figure 1.a. In fact it is the circle 
minus the two optical centers. Note that since all circles go through the circular 
point (hence their name), they also belong to the horopter curve, as expected. 

In the case of three views, the real point, when it exists, must be at the 
intersection of the horopter (h12) of the first two views and the horopter (h23) 
of the last two views. The first one is a circle going through the optical centers 
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6"1 and C2, the second one is a circle going through the optical centers C2 and 
6'3. Those two circles intersect in general at a second point C which is the real 
point we were discussing, and the third circle (h13) corresponding to the first 
and third views must also go through this real point C, see Figure 1.b. 

cenler of rolation 

C2 

C l 

Fi 

C 

C3 
a m c r a  

n, 7 e r a  

C l 

Fig. 1. (a) The two dimensional horopter which is the set of points having the same 
coordinates in the 2 views (see text). (b) The geometric interpretation of the re~ point 
C which has the same images in all three views (see text). 

We have therefore established the interesting result that  the internal parameters 
of a 1D camera can be uniquely determined through at least 7 point correspon- 
dences in 3 views: the seven points yield the trifocal tensor and Equation (5) 
yields the internal parameters.  

4 A p p l i c a t i o n s  

The theory of self-calibration of 1D camera is considerably simpler than the 
corresponding one in 2D [12] and can be directly used whenever a 1D projective 
camera model occurs, for instance: 

- self-calibration of some active systems using laser beams, infra-reds or ultra- 
sounds whose imaging system is basically reduced to a 1D camera on the 
source plane; 

- self-calibration of a 2D affine camera using line segments, 
- partial/full self-calibration of 2D projective camera using planar motions. 

The first two types of applications are straightforward. The interesting obser- 
vation is that  the 1D calibration procedure can also be used for self-calibrating a 
real 2D projective camera if the camera motion is restricted to planar motions. 
This is discussed in detail in the remaining of this paper. 
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5 C a l i b r a t i n g  a 2 D  p r o j e c t i v e  c a m e r a  u s i n g  p l a n a r  

m o t i o n s  

A planar motion consists of a translation in a plane and a rotation about  an 
axis perpendicular to that plane. Planar  motion is often performed by a vehi- 
cle moving on the ground, and has been studied for camera self-calibration by 
Beardsley and Zisserman [3] and Armstrong et al. [1]. 

Recall that the self-calibration of a 2D projective camera [6, 12] consists of 
determining the 5 unchanging internal parameters of a 2D camera, represented 
by a 3 x 3 upper triangular matrix 

(o v) u0 

0 

This is mathematically equivalent to the determination of the image of the ab- 
solute conic co, which is a plane conic described by x r ( K - 1 ) r ( K - t ) x  = 0 for 
image point x. Given the image of the absolute conic x r C x  = O, the calibration 
matrix K can be found using Cholesky decomposition of the conic matrix C. 

5.1 Using  known planar mot ions  

By "known planar motion", it is meant that the plane of motion is known. The 
case of unknown planar motions will be t reated in the next section. 

Without  loss of generality and to simplify the explanation, let us assume that  
the camera is moving on the natural horizontal ground, so the plane of motion 
is horizontal and the rotation axes are M1 vertical. We assume a 3D coordinate 
system with the x- and z-axes on the ground and the y-axis vertical, and a 
set of point correspondences has been established in 3 images as (ui,vi,  1) 
(u~, v~, 1) ~ (u~', v~', 1). 

As the camera is moving on the plane of motion, therefore the trifocal plane 
the plane through the camera centers--of  the camera is also a plane parallel to 
the ground and coincident with the plane of motion. Obviously, if restricting the 
working space to the trifocal plane, we have a perfect 1D projective camera model 
which projects the points of the trifocal plane onto the trifocal line in the 2D 
image plane, as the trifocal line is the image of the trifocal plane. In practice, 
very few or no any points at all really lie on the trifocal plane. However, we 
may take the orthogonal projection onto the trifocal plane (y = 0) of all points 
(xi,Yi, zi, 1) T in space, i.e. 

(xi, yi, zi, 1) T ~ (xi, z i ,  1) T = Xi .  

Since the camera plane is vertical and perpendicular to the trifocal plane, this 
orthogonal projection in the image plane is nothing but taking the horizontal 
coordinate ui of the image point (ui,vi, 1) T, i.e. 

(Ui,Vi,1)T~-*(Ui,1)T=Ui. 
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The points xi = (xi, z{, 1) T in p2 and the points ui = (ui, 1) T in T '1 are 
related by the following 1D projective camera model 

A = M  . 

At this point, we have obtained the interesting result that a 1D projective 
camera model is obtained by considering only the horizontal pixel coordinate of 
the 2D image points if the camera undergoes a planar motion on the horizontal 
ground plane! 

The 1D self-calibration method just described in the above will allow us to 
locate the image of the circular points common to all horizontal planes. The 
circular points are also the intersection points of the line at infinity of the pencil 
of parallel planes and the absolute conic. We can easily see how the image of 
the circular points are related to the internal parameters of the 2D camera. 
The horizontal planes y = t meet the plane at infinity t = 0 at the line at 
infinity whose image is given by (0, 1,O)TK-l(u,v,  1) T = 0, i.e. v = vo. Hence, 
the location of the trifocal line determines the vertical position of the principal 
point v0. 

By intersecting the absolute conic given by 

(u,v, 1)(K-1)T(K-1)(u,v,  1) T = 0 

and the trifocal line, we have 

(u - -  u0) 2 
+i=0, 

i.e. the image of the circular points are given by Uo :i: ia~,. It follows that  the 
internal parameters of the 1D camera are exactly two of the internal parameters 
of the 2D camera: the focal length a~ in horizontal pixels and the horizontal 
location of the principal point uo. 

If we assume that the image axes are perpendicular and the aspect ratio is 
known-- this  is almost always true in practice, this planar motion allows us to 
calibrate the 2D camera. For a general 2D camera with 5 internal parameters,  
additional planar motions will be necessary. 

5.2 U s i n g  u n k n o w n  p l a n a r  m o t i o n s  

So far, we have used known planar motions. In the general case we would like a) 
to be able to determine from three arbitrary images whether they correspond to 
a planar motion, and b) if it is the case that the motion is planar, to locate the 
image of the motion plane, then to recover two points on the image of the absolute 
conic. The  determination of the image of the motion plane from fundamental 
matrices has been reported in [1,3], to which the following paragraph on the 
planarity test of the motion is therefore closely. 
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Testing the planarity of  the motion 
We first es t imate the three fundamental matrices of each pair of images which 
encode the epipolar geometry of each pair. Let  e~j, i ~ j ,  i = 1,2,3 be the 
epipole in view i with respect to view j .  The trifocal lines t~, i = 1, 2, 3 are the 
lines eij x elk, i • j ~s k. 

The locus of all points in space that  projects onto the same points in two 
images is the well-known horopter curve (H)  [4], in general a twisted cubic. This 
horopter  curve has a very simple definition in terms of the fundamental  matrix.  
Let F be the fundamental  matr ix  and x a point in the first image. Its epipolar 
line in the second image is represented by F x  and since the image of the 3D point 
corresponding to x is the same in the second image, we must have x T F x  = 0. 
Conversely, if x is a point in the first image such tha t  x T F x  = 0, it is the image 
of a point on the horopter,  except if F x  = 0 or F T x  ---- 0 because then one has 
y T F x  = 0 or x T F y  = 0 for all points y. 

The  curve of equation x T F x  ---- 0 is a conic (c). The  matr ix  of this conic is 
G -- F q- F T since the antisymmetric part  of F is irrelevant. Note that  we have 
two such identical conics, (c) and (c'), one for each view. 

The  horopter  therefore appears  as part  of the intersection of two quadratic 
cones each one being defined by the optical center C (respectively C r) and the 
conic (c) (respectively (ct)). The intersection of two quadrat ic  cones is a space 
curve of degree 4. But  note that  the points e and e '  belong to (c) and (ct). This 
implies that  the line (C, C ' )  going through the two optical centers belongs to 
the curve of intersection since the points on this line project  to e in the first view 
and to e t in the second view. But this line is not on the horopter  curve since e 
satisfies Fe = 0 and e ~ satisfies FTe  ' = 0. The  remaining chunk is a curve of 
degree three, in general a twisted cubic. Note that  because the images of this 
cubic in the two views are the conics (c) and (c'), the cubic has to go through 
the optical centers C and C ~ [4]. 

In the case of interest here where we rota te  the camera  with respect to an 
axis L, the horopter  curve is simpler. Let us consider the images I and l ~ of L in 
the two views. They  are clearly identical and therefore L belongs to (H).  The 
remaining par t  must be a conic which can be easily determined. 

Consider the p l a n e / 7  going through the two optical centers C and C' and 
perpendicular  to L. Such a plane is well defined if L does not meet the line 
(C, C r) which we assume to be the case. The intersection of that  plane with the 
two retinal planes determines two 1D cameras with optical  centers C and C t and 
we can look for the points in that  plane such that  they have the same images 
in the two 1D cameras (this is the 2D horopter  curve (h) for the system of two 
cameras described in Section 3.2). Let A be the point of intersection of L and 
/7. We saw in Section 3.2 that  (h) is the circle going through C, C ~ and A. 

The  conclusion is tha t  in the case of a rota t ion with respect to an axis L, the 
horopter  curve (H)  splits into the line L and the previous circle in the p lane /7 .  
Its image (c) (respectively (d))  therefore also splits into two lines, the image line 
l (respectively the line l ~) of L and the line p (respectively p' ) of intersection of 
17 with the retinal plane. 
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For a set of three views, we consider the plane 1712 corresponding to the first 
rotation and the plane 1723 corresponding to the second. The motion is planar 
if and only if the two planes/712 and H23 coincide with the trifocal plane. 

This gives a test for the planarity of a motion. The three fundamental ma- 
trices yield the three trifocal lines l~ represented by t~ = eij •  i = 1,2,3, i :# 
j # k. The three matrices Gij = Fij + F T, i # j (note that  Gij = Gji) define 
the three conics (cij) which must split each into two lines, hence the six lines 
112, P12, 123, P23, /31, P31. A necessary condition for the motion to be planar is 
that the six lines ll, 12, 13, and 112, /23,131 are "close" enough. The lines Pij are 
the image lines of the rotation axes, hence generally different and intersect at 
a point which is the vanishing point of the direction of the rotation axes (the 
direction perpendicular to the common plane of motion). 

Converting 2D images into 1D images 
Now comes the central idea of our method: the 219 images of a camera undergoing 
any planar motion reduce to 1D images by projecting the 2D image points onto 
the trifocal line. 

This can be achieved in at least two ways. 
First, if the vanishing point v of the rotation axes is well-defined. Given a 

3D point M with image m,  we mentally project it to 2Q in the plane of motion, 
the projection being parallel to the direction of rotation. The image rh of this 
virtual point can be obtained in the image as the intersection of the line v • m 
with the trifdcal line t, i.e. rh = t • (v • m).  

Since the vanishing point v of the axes of rotation and the trifocal line t are 
known, this is a well-defined construction, see Figure 2.a. 

M 

t 

.It 

M '  

M 

Fig. 2. (a) Creating a 1D image from a 2D image from the vanishing point of the 
rotation axis and the trifocal line (see text). (b) Creating a 1D image from any pairs 
of points or any line segments (see text). 

Note this is also a projective projection from T '2 (image plane) to T '1 (trifocal 
line): m ~ ria. 

Alternatively, if the vanishing point does not exist or is poorly defined, we 
can nonetheless create the virtual points in the trifocal plane. Given two points 
M and M'  with images m and m', the line (M, M')  intersects the plane of 
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motion in /V/. The image rh of this virtual point can be obtained in the image 
as the intersection of the line (m, m')  with the trifocal line t, see Figure 2.b. 

Another important  consequence of this construction is that 2D image line 
segments can also be converted into 1D image points! The construction is even 
simpler, as the resulting 1D image point is just the intersection of the line seg- 
ment with the trifocal line. 

1D Self-calibration 
Once the 2D images are reduced to 1D images, we apply the 1D self-calibration 
method described in Section 3 to the 1D images. 

E s t i m a t i o n  o f  t h e  i m a g e  o f  t h e  a b s o l u t e  con ic  for  t h e  2D c a m e r a  
Each planar motion generally gives us two points on the absolute conic, together 
with the vanishing point of the rotation axes as the pole of the trifocal line 
w.r.t, the absolute conic. The pole/polar  relation between the vanishing point 
of the rotation axes and the trifocal line was introduced in [1]. As a whole, this 
provides 4 constraints on the absolute conic. Since a conic has 5 d.o.f., at least 2 
different planar motions, yielding 8 linear constraints on the absolute conic (see 
Figure 3.a), will be sufficient to determine the full set of 5 internal parameters 
of a general 2D camera by fitting a general conic x r C x  = 0. 

46 

Fig. 3. (a) Computing the image of the absolute conic from two planar motions using 
the vanishing point of the rotation axes. (b) Computing the image of the absolute conic 
from three planar motions using only points lying on the conic. 

If we assume a 4-parameter model for camera calibration with no image 
skew (i.e. s = 0), one planar motion yielding 4 constraints to determine the 4 
internal parameters of the 2D camera is generally sufficient. However this is not 
true for the very common planar motions such as purely horizontal or vertical 
motions with the image plane perpendicular to the motion plane (for instance, 
the planar motion described in Section 5.1 typically belongs to this situation)! It  
can be easily proven that there are only 3 instead of 4 independent constraints 
on the absolute conic in these configurations. We need at least 2 different planar 
motions for determining the 4 internal parameters.  
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This also suggests that even the planar motion is not purely horizontal or 
vertical, but close to be, the vanishing point of the rotation axes only constrains 
loosely the absolute conic. Using only the circular points located on the absolute 
conic is preferable and numerically stable, but we may need at least 3 planar mo- 
tions to determine the 5 internal parameters of the 2D camera (see Figure 3.b). 
Note that the numerical unstability of the vanishing point for nearly horizontal 
trifocal line was already noticed by Armstrong in [2]. 

Obviously, if we work with a 3-parameter model for camera calibration with 
known aspect ratio and no image skew, one planar motion is sufficient as was 
illustrated in Section 5.1 and [1]. 

S u m m a r y  a n d  c o m p a r i s o n  
We can summarize our algorithm for self-calibrating a 2D camera as follows: 

1. Take three views of a scene. 
2. Est imate the three fundamental matrices [23, 20]. 
3. Verify that  the motion is planar as described above. If it is not planar, stop. 
4. Project  the point and line correspondences in the retinal plane using either 

one of the two methods proposed above. 
5. Est imate linearly the trifocal tensor of the 3 corresponding 1D images. 
6. Solve for the three roots of (5). This yields two points on the image of the 

absolute conic. 
7. If the number of constraints on the absolute conic is less than the number 

of internal parameters,  go to step 1. 
8. Fit  a complex ellipse using all available constraints. 

As we have mentioned at the beginning of this section the method described in 
this section is related to the work of Armstrong et al. [1], but  there are some 
important  differences which we explain now. 

First, our approach gives an elegant insight of the intricate relationship be- 
tween 2D and 1D cameras for a special kind of motion called planar motion. 

Second, it allows us to use only the fundamental matrices of the 2D images 
and the trifocal tensor of 1D images to self-calibrate the camera instead of the 
trifocal tensor of 2D images. It is now well known that  fundamental matrices 
can be very efficiently and robustly estimated [23, 20]. The same is true of the 
estimation of the 1D trifocal tensor [14] which is a linear process. Armstrong 
et al., on the other hand, use the trifocal tensor of 2D images which so far has 
been hard to estimate due to complicated algebraic constraints. Also, the trifocal 
tensor of 2D images takes a special form in the planar motion case [1] and the 
new constraints have to be included in the estimation process. 

It may be worth mentioning that  in the case of interest here, planar motion 
of the cameras, the Kruppa equations become degenerate [22] and do not allow 
to recover the internal parameters.  Since it is known that  the trifocal tensor of 
2D images is algebraically equivalent to the three fundamental matrices plus the 
restriction of the trifocal tensor to the trifocal plane [16, 10], our method can be 
seen as an unexpensive way of estimating the full trifocal tensor of 2D images: 
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first estimate the three fundamental matrices (nonlinear but simple and well 
understood), then estimate the trifocal tensor in the trifocal plane (linear). 

Although it looks superficially that both the 1D and 2D trifocal tensors can be 
estimated linearly with at least 7 image correspondences, this is misleading since 
the estimation of the 1D trifocal tensor is exactly linear for 7 d.o.f, whereas the 
linear estimation of the 2D trifocal tensor is only a rough approximation based 
on a set of 26 auxiliary parameters for its 18 d.o.f, and obtained by neglecting 8 
complicated algebraic constraints. 

Third,  but this is a minor point, our method may not require the estimation 
of the vanishing point of the rotation axes. 

6 C r i t i c a l  m o t i o n s  f o r  s e l f - c a l i b r a t i o n  

In this section, we describe the camera motions that  may defeat the self-calibration 
method developed in Section 3. We call these camera motions critical in that 
they give rise to ambiguous solutions to the location of the circular points, thus 
leading to ambiguous calibration and ambiguous metric reconstruction. More 
details and proofs are given in [19]. Here we only summarize the results. 

- If the camera center remains fixed, but the camera may rotate arbitrarily, 
2D reconstruction is obviously impossible while self-calibration is possible. 

- If the camera undergoes pure translations, by analogy to the 2D camera case, 
affine reconstruction is possible, but self-calibration is impossible. 

- If the camera moves on a circle, and is oriented in such a way that  all points of 
the circle have fixed projections in all the views, neither affine reconstruction 
nor self-calibration are possible. 

7 E x p e r i m e n t a l  r e s u l t s  

The theoretical results for 1D camera self-calibration and its applications to 2D 
camera calibration have been implemented and experimented on synthetic and 
real images. 

We first used a regular square grid of 25 points to show the very strong 
stability of focal length w.r.t, high noise level. The  principal point coordinate 
is set to 200 and the focal length to 400. The image resolution with such a 
setting of internal parameters is about 500 pixels. The 25 points of the grid are 
projected onto the three 1D images. Finally the positions of the projected points 
are per turbed by adding various amounts of uniformly distributed pixel noise. 
The results are presented in Table 1. 

We note the very stable results of the estimated focal length. With noise 
levels up to =kl0 pixels, the estimation remains extremely near to the true value. 
The degradation for the estimated positions of the principal point and the fixed 
point is also graceful, but more sensitive to noise. 

For the real case, we consider a scenario of a real camera mounted on a 
robot 's  arm. Two sequences of images are acquired by the camera moving in two 
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Noise]+0 =t=11 • +3 +4 +5 +6 +7 +8 +9 i=t:10 
400 400.2 400.4 400.7 400.9.401.1 401.3 401.5 401.7 401.81401.9 

uo 200 205.91211.8 217.7 223.6;229.5 235.3 241.1 246.8 252.6 258.3 
cr 0.0 0.03 0.06 0.09 0.1 0.2 0.3 0.3 0.5 0.6 0.9 

Table  1. Table of the estimated internal parameters c~ and uo by 1D self-calibration 
method from 3 synthetic 1D images with uniform pixel errors of different levels. The 
fourth row g shows the standard deviation of the reprojection error for the estimation 
of the trifocal tensor. 

different planes. The first sequence contains 7 (indexed from 16 to 22) images 
(cf. Figure 4) and the second contains 8 (indexed from 8 to 15). 

The  calibration grid was used to have the ground t ru th  for the internal camera 
parameters  which have been measured as a~, = 1534.7, a~ = 1539.7, u0 = 281.3 
and v0 = 279.0 using the s tandard calibration method.  

Fig. 4. Three images of the first planar motion. 

We take triplets of images from the first sequence and for each triplet we 
est imate the trifocal line and the vanishing point of the rotat ion axes by the 
3 fundamental  matrices of the triplet. The 1D self-calibration is applied for 
est imating the images of the circular points along the trifocal lines. To evaluate 
the accuracy of the estimation, the images of the circular points of the trifocal 
plane are re-computed in the image plane from the known internal parameters  
by intersecting the image of the absolute conic with the trifocal line. Table 2 
shows the results for different triplets of images of the first sequence. 

Since we have more than 3 images for the same planar  motion of the camera,  
we could also est imate the trifocal line and the vanishing point of the rotation 
axes by using all available fundamental  matrices of the 7 images of the sequence. 
The results using redundant images are presented for different triplets in Table 3. 
We note the slight improvement of the results compared with those presented in 
Table 2. 

The  same experiment was carried out for the other sequence of images where 
the camera  underwent a different planar motion. Similar results to the first image 
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Image triplet Fixed point,Circular points by sel~calibration 
(16,19,22) 493.7 290.7 �9 i2779.1 
(16,20,22) 421.8 250.1 • i2146.3 
(17,19,21) 533.1 291.3 ~ i2932.4 
(16,18,20) 017.8 238.5 �9 i2597.6 
(18,20,22) 368.3 230.6 • i2208.2 

Circular points by calibration 
310.3 • i2650.3 
273.9 �9 i2153.5 
241.3 • i2823.1 
238.1 • i2791.5 
272.1 ~ i2126.2 

Table 2. Table of the estimated positions of the images of the circular points by 
self-calibration with different triplets of images of the first sequence. 

Image triplet 
(16,18,20) 

Circular points 

(16,19,22) 

245.5 -4- i2490.5 
Fixed point 

590.0 
(18, 20, 22) 221.4 -4- i2717.8 384.4 
(16, 20, 22) 236.2 =h i2617.3 452.9 

240.0 =h i2693.4 488.0 
304.7 4- i2722.7 (17,19,21) 

known position by calibration !262.1 =h i2590.6 
516.6 

Table 3. Table of the estimated positions of the image of circular points with different 
triplets of images. The trifocal line and the vanishing point of the rotation axes are 
estimated using 7 images of the sequence instead of the minimum of 3 images. 

sequence are obtained, we give only the result for one triplet of images in Table 4 
for this sequence. 

Image triplet Fixed point]Circular points by self-calibration Circular points by calibration 
(8, 11, 15) 927.2 269.7 + i1875.5 276.5 + i1540.1 

Table 4. Table of the estimated position of the image of circular points with one triplet 
of second image sequence. 

Now two sequences of images each corresponding to a different planar motion 
yield four distinct imaginary points on the image plane which must be on the 
image w of the absolute conic. We therefore fit to those four points an imaginary 
ellipse using standard techniques and compute the resulting internal parameters. 
Note that we did not use the pole/polar constraint of the vanishing point of the 
rotation axes on the absolute conic as it was discussed in Section 5.2 that this 
constraint is not numerically reliable. 

The ultimate goal of self-calibration is to get 3D metric reconstruction. 3D 
reconstruction from two images of the sequence is performed by using the es- 
timated internal parameters as illustrated in Figure 5. To evaluate the recon- 
struction quality, we did the same reconstruction using the known internal pa- 
rameters. Two such reconstructions differ merely by a 3D similarity transfor- 
mation which could be easily estimated. The resulting normalised relative error 
of the reconstruction from two images by self-calibration with respect to the 
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reconstruction by off-line calibration is 3.4 percent. More intensive experimental  
results could be found in the extended version which can be downloaded from 
h~tp ://www. inrialpes, f r/movi/people/Quan/publicat ion. 
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Fig. 5. Two views of the resulting 3D reconstruction by self-calibration. 

8 Conclus ions  and other appl icat ions 

We have first established that  the 2 internal parameters  of 1D camera  can be 
uniquely determined through the trifocal tensor of three 1D images. Since the 
trifocal tensor can be est imated linearly from a t  least 7 points in three 1D images, 
the method of the 1D self-calibration is a real linear method (modulo the fact 
that  we have to find the roots of a third degree polynomial  in 1 variable), no 
any over-parameter isat ion was introduced. 

Secondly, we have proven that  if a 2D camera  undergoes a planar motion, 
the 2D camera  reduces to a 1D camera  in the plane of motion. The  reduction 
of a 2D image to a 1D image can be efficiently performed by using only the 
fundamental  matrices of 2D images. Based on this relation between 2D and 1D 
images, the self-calibration of 1D camera  can be applied for self-calibrating a 2D 
camera.  Our experimental  results based on real image sequences show the very 
large stabili ty of the solutions yielded by the 1D self-calibration method and 
the accurate  3D metric reconstruction that  can be obtained from the internal 
parameters  of the 2D camera est imated by the 1D self-calibration method.  
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