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A b s t r a c t .  We show that we can effectively fit arbitrarily complex ani- 
mation models to noisy image data. Our approach is based on least- 
squares adjustment using of a set of progressively finer control triangula- 
tions and takes advantage of three complementary sources of information: 
stereo data, silhouette edges and 2-D feature points. 
In this way, complete head models--including ears and hair--can be 
acquired with a cheap and entirely passive sensor, such as an ordinary 
video camera. They can then be fed to existing animation software to 
produce synthetic sequences. 

1 I n t r o d u c t i o n  

In this paper,  we show tha t  we can effectively fit a complex head an imat ion  
model ,  including ears and hair, to image da ta  obtained using simple video or 
CCD cameras as opposed to sophisticated sensors such as laser range finders. 

In recent years much  work has been devoted to the modell ing of  faces f rom 
image and range data.  There are m a n y  effective approaches to recovering face 
geometry.  They  rely on stereo [5], shading [14], s t ructured light [19], silhouet- 
tes [20] or low-intensity lasers. Some of these systems such as the C3D t'~l or the 
Cyberware  tm scanner are commercial ly  available. However, recovering a head 
as a simple t r iangulated mesh does not suffice: To an imate  the face, one mus t  
fur ther  fit an actual  an imat ion  model  to the data.  

A u t o m a t e d  approaches to this task can be roughly classified into the following 
two categories: 

- Some concentrate  on tracking the head mot ion  and some features. They  
typical ly use a fairly coarse face model  tha t  is too simple for realistic face 
an imat ion  (e.g. [4]). 

- Others  use sophist icated face models with large numbers  of degrees of fre- 
edom tha t  are suitable for animat ion  purposes but  require very clean d a t a -  
the kind produced by a laser scanner or s t ructured l i gh t - - t o  instant ia te  t hem 
(e.g. [15]). 
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The approach proposed here bridges the gap between these two classes by fitting 
to actual image data  a detailed face model that  has successfully been used to 
animate  virtual actors. We can generate with very limited manual  intervention 
a physical model of the sur face- - tha t  is, one that  includes both geometry and 
reflectance proper t ies - - tha t  can then be used to animate the face. 

Our contribution is twofold: 

- Because we use robust fitting techniques and take advantage of our rough 
knowledge of a face's shape, we obtain reliable results even from noisy data  
acquired with a cheap and entirely passive technique. In particular, we will 
show that  a complete model can be constructed from a sequence acquired 
with a simple hand-held video camera. 

- The least-squares framework we have developed allows us to pool several 
kinds of heterogeneous information sources--stereo or range, silhouettes and 
2-D feature locat ions--without  deterioration in the convergence properties 
of the algorithm. This is in contrast to typical optimization approaches whose 
convergence properties tend to degrade when using an objective function tha t  
is the sum of many  incommensurate terms [10, 9]. 

These at tr ibutes of our approach allow us to derive convincing models even from 
relatively low-resolution images. 

We typically s tar t  with a set of stereo image pairs or a video sequence. In this 
work, we assume that  the monochrome images we use are registered and that  
precise camera models are available. This assumption is reasonable because there 
are well established photogrammetr ic  techniques, such as bundle-adjustment,  
that  allow the computat ion of these models as needed. Furthermore recent work 
in the area of autocalibration [6, 21, 17] could be brought to bear to au tomate  
the process. We then go through the following three steps: 

- We compute disparity maps for each stereo pair or each consecutive pair in 
the video sequences, fit local surface patches to the corresponding 3-D points, 
and use these patches to compute a central 3-D point and a normal  vector. 
Optionally, we also use semi-automated techniques to extract silhouettes and 
a small number of feature points. 

- We attach a coarse control mesh to the animation model and perform a 
least squares adjustment of this control mesh so that  the model matches 
the previously computed data. We weigh the data  points according to how 
close--in the least squares sense-- they are to the model and use an itera- 
tive reweighting technique to eliminate the outliers. We then subdivide the 
control mesh and repeat the procedure to refine the result. 

- We use the original images to compute an optimal  facet albedo for each facet 
of the model to achieve the closest possible resemblance to those images. 

In the remainder of the paper, we first introduce our optimization framework. 
We then show how the various sources of information are handled. Finally we 
present reconstruction and animation results on a number  of different heads. 
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2 L e a s t  S q u a r e s  F r a m e w o r k  

In this work, we use the facial animation model that has been developed at Uni- 
versity of Geneva and EPFL [12]. It can produce the different facial expressions 
arising from speech and emotions. Its multilevel configuration reduces complexity 
and provides independent control for each level. At the lowest level, a deforma- 
tion controller simulates muscle actions using rational free form deformations. 
At a higher level, the controller produces animations corresponding to abstract 
entities such as speech and emotions. 

The corresponding skin surface is shown in its rest position in Figure l(a).  
We will refer to it as the surface triangulation. From a fitting point of view, this 
model embodies a rough knowledge about the face's shape and can be used to 
constrain the search space. Our goal is to deform the surface--without changing 
its topology--so that  it conforms to the image data. In standard least-squares 
fashion, we will use this data to write hobs observation equations of the form 

f i ( P ) = o b s i + q  , l  < i < n o b s  , (1) 

where P is a parameter vector that defines the shape of the surface and ei is the 
deviation from the model. We will then minimize 

l < i < n o b s  

where wi is a weight associated to each observation. The optimization is then 
performed using the Levenberg-Marquardt algorithm [18]. 

In theory we could take the parameter vector P to be the vector of all x, y, 
and z coordinates of the surface triangulation. However, because the image data 
is very noisy, we would have to impose a very strong regularization constraint. 
For example, we have tried to treat the surface triangulation as finite element 
mesh. Due to its great irregularity and its large number of vertices, we have found 
the fitting process to be very brittle and the smoothing coefficients difficult to 
adjust. Therefore, we have developed the following scheme to achieve robustness. 

2.1 C o n t r o l  T r i a n g u l a t i o n  

Instead of directly modifying the vertex positions during the minimization, we 
introduce control triangulations such as the ones shown in Figure l(b,c,d). The 
vertices of the surface triangulation are "attached" to the control triangulation 
and the range of allowable deformations of the surface triangulation is defined 
in terms of weighted averages of displacements of the vertices of the control 
triangulation. The triangulation can thus be deformed to fit image data and to 
produce results such as those shown in the second row of Figure 1. 

More specifically, we project each vertex of the surface triangulation onto 
the control triangulation. If this projection falls in the middle of a control facet, 
we "attach" the vertex to the three vertices of the control facets and compute 
the corresponding barycentrie coordinates. If this projection falls between two 
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Fig. 1. Animation model. (a) The model used to animate complete heads. (b,c) Two 
levels of refinement of the control mesh used to deform the face. (d) The control 
mesh used to deform the hair. (e) A shaded view of the model in its default 
state. (f,g,h) Shaded views of the model deformed to resemble three of the 
people shown in the result section. 

facets, we "attach" the vertex to the vertices of the corresponding edge. In effect, 
we take one of the barycentric coordinates to be zero. 

Given these at tachments,  the surface tr iangulat ion 's  shape is defined by de- 
formation vectors associated to the vertices of the control triangulation. The 
3-D position Pi of vertex i of the surface triangulation is taken to be 

i (3) 

where pO is its initial position, 5j 1,5j 2, 5j3 are the deformation vectors associated 
i i to the control triangulation vertices to which vertex i is attached, and l~, 12, 13 

are the precomputed barycentric coordinates. 
In this fashion, the shape of the surface triangulation becomes a function of 

the 5j and the parameter  vector P of Equation 1 is taken to be the vector of the 
x, y and z components of these 5j. Because the control triangulations have fewer 
vertices that  are more regularly spaced than the surface triangulation, the least- 
squares optimization has better  convergence properties. Of course the finer the 
control triangulation, the less smoothing it provides. By using a precomputed set 
of increasingly refined control triangulations, we implement  a hierarchicM fitting 
scheme that  has proved very useful when dealing with noisy data, as shown in 
Section 3. Two levels of refinement of the control mesh used to deform the face 
and the coarsest level of the control mesh used to deform the hair are shown in 
the top row of Figure 1. 
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2.2 S t i f fness  M a t r i x  

Because there may  b e  gaps in the image data, it is necessary to add a small 
stiffness te rm into the optimization to ensure that  the 5j of the control vertices 
located where there is little or no data  are consistent with their neighbors. If  the 
surface was continuous, we could take this term to be 

However, because our control triangulation is discrete, we can treat  its facets as 
C o finite elements and write our stiffness term as 

Es = At  KA= + AtyKAy + A~KA~ (4) 

where K is a stiffness matr ix  and A~, Ay and Az are the vectors of the x, y and 
z coordinates of the displacements 5. The term we actually optimize becomes 

E = +  szs , (5) 
l <i<nobs 

where As is a small positive constant. This is achieved very simply in the least 
squares framework by incrementing the appropriate elements of the mat r ix  tha t  
appears  in the normal equations by those of the stiffness matr ix  K.  

2.3 W e i g h i n g  t h e  O b s e r v a t i o n s  

As will be discussed in Section 3, our system must be able to deal with many  
observations coming from different sources that  may  not be commensurate  with 
each other. Formally we can rewrite the observations equations of Equation 1 as 

f type(p)= obs~ype +ci , l  < i < nobs , (6) 

with weight w~ ype, where type is one of the possible types of observations we use. 
In this paper, type may be stereo, silhouette position or 2-D feature location. 
The least-squares minimization procedure involves iteratively solving normal  
equations and solving linear systems of the form 

A t A X  = A t y  

where the A mat r ix  is formed by summing the elements of the gradient vectors 
w~YP~vftype(P). To ensure that  these matrices are well conditioned and that  
the minimization proceeds smoothly we multiply the weight w~ yp~ of the ntype 
individual observations of a given type by a global coefficient Wtyp~ computed as 
follows: 

type j atype=V/Ex<i<,~ob~,y=typeWi IlVfi (P)II 2 
ntype 

Atyp~ (7) 
W t y p e -  Gtype 
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where Atype is a user supplied coefficient between 0 and 1 that  indicates the 
relative importance of the various kinds of observations. This guarantees that,  
initially at least, the magnitudes of the gradient terms for the various types have 
the appropriate relative values. 

As shown in Section 4, the final result is relatively insensitive to the exact 
values of the Atype and we have used the same set of values to generate all of 
our results. Because the complete objective function is not convex, no numerical 
optimization technique can be guaranteed to find the global opt imum at each 
level of refinement of the control triangulations. The experiments described in 
Section 4, however, indicate that the Levenberg-Marquardt optimizer consisten- 
tly yields better minima and needs fewer iterations at each level than other 
methods such as the Euler-Lagrange methods that have been extensively used 
in the Computer  Vision field [13J--the so-called snake approaches--and one of 
the best known implementations of a quasi-newton approach in the field of Ope- 
rations Research [16]. 

3 F r o m  I m a g e  D a t a  t o  O b s e r v a t i o n s  

In this section we focus on stereo range data and silhouettes because they can 
be readily acquired from image sequences and form two complementary sources 
of information: Stereo can be expected to give good results where the surface 
more or less faces the cameras while silhouettes appear where the surfaces slopes 
away from the camera planes. We also use a few key feature points to pin down 
some of the crucial elements of the model. 

3.1 S t e r e o  D a t a  

We use several sets of stereo pairs or triplets of a given face as our input data  such 
as those of Figure 2. We assume that the images are monochrome and registered 
so that  their relative camera models are known a priori. Since we are interested 
in reconstructing surfaces, we start the process by using a simple correlation- 
based algorithm [7] to compute a disparity map for each pair or triplet and by 
turning each valid disparity value into a 3-D point. If other sources of range data  
were available, they could be used in a similar fashion. Because, these 3-D points 
typically form an extremely noisy and irregular sampling of the underlying global 
3-D surface, we begin by robustly fitting surface patches to the raw 3-D points. 
This first step eliminates some of the outliers and generates meaningful local 
surface information for arbitrary surface orientation and topology. Figure 2(e) 
depicts the result of this procedure. For additional details, we refer the interested 
reader to an earlier publication [8]. 

The center of each patch is treated as an attractor. The easiest way to handle 
is to model it as a spring attached to the mesh vertex closest to it. This, however, 
is inadequate if one wishes to use facets that are large enough so that  attracting 
the vertices, as opposed to the surface point closest to the attractor,  would cause 
unwarranted deformations of the mesh. This is especially important  when using 
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Fig. 2. Modeling a head from a video sequence of forty images (Courtesy of IGP, 
ETHZ). (a,b) Consecutive images treated as a stereo pair. (c) Corresponding 
disparity map. Black indicates that  no disparity value was computed; lighter 
areas are further away than darker ones. Note that  the disparities around the 
occluding contour on both the left and right sides of the head are erroneous. 
(d) Image taken from a different viewpoint. (e) Planar patches extracted from 
the stereo da ta  represented as disks and shaded according to the orientation of 
their normals. The shape is recovered but there still are a number of spurious 
patches and the model cannot be animated as this stage of the processing. (f) 
Shaded view of the animation model fitted to the face only. (g,h) Shaded views 
using the facet reflectances derived from the images for the complete head. 

a sparse  set of a t t r ac to r s .  In  our imp lemen ta t i on ,  this  is achieved by wr i t ing  the  
obse rva t ion  equa t ion  as 

= 0 + , ( 8 )  

where  d a is the  o r thogona l  d is tance  of the  a t t r a c t o r  to the  closest facet and  can 
be  c o m p u t e d  as a func t ion  of the  x,y, and  z coord ina tes  of the  ver t ices  of the  
facet  closest to  the  a t t r ac to r .  

The  n o r m a l  vector  to a facet can be c o m p u t e d  as the  no rma l i zed  cross pro-  
duct  of  the  vectors  defined by two sides of  t ha t  facet,  and  d• as the  dot  p roduc t  
of th is  n o r m a l  vector  wi th  the  vector  defined by  one of the  vert ices and  the  
a t t r a c t o r .  Le t t ing  (x i ,  Yi, Zi)l<i<3 be the  three  vert ices of  a facet,  consider  the  
p o l y n o m i a l  D defined as 

X2 Y2 Z2 
D = = C~xa + Cyy~ + C~z,, (9) 

x3 Y3 z3 

Xa Ya Za 



195 

where Cx,Cy, and C, are polynomial functions of xl,yi, and zi for 1 < i < 3. It 
is easy to show that  the facet normal is parallel to the vector (C=, Cy, Cz) and 
that  the orthogonal distance d~ of the at t ractor  to the facet becomes 

a ~ = + + Cz 

Finding this "closest facet" is computat ionally expensive if we exhaustively 
search the list of facets for the one that  initially minimizes the observation error 
of Equation 8. However, the search can be made efficient and fast if we assume 
tha t  the 3-D points can be identified by their projection in an image, as is the 
case with stereo data. For each image, we use the Z-buffering capability of our 
machines to compute what we call a "Facet-ID image:" We encode the index i 
of each facet fi as a unique color, and project the surface into the image plane, 
using a standard hidden-surface algorithm. We can then trivially look up the 
facet that  projects at the same place as a given point. 

We recompute these a t tachments  at each stage of the hierarchical fitting 
scheme of Section 2, that  is each t ime we introduce a new control triangulation. 
Because some of the patches derived from stereo may be spurious, we use a 
variant of the I terative Reweighted Least Squares [1] technique. Each t ime we 

st . . . .  of observation recompute the at tachments,  we also recompute the weight wi 
i and take it to be inversely proportional to the initial distance d~ of the data  

81~vreo point to the surface triangulation. More specifically we compute w i as 

_d.  ~ 
~,~,.~o = e x p ( @ )  for 1 < i < n (10) w i 

where d a is the median value of the di. In effect, we use d a as an est imate of the 
noise variance and we discount the influence of points that  are more than a few 
standard deviations away. 

Robustness can be further increased by multiplying the wi by the dot product 
of the normal  of the surface patches used to derive the at tractors  with the current 
est imate of the normal vector of the facet to which the facet is attached. In this 
manner,  the influence of patches whose orientation is very different from that  of 
the attached facet is discounted. 

3.2 S i l h o u e t t e  D a t a  

Contrary to 3-D edges, silhouette edges are typically 2-D features since they 
depend on the viewpoint and cannot be matched across images. However, they 
constrain the surface tangent. Each point of the silhouette edge defines a line 
that  goes through the optical center of the camera and is tangent to the surface 
at its point of contact with the surface. The points of a silhouette edge therefore 
define a ruled surface that  is tangent to the surface. In terms of our facetized 
representation, this can be expressed as follows. Given a silhouette point (us, vs) 
in an image, there must be a facet with vertices (xi, Yi, z i ) l<i<3 whose image 
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projections (ui, vi)l<i<3, as well as (u~, v~), all lie on a single line. This can be 
enforced by writing for each silhouette point three observation equations: 

~tll Uj Us Vj Vs :O-~-eij , 1 < i < 3 ,  i~_j~_3 
1 1 

(11) 

where the (ui, vi) are derived from the (xi, Yi, zi) using the camera model. 
As with the 3-D attractors of Section 3.1, we can use the iterative reweighting 

scheme described above and the main problem is to find the "silhouette facet" 
to which the constraint applies. As before, we can exhaustively search the facets 
of the surface triangulation for those that initially are close to being parallel to 
the ruled surface defined by the silhouette and minimize the observations errors 
of Equation 11. Alternatively, we can use the Facet-ID image to speed up the 
process: Since the silhouette point (u~, v~) can lie outside the projection of the 
current estimate of the surface, we must search the Facet-ID image in a direction 
normal to the silhouette edge for a facet that minimizes the initial observation 
error. This, in conjunction with our coarse-to-fine optimization scheme, has pro- 
ved a robust way of determining which facets correspond to silhouette points. 

3.3 2 - D  L o c a t i o n  o f  F e a t u r e s  

In order to ensure proper animation, it is important  to guarantee that  important  
features of the mode l - -mouth  and corners of the eyes especially--project at the 
correct locations in the face. Because there now are automated techniques to 
effectively extract those [2, 3, 11], a system likes ours must be able to take 
advantage of those whenever available. For each vertex xi, y/, zi of the surface 
triangulation whose 2-D projection ui, vi is known, we can write two observation 
equations: 

P r u ( X i ,  Yi, z i )  --- ui + e u 

P r v ( x i ,  Yi, z i )  = vi + c~ 

(12) 

where Pru and Pry stand for the projection in u and v. In this way we do 
not need the explicit 3-D position of these feature points, only their 2-D image 
location. 

3.4 R e f l e c t a n c e  D a t a  

To estimate the reflectance of the facets of the model, we project them into 
the images and compute the mean gray-level of the pixels belonging to these 
projections. Here again we take advantage of the Z-buffering capability of our 
machines to perform this operation quickly while taking occlusions into account. 
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Fig. 3. Modelling the complete head. (a,b) Two images from a triplet. (c,d) 2-D fe- 
ature points and hair outlines (e) Reconstructed face. (f) Hair optimized to 
conform to the outlines of (c) and (d). (g) Shaded view of the complete head. 
(h) Shaded view using the albedoes computed from the images. 

4 R e s u l t s  

Figures 2(f,g,h) demonstrates the effectiveness of the fitting technique using only 
high-quality stereo data as described in Section 3.1. 

To illustrate the use of silhouettes and feature points, we use the images of 
Figure 3. By supplying a small number of feature points and providing an outline 
for the hair--where stereo fails--we were able to reconstruct both the complete 
face and the hairdo as follows: We start with three image triplets and use stereo 
and feature data to reconstruct the face to yield the result shown in Figure 3(e). 
The hair outlines of Figure 3(c) and (d) can then be treated as silhouettes. They 
are used, in conjunction with the stereo data and the hair control triangulation 
of Figure l(d) to deform the part of the surface triangulation that  corresponds 
to hair and yield the results of Figure 3(f,g,h) Using the same approach and the 
same parameters and three stereo pairs for each person, we obtained the three 
complete heads of Figure 4. 

In all cases the heads can be animated by invoking the animation control- 
ler [12], as depicted by Figure 5. 

The results of Figures 2, 3, and 4 have all been computed using the same 
value (0.005) for the stiffness parameter As of Equation 5. In the general case, 
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Fig. 4. Three LIG researchers. (a) Left images of one of the three stereo pairs used 
for each person. (b,c) Shaded views of the complete head. (d) Shaded view 
using the albedoes computed from the images. All the models have the same 
topology and can be animated as those of Figure 1. 

these results may involve the combination of several sources of informat ion--  
stereo, silhouette position and 2-D feature locat ion--and require the setting of 
relative weights, the )~type of Section 3.2. In all cases we have used Ast~r,o = 1.0 
and ,~silhoutte = )~]eatures ~- 0.3. To demonstrate the relative insensitivity of the 
results to the precise value of these weighing parameters, we have run the face re- 
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Fig. 5. Animating the face: the third character of Figure 4 opens his eyes and talks. 

construction algorithm on the images of Figure 6(a) several times with different 
parameters setting. We have used both chin silhouettes and feature points, with 
values of Asilhoutte and A/eat . . . .  ranging from 0.0 to 0.5 and Astereo remaining 
equal to 1.0. In Figure 6(b), we histogram the distances of the 3-D data points 
derived from stereo to the resulting face surfaces. Note that  for each face, the five 
plots are almost indistinguishable. In other words, the observations derived from 
the points and the silhouettes affect the result for the surface vertices on which 
they act, without negatively affecting the convergence properties of the rema- 
ining parts the surface. For comparison's sake, we have tried to recompute the 
face surface's shape using the same weighing parameters and the same schedule 
for refining the control triangulations but different optimization techniques: 

1. the Euler Lagrange approach found in many snake-like approaches, 
2. the MINOS nonlinear optimizer [16] which is considered as one of the most 

effective such algorithm in the field of operations-research. 

We plot the results in Figure 6(c) and (d). 
A perfect result is one where the majority of 3-D data points are very close to 

the recovered surface and therefore their distance to it is almost zero and where 
a minority of points, the outliers in the stereo data, are much further. The plots 
of Figure 6(b) are closer to that ideal than those of Figure 6(c,d), especially 
those derived using MINOS. Although the difference is less obvious, the graphs 
derived using the Euler-Lagrange approach also exhibit slightly worse conver- 
gence properties: there are fewer points whose distance to the surface is ahnost 
zero. Furthermore, as shown in Figure 7, the median value of the distances of 
those points to the surface is also slightly higher. A theoretical understanding of 
this behavior would require a very sophisticated applied mathematics treatment 
of the objective function and is therefore beyond the scope of this paper. We 
conjecture that the use of a stiffness matr ix by both the standard least squ- 
ares approach and the Euler-Lagrange one allows a rapid propagation of the 
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Fig. 6. Gauging the performance of the optimizer: (a) Three people and corresponding 
silhouette data for the chin. For all three, we have used the feature points de- 
picted by Figure 3(c). (b) For each person's face, we histogram in the distance 
of the optimized face surface to the 3-D data-points derived from stereo for 
)~ t~o  = 1.0 and A~Zho~tt~ = A y ~ t ~  = z, 0.0 < x < 0.5. Note that for 
each of the three images, the various plots are almost indistinguishable thereby 
illustrating the relative insensitivity of the result to exact value of )~,lho~,~ttr 
and Ale~t . . . .  (c) Graphs similar to those shown in row (b) but derived by 
performing the optimization using the Euler-Lagrange approach instead of the 
Levenberg-Marquardt approach. The~e are fewer points in the histogram bins 
that denote a distance close to zero than in the corresponding ones in row (b). 
(d) Graphs derived using the MINOS optimizer. 

smoothness constraints across the triangulation and thus improves convergence, 
as was claimed in the original snake paper [13]. We further hypothesize that 
the difference between these two methods, lies in the fact that the Levenberg- 
Marquardt algorithm does not explicitly compute the gradient of the sum of the 
squares of the observations. Instead, it computes the individual gradients of the 
observations--and not their squares--and uses them to construct the matrices 
that appear in the normal equations. 
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Levenberg-Marquardtl12.33 6.38 0 55 
Euler-Lagrange 2.58 6.87 0.60: 

MINOS 2.95 7.40 1.40 

Fig. 7. Median distance. For the three images of Figure 6(a), we indicate the median 
distance of the 3-D points derived from stereo to the final face surface for 
) ~ t ~ o  = 1.0 and )~,ilhouette : )lfeature -~- 0.0. 

5 Conclusion 

We have presented a technique that  allows us to fit a complex animation model 
to noisy image data  with very limited manual  intervention. As a result, these 
models can be produced cheaply and fast. Furthermore, because our approach 
relies on the use of a coarse to fine control triangulation, it can be used to fit 
arbitrarily complex models whose topology is designed for animation purposes 
and are not necessarily well suited for surface reconstruction. 

In future work, we intend to extend the approach to the modelling of dyna- 
mic faces and more important ly  to the estimation not only of the parameters  
that  control the shape of the surface but also of those that  control the various 
facial expressions. We will also incorporate self-calibration techniques into our 
framework so that  we can achieve this result using ordinary video sequences 
filmed using regular camcorders. 

Furthermore, the face model we use has been one of the start ing points 
for the facial animation parameters  defined in the MPEG-4 FBA work. When 
standardization is complete, it will therefore be easy to make the parameters  
of our model eonformant with the MPEG-4 norm for facial animation and the 
work presented here will become directly relevant to video transmission. 
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