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A b s t r a c t .  Up to now, structure from motion algorithms proceeded in 
two well defined steps, where the first and most important step is recov- 
ering the rigid transformation between two views, and the subsequent 
step is using this transformation to compute the structure of the scene 
in view. This paper introduces a novel approach to structure from mo- 
tion in which both aforementioned steps are aecompfished in a synergistic 
manner. Existing approaches to 3D motion estimation are mostly based 
on the use of optic flow which however poses a problem at the locations 
of depth discontinuities. If we knew where depth discontinuities were, 
we could (using a multitude of approaches based on smoothness con- 
straints) estimate accurately flow values for image patches corresponding 
to smooth scene patches; but to know the discontinuities requires solving 
the structure from motion problem first. In the past this dilemma has 
been addressed by improving the estimation of flow through sophisti- 
cated optimization techniques, whose performance often depends on the 
scene in view. In this paper we follow a different approach. The main 
idea is based on the interaction between 3D motion and shape which 
allows us to estimate the 3D motion while at the same time segmenting 
the scene. If we use a wrong 3D motion estimate to compute depth, then 
we obtain a distorted version of the depth function. The distortion, how- 
ever, is such that the worse the motion estimate, the more likely we are 
to obtain depth estimates that are locally unsmooth, i.e., they vary more 
than the correct ones. Since local variability of depth is due either to the 
existence of a discontinuity or to a wrong 3D motion estimate, being 
able to differentiate between these two cases provides the correct mo- 
tion, which yields the "smoothest" estimated depth as well as the image 
location of scene discontinuities. Although no optic flow values are com- 
puted, we show that our algorithm is very much related to minimizing 
the epipolar constraint and we present a number of experimental results 
with real image sequences indicating the robustness of the method. 

1 I n t r o d u c t i o n  a n d  M o t i v a t i o n  

One of the biggest challenges of con temporary  computer  vision is to create robust  
and  au toma t i c  procedures for recovering the s t ructure  of a scene given mul t ip le  
views. This  is the well known problem of s t ruc ture  f rom m o t i o n  (SFM) [4] [10]. 
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Here the problem is treated in the differential sense, that  is, assuming that  a 
camera moving in an unrestricted rigid manner in a static environment contin- 
uously takes images. Regardless of particular approaches, the solution always 
proceeds in two steps: first, the rigid motion between the views is recovered and, 
second, the motion estimate is used to recover the scene structure. 

Traditionally, the problem has been treated by first finding the correspon- 
dence or optic flow and then optimizing an error criterion based on the epipolar 
constraint. Although considerable progress has been made in minimizing devi- 
ation from the epipolar constraint [11] [13] [14], the approach is based on the 
values of flow whose estimation is an ill-posed problem. 

The values of flow are obtained by applying some sort of smoothing to the 
locally computed image derivatives. When smoothing is done in an image patch 
corresponding to a smooth scene patch, accurate flow values are obtained. When, 
however, the patch corresponds to a scene patch containing a depth discontinuity, 
the smoothing leads to erroneous flow estimates there. This can only be avoided 
if a priori knowledge about the locations of depth discontinuities is available. 
Thus, flow values close to discontinuities often contain errors (and these affect 
the flow values elsewhere) and when the estimated 3D motion (containing errors) 
is used to recover depth, it is unavoidable that  an erroneous scene structure will 
be computed. The situation presents itself as a chicken-and-egg problem. If we 
had information about the location of the discontinuities, then we would be able 
to compute accurate flow and subsequently accurate 3D motion. Accurate 3D 
motion implies, in turn, accurate location of the discontinuities and estimation 
of scene structure. Thus 3D motion and scene discontinuities are inherently re- 
lated through the values of image flow and the one needs the other to be better 
estimated. Researchers avoid this problem by at tempting to first estimate flow 
using sophisticated optimization procedures that  could account for discontinu- 
ities, and although such techniques provide better estimates, their performance 
often depends on the scene in view, they are in general very slow and require a 
large number of resources [7] [12] [15]. 

In this paper, instead of at tempting to estimate flow at all costs before pro- 
ceeding with structure from motion, we ask a different question: Would it be 
possible to utilize any available local image motion information, such as normal 
flow for example, in order to obtain knowledge about scene discontinuities which 
would allow better estimation of 3D motion? Or, equivalently, would it be possi- 
ble to devise a procedure that  estimates scene discontinuities while at the same 
time estimating 3D motion? We show here that  this is the ease and we present 
a novel algorithm for 3D motion estimation. The idea behind our approach is 
based on the interaction between 3D motion and scene structure that  only re- 
cently has been formalized [3]. If we have a 3D motion estimate which is wrong 
and we use it to estimate depth, then we obtain a distorted version of the depth 
function. Not only do incorrect estimates of motion parameters lead to incorrect 
depth estimates, but the distortion is such that  the worse the motion estimate, 
the more likely we are to obtain depth estimates that  locally vary much more 
than the correct ones. The correct motion then yields the "smoothest" estimated 
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depth and we can define a measure whose minimization yields the correct ego- 
motion parameters. The measure can be computed from normal flow only, so 
the computation of optical flow is not needed by the algorithm. Intuitively, the 
proposed algorithm proceeds as follows: first, the image is divided into small 
patches and a search - -  for the 3D motion - -  which as explained in Sect. 3 takes 
place in the two-dimensional space of translations - -  is performed. For each 
candidate 3D motion, using the local normal flow measurements in each patch, 
the depth of the scene corresponding to the patch is computed. If the variation 
of depth for all patches is small, then the candidate 3D motion is close to the 
correct one. If, however, there is a significant variation of depth in a patch, this 
is either because the candidate 3D motion is inaccurate or because there is a 
discontinuity in the patch. The second situation is differentiated from the first 
if the distribution of the depth values inside the patch is bimodal with the two 
classes of values spatially separated. In such a case the patch is subdivided into 
two new ones and the process is repeated. When the depth values computed in 
each patch are smooth functions, the corresponding motion is the correct one 
and the procedure has at the same time given rise to the location of a number 
of discontinuities. The rest of the paper formalizes these ideas and presents a 
number of experimental results. 

1.1 Organization of  the Paper 

Sect. 2 defines the imaging model and describes the equations of the motion field 
induced by rigid motion; it also develops certain constraints that  will be of use 
later and makes explicit the relationship between distortion of depth and errors 
in 3D motion. Sect. 3 is devoted to the description of the algorithm and Sect. 4 
describes a number of experimental results with real image sequences. It also 
formalizes the relationship of the approach to algorithms utilizing the epipolar 
constraint. 

2 P r e l i m i n a r i e s  

We consider an observer moving rigidly in a static environment. The camera 
is a standard calibrated pinhole with focal length f and the coordinate sys- 
tem OXYZ is attached to the camera, with Z being the optical axis. 

Image points are represented as vectors r = [x, y, f iT, where x and y are 
the image coordinates of the point and f is the focal length in pixels. A scene 
point R is projected onto the image point 

R 
r = f R .  ~ (1) 

where ~ is the unit vector in the direction of the Z axis. 
Let the camera move in a static environment with instantaneous translation t 

and instantaneous rotation w (measured in the coordinate system OXYZ). Then 
a scene point R moves with velocity (relative to the camera) 

= - t -  • R .  (2 )  
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Fig. 1. The copoint directions corresponding to 

The image motion field is then the usual [9] 

1 1 1 
= (R ~) (~ • (t • r)) + 7 ~ • (r • (. ,  • r)) = ~ Utr(t) + Urot("~) (3) 

where Z is used to denote the scene depth ( R .  ~), and Utr, Uro t the direction 
of the translational and the rotational flow respectively. Due to the scaling am- 
biguity, only the direction of translation (focus of expansion--FOE, or focus 
of contraction--FOC, depending on whether the observer approaches or moves 
away from the scene) and the three rotationM parameters can be estimated from 
monocular image sequences. 

2.1 Projections of Motion Fields 

The search for candidate 3D motions is achieved by searching for the trans- 
lational component, i.e., the FOE. Given a candidate FOE, the rotation that  
best fits image data can be obtained by examining normM flow vectors that  are 
perpendicular to lines passing from the FOE, since these flow values would not 
contain any translational part. For this we need to formalize properties of motion 
fields projected onto particular directions. Indeed, by projecting the motion field 
vectors i ~ onto certain directions, it is possible to gain some very useful insights [5] 
[6] [8] [1]. Of particular interest, are the copoint projections [5], where the flow 
vectors are projected onto directions perpendicular to a certain translational flow 
field (see Fig. 1). Let point t be the FOE in the image plane of this translational 
field and consider the vectors emanating from t. Vectors perpendicular to such 
vectors are vcp ( r )  ---- ~ x Utr(21;) : z x (z x (~'; x r ) ) .  

Let the camera motion be ( t, ~). Projection of the flow (3) onto vcp is 

i.. v~p _ i ( iv  ) 
Ilvcpll Ilvcpll ; t ( t , s  + ; ~ @ , ~ , r )  (4) 

where the functions Pt, P~ are: 

P t ( t , t , r )  = f ( t  x t ) - r  

p z ( w , t , r )  = (w x r ) .  (t x r ) .  
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In particular, if we let ~; = t ,  the translational component  of the copoint 
projection becomes zero and (4) simplifies into 

Vcp 1 
i '  - -  -----2-- pw (,o, ~:, r ) . (5) 

I Iv r  I lvcp l l  

2.2 Est imat ing Rotat ion  from Known Translation 

If  we can est imate the translation of the camera, it is quite simple to est imate 
the rotational component of the camera motion.  Let us for now assume tha t  
the translation t is known. Then the rotation can be est imated based on (5), 
as long as there are some normal  flow measurements in the direction of the 
appropriate  copoint vectors. Since (5) is linear in the elements of w, we can setup 
a least squares minimization to estimate ~ based on the appropriate  normal  flow 
measurements.  

Specifically at points with suitable normal  flow direction, we have equations 

I l vc~ l l  - (t x r) w 

tha t  are linear in ~ .  

2.3 D e p t h  E s t i m a t i o n  f r o m  Motion Fields 

This section introduces the novel criterion of "smoothness of depth" which is 
used to evaluate the consistency of the normal  flow field with the est imated 3D 
motion and also to segment the scene at its depth boundaries. The idea is based 
on the interrelationship of est imated 3D motion (t, &) and est imated depth of 
the scene 2 .  

The  structure of the scene, i.e., depth computed, can be expressed as a func- 
tion of the est imated translation t and the est imated rotat ion &. At an image 
point r where the normal flow direction is n, the inverse scene depth can be 
est imated from (3) as 

1 ~ . n -  U r o t ( & ) ' n  
= = (6)  
Z Utr( t  ) �9 n 

where Urot(&),Utr(i) refer to the est imated rotational and translational flow 
respectively. 

Substi tuting into (6) from (3), we obtain: 

1 �89 
" -~  ---- o r  

z U~r(~).n 

1 

Z Z Ut r ( t ) "  n 

1 . ~ ( t )  �9 n -  Z . ~ o ~ ( ~ )  �9 n 
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Fig. 2. (a) One frame of the NASA Coke can sequence. (b) Inverse depth estimated 
for the correct FOE in the middle of the image. (c) Inverse depth for an incorrect FOE 
100 pixels to the left of the correct FOE (the image size was 512 x 512 pixels). The 
grey-level value represents inverse estimated depth with mid-level grey representing 
zero, white representing large positive 1/Z and black representing large negative 1/Z 

where Urot(6oa) is the rotational flow due to the rotational error 6oa = (& - w). 
To make clear the relationship between actual and estimated depth we write 

with 

2 : Z .  D (7) 

m = " 

(utr(t) - Zurot(6m)) �9 n 

hereafter termed the distortion factor. Equation (7) shows how wrong depth 
estimates are produced due to inaccurate 3D motion values. The distortion factor 
for any direction n corresponds to the ratio of the projections of the two vectors 
l l t r ( t  ) and  Utr(t ) -~- Zurot(~og) Oil n.  The larger the angle between these two 
vectors is the more the distortion will be spread out over the different directions. 
Thus, considering a patch of a smooth surface in space and assuming that  normal 
flow measurements are taken along many directions, a rugged (i.e., unsmooth) 
surface will be computed on the basis of wrong 3D motion estimates. To give 
an example, we show the estimated depth for the NASA Coke can sequence 
(one frame is shown in Fig. 2 (a)). For two different translations we estimate 
the rotation as in Sect. 2.2 and then plot the estimated values of (6). Notice 
the reasonably smooth depth estimates for the correct FOE in Fig. 2 (b) and 
compare with sharp changes in the depth map (neighboring black and white 
regions) in Fig. 2 (c). 

The above observation constitutes the main idea behind our algorithm. For 
a candidate 3D motion estimate we evaluate the smoothness of estimated depth 
within image patches. If the chosen image patches correspond to smooth 3D scene 
patches the correct 3D motion will certainly give rise to the overall smoothest 
image patches. To obtain such situation we a t tempt  a segmentation of scene 
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on the basis of estimated depth while at the same time testing the candidate 
3D motions. As all computations are based on normal flow and we thus have 
available the full statistics of the raw data a good segmentation generally is 
possible. 

3 F i n d i n g  t h e  F o c u s  o f  E x p a n s i o n  

3.1 Algorithm Description 

The focus of expansion is found by localizing the minimum of function ~(~;), 
which constitutes a measure of the estimated depth variation. Let t be a can- 
didate translation, and estimate the scene depth we would obtain if t were the 
correct translation. To obtain ~( t )  we examine variation of the estimated depth 
over small image regions and compute a weighted sum of the local results. 

We first summarize the computation of r  and then explain the algorithm. 
To obtain ~(t)  

1. Estimate the camera rotation & from the copoint vectors corresponding to {;. 
2. Compute the depth estimates 1/2 from (6) and multiply them by the average 

size of lltr(t) in the region. 
3. Partition the image into small regions, for each region 7~ check whether 

it needs to be segmented as described in Sect. 3.2. If the region cannot be 
segmented, the error measure O(t, 7~) is the variance of all the estimated 1 /2  
values. Otherwise, compute the variances of 1 / 2  in each subregion separately 
and let O(t, 7~) be the sum of the variances. 

4. The depth variation measure ~ ( t ) i s  the sum of O(t, T~) over all image re- 
gions 7~. 

Several steps of the algorithm need additional explanation. The scaling of 
the inverted depth values in step 2 corresponds to making utr(t)  a unit vector 
and it is equivalent to the proper scaling of the epipolar constraint. 

The smoothness measure used here corresponds to deviations of the inverse 
depth from a fronto-parallel plane. If more precision is required or if large image 
regions are used, we may fit a plane through the estimated 1/2 values and replace 
each 1/2 by its distance from the plane. Then we reduce the errors caused by 
small changes of the flow field within the image region. 

As shown in Sect. 3.4, the smoothness measure gives provably correct results 
for any image patch that corresponds to a single smooth scene surface. In order 
to obtain only such image patches we perform a segmentation of the scene, as 
described in the next section. Of course, a correct segmentation at all locations 
cannot be guaranteed. This, however, should not influence much the solution of 
the 3D motion estimation, as even for patches that  contain depth discontinuity, 
in many cases the smoothness measure is smaller for the correct 3D motion than 
for incorrect ones. 

To find the minimum of ~P and thus the FOE/FOC,  we perform a hierarchical 
search over the two-dimensional space of FOE positions. In practice, the func- 
tion ~ is quite smooth, that is small changes in {; give rise to only small changes 
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in ~. One of the reasons for this is that for any t,  the value o f r  is influenced 
by all the normal flow measurements and not only by a small subset. 

For most motion sequences, the motion of the camera does not change abrupt- 
ly. Then the FOE position does not change much between frames and a complete 
search only has to be performed for the first flow field. In the successive flow 
fields, we can search only in a smaller area centered around the previously esti- 
mated FOE. 

3.2 P a t c h  S e g m e n t a t i o n  

By segmenting a patch, we decrease its contribution to ~( t ) .  Ideally, an image 
patch should be segmented if it contains two smooth scene surfaces separated by 
a depth discontinuity and the depth is estimated using the correct 3D motion 
and it should not be segmented if it corresponds to one smooth surface and 
the depth is estimated on the basis of incorrect 3D motion. If that  is the case, 
we decrease qS(~) for the correct translation while keeping the measure large for 
incorrect translations. 

We use a simple segmentation criterion. First of all, segmentation is at- 
tempted only for patches where the estimated depth is not smooth. If the his- 
togram of depth values in the region is bimodal and the region can be divided 
into two spatially coherent regions that  correspond to the two modes of the 
histogram, we divide the patch into the two subregions. 

It is simple to show that this strategy can be expected to yield good patch 
segmentation. When the motion estimate is correct, also the depth estimates 
are correct and patches with large amount of depth variation contain depth 
discontinuities. 

For incorrect motions, the distortion factor depends on the direction of nor- 
mal flow. While for any patch we can split the depth estimates into two groups 
and decrease the variance, it is highly unlikely that the two groups of measure- 
ments define two spatially coherent separate subregions. More likely, the depth 
estimates from both groups are randomly distributed within the patch. 

However, as the segmentation is based on local information only, we cannot 
expect it to perfectly distinguish the depth discontinuities from depth variation 
due to incorrect 3D motion. Sometimes, if a patch contains two subregions with 
different distributions of normal flow directions, we may split the patch even for 
incorrect 3D motion. An improvement, however, could be achieved by taking 
into account also the distribution of normal flow directions in relation to the 
estimated depth. 

The local results are used in a global measure and occasional segmentation 
errors are unlikely to change the overall results. For the segmentation to cause 
an incorrect motion to yield the smallest q~(t), special normal flow configurations 
would have to occur in many patches in the image. 
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3.3 T h e  E s t i m a t e d  R o t a t i o n  

The analysis of q~(t) should start by relating the estimated rotation & and the 
true motion parameters ( t ,w) .  When r is computed, the measurements used 
in (5) are given by (4), i.e., 

i~ . n  - 
1 

ilvCpllP ( , r )  + - - -  

1 1 

ilvcpl I ~p~(t,  ~, r ) .  

Note that  unless t is the correct translation, values of the flow along the copoint 
vectors are influenced by the translational component of the flow field. Due to 
linearity, the estimated rotation is (ignoring measurement errors): 

= + ( 8 )  

where w is the true rotation and 5w is the rotation of a field that  best fits the 
translational component of the copoint projections. 

The residual of the estimate is one possible source of information about the 
true FOE. If t is the correct solution, then 5w = 0 and the residual is small 
regardless of the scene depth. If t is an incorrect estimate, then the residual, in 
general, will be large; the residual could still be small, but  only under special 
circumstances; for the residual to be zero, the depth Z has to satisfy 

1 
�9 = r )  = (9) 

Multiplying by Z 2 and substituting Z r  = f R, we obtain a second order equation 
for the scene points R 

pw(&o, t, R)  - pt(t ,  t ,  1%) = (~6~ • R ) .  (t x R)  - f (t x t ) .  1% = 0 .  (10) 

Therefore, the residual is a measure of the difference between the surface in view 
and the quadric given by (10), but only at points where suitable normal flow 
measurements are available. 

Assuming the scene cannot be approximated sufficiently well by a single 
second order surface, one might try to use the copoint residual to find the correct 
FOE. Such approaches can be found in [2]. In practice, however, this method 
may run into problems. Only a small and changing subset of measurements is 
used to compute the rotation, the measurements are noisy and the noise level 
may vary across the image. It is very difficult to weigh the residuals for different 
candidate translations so that  they can be compared. 

The main problem is that  the residuals only provide negative information 
about the FOE. If the residual is large, we can be quite sure that  the candidate 
translation is incorrect. However, a small residual may be caused by the lack 
of data  and does not necessarily imply that  the solution is correct. Thus, our 
method tests for the correct translation by going through the estimation of depth 
and analyzing how it is varying locally. 
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3.4 Algorithm Analysis 

The function ~( t )  depends not only on the true and the estimated motion pa- 
rameters, but also on the actual distribution of normal flow directions as well 
as the unknown scene depth. Therefore only a statistical analysis of �9 is possi- 
ble. What  we study here is O(t,  7~), a contribution to ~( t )  from a single image 
region 7~. 

We substitute both & and the true motion parameters into (6) and simplify 
the expression 

1 

Z 

( 1 / Z ) u t r ( t )  �9 n + Urot( r  �9 n - Urot  (o) -[- 5 w ) . n  

U t r ( t  ) . n  

( 1 / Z ) u t r ( t )  �9 n - Uro t (~oJ )  �9 n 

U t r ( t )  " n 

The vectors lltr(t),  Urot(~O.~), a n d  Otr(t) are polynomial functions of image 
position r and can usually be approximated by constants within a small image 
region. 

Consider a local coordinate system where Utr(t) is parallel to [1, 0, 0] w. Be- 
cause the computed depths are scaled in step 2 of the algorithm, we can equiv- 
alently set the length of urn(t) to one and write Urn(t) = [1,0, 0] w. I n  the coor- 
dinate system, we denote 

Urot(~OJ)  ---- ?~r [COS ~ r ,  s i n  ~ ,  0] w 
ut~(t) = ut [cos ~t, sin ~ t ,  0] T 

n = [Cos r sin r 0] w . 
(li) 

Then Utr(t ) - n ---- COS r and 

1 / 2  = ( 1 / Z ) u t  (cos ~t + sin ~t tan r - u r (cos ~Pr -~ sin ~r tan r = (12) 
= ( (1 /Z )u t  cos ~t - u~ cos ~r) + tan r ( ( 1 / Z ) u t  sin ~t - -  Mr sin ~r) �9 

As u~ cos ~ is approximated by a constant, it does not influence the variance 
of 1/2 and it is thus sufficient to study the variance of 1/2': 

1 
~--: = (llZ)ut c o s  ~t + tan r ( ( 1 /Z )u t  sin ~t - ur sin ~ )  . (13) 

For the correct translation, we have 5w = O, i.e., ur = 0, and ~t ---- 0 ,  i.e., 
sin ~t : 0. Therefore 1 /2 '  simplifies into 

1 1 
Z~; = p u t  (14) 

and the variance of 1 /2 '  is proportional to the variance of the inverse real 
depth 1 / Z  and is independent of tan r 

For incorrect translation estimates, on the other hand, ~t ~ 0 except for 
points on a certain line. Unless the surface is special so that  ~r = 0, also Ur r 0 
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at most points in the image. In most cases 1 /2 '  depends on tan r and it can 
become very large (or very small) when there are normal flow measurements in 
the region such that  r is close to + 7r/2. 

Obviously, large variance of tan r will lead to large O(t, 7~) only if expression 
(1/Z)ut sin ~t - ur sin ~r is not small. 

Consider now a typical image patch corresponding to a smooth scene patch, 
where the variance of 1/Z is small. For the correct motion estimate also the vari- 
ance of 1/2' is small. For other translations, the variance of 1/2' is proportional 
to the variance of tan r It can be small if all the normal flow measurements in 
the patch have approximately the same direction, or if the scene patch is close 
to the ambiguous quadric (10). 

If the depth of the scene patch varies significantly, the exact distribution 
of normal flow directions as well as their correlation with the scene depth will 
determine the 3D motion yielding the smallest depth variance�9 However, on 
average it can be expected that the depth variance for the correct 3D motion is 
smaller than the variances for most incorrect motions. 

If the image region contain sufficiently many different directions of normal 
flow so that  the value of t a n r  changes significantly, the variance of 1 /Z  is 
dominated by 

tan r sin ~t - u~ sin qa~). (15) 

Expression (15) is zero for the correct motion and non-zero for most incorrect 
motions. Only a scene patch close to the ambiguous quadric can give small depth 
variance for an incorrect 3D motion�9 

3 . 5  T h e  E p i p o l a r  C o n s t r a i n t  

The depth smoothness measure is closely related to the traditional epipolar 
constraint and we examine the relationship here. In the instantaneous form the 
epipolar constraint can be written as 

(Z X U t r ( t ) ) .  ( r  -- Urot(G.3)) ---- 0 (16) 

or in the usual simplified form as 

( t • 2 1 5  

Usually, the distance of the flow vector r from the epipolar line (determined 
by Utr(t) and urot(&)) is computed, and the sum of the squared distances, i.e., 

�9 ^ 2 

E ((~ x urn(t)).  (r - Urot(W))) (17) 

is minimized. 
Methods based upon (17) suffer from bias, however, and a scaled epipolar 

constraint has been used to give an unbiased solution: 

�9 ( r  - Urot(O3))) (18) (utr( ) 
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" i n . 

Ux Utr(t) 

Fig. 3. The relationship between the epipolar constraint and the estimated depth 

To relate the epipolar constraint and the depth smoothness measure, we 
rewrite (16) and substitute the true motion parameters to obtain 

1 ] 1 ^ 
Vcp" ~ - U t r ( t )  -- Urot((~w) --  ~ P t ( t , t , r )  - -pw(~w,t , r )  = 0.  

Since IIVcpll = IIIltr(t)l[, the properly scaled epipolar constraint can be written 
as 

1 ( 1 t i, = 0 .  r ) -  (19) IIvcpll 

Consider now the local coordinate system used in Sect. 3.4. In the rotated 
coordinate system, Vep = [0, 1, 0] w and thus 

( 1 / Z ) p t ( t , t , r )  - p~(Sw, t , r )  = ( 1 / Z ) u t s i n T t  - UrSin~r �9 (20) 

We see that  one part of the estimated depth (12) is proportional to the epipolar 
distance (20). 

The geometric relationship of the two quantities is illustrated in Fig. 3. We 
denote the derotated flow i- - Urot(&) by u I and decompose it into two compo- 
nents, u~x parallel to Utr(t), and Uy perpendicular to utr(t;). 

In the figure, the epipolar distance is just IIUyll. 
The estimated depth (12) is the sum of 

! ! 
u x - n U y  �9 n + - -  

U t r ( I ; )  ' n U t r ( t )  " n 

Since u~ is parallel t o  Utr(t), the first part of the sum is Ilu'xll/llutr( )ll, i.e., 
independent of n. This is the first part of (12). 

The angle between vectors n and Utr(t) is r so for the second part of the sum, 
' . n  = IlUytt cos(~/2 - r and Utr ( t )  �9 n ---- IlUtr(t)ll  COS(e) ~-- COS r s ince  U t r ( t  ) Uy 

is scaled to be a unit vector. Consequently, the second part of the sum is 

IlUyll t a n r  �9 
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Consider now a constant depth patch, where u ~ is approximately constant. 
Then the variance of 1 /Z  ~ is equal to the epipolar constraint multiplied by the 
variance of tan ~b. 

The above analysis makes clear the close relationship of the smoothness mea- 
sure to the traditional epipolar constraint. Indeed, in a smooth patch, (1/Z)ut 
is approximately constant and the variance of 1/Z can be written (using (20)) 
as 

69(~, 7~) = Var(1/2) = V a r ( t a n  r  ( ( 1 / Z ) p  t ( t ,  t,  r )  - Pw (~o,~, t ,  r ) )  2 . (21) 

Therefore, in a smooth patch 

Var(1/Z) 
Var(tan r 

is a good approximation of the epipolar constraint 

( ( ] / Z ) p t ( t  , t ,  r )  - pw(r t ,  r)) 2 

We thus define a scaled measure 

e ' ( t ,  _ Var ( tan  r 

and the corresponding global smoothness measure 

�9 = 

Measure ~5'(~) is approximately equal to the epipolar measure if the scene 
patches are smooth (or successfully segmented). However, when measure ~ ' ( t )  
is used as opposed to a measure evaluating the deviation from the epipolar 
constraint, no computation of optical flow is required. Furthermore, as discussed 
above, measure ~5'(~) is advantageous in its ability to handle depth discontinuities 
as even for discontinuous patches that weren't successfully segmented, in many 
cases the depth smoothness measure gives the correct solution. 

4 E x p e r i m e n t a l  R e s u l t s  

Experiment 1. The depth segmentation described in Sect. 3.2 was tested for the 
Coke can sequence. Fig. 4 shows the image patches that  were segmented for the 
correct FOE. Many depth discontinuities in the scene are such that  computed 
normal flow measurements appear only on one side of the discontinuity. Conse- 
quently, such patches are not segmented and pose no problem for the motion 
estimation algorithm. 
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Fig. 4. Patch segmentation of the Coke can sequence overlayed on the computed inverse 
depth. The correct FOE (in the middle of the image) was used. The arrow points to 
the patch used in experiment 2 

Experiment 2. The effects of the patch segmentation are best demonstrated 
by showing for varying ~ function ~9~(~, ~ )  for a fixed image region 7~. The 
results are shown in Fig. 5. In particular, Fig. 5 (a) shows for all positions ~; 
the smoothness measure ~9~(~;) for a fixed image region when segmentation was 
performed and Fig. 5 (b) shows the smoothness measure when no segmentation 
took place. Fig. 5 (c) shows all the FOE positions for which a segmentation was 
performed. 

Experiment 3. The Yosemite fly-through sequence (one frame is shown in Fig. 6) 
contains independently moving clouds. Each image frame was thus clipped to 
contain only the mountain range. 

We tested both depth smoothness measures ~(~;) and 45'(~;). For comparison, 
we estimated optical flow by assuming it locally to be constant and computed 
the epipolar constraint measure, using (18). The FOE voting results are shown 
in Fig. 7. Since the depth of the scene is changing slowly, the scaled depth 
smoothness measure ~ ( t )  gives results that  are very close to the results using 
the epipolar constraint. 
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Fig. 5. Function @(t, ~ )  for a fixed region 7~ marked in Fig. 4. The area shown is 
three times the image size with the image in the center of the area. Black denotes the 
smallest and white largest values of ~9(t, R). (a) The patch was segmented if possible. 
(b) No patch segmentation was performed. (c) White blocks denote candidate FOE 
positions for which the patch was segmented 

Fig. 6. One frame from the Yosemite fly-through sequence. Only the lower part of the 
image was used in the algorithm 

In the coordinate system centered in the middle of the image, the correct 
focus of expansion was at ( - 2 0 , - 1 0 0 )  in pixels. 

The following FOE positions were found using hierarchical search: 

- Using ~ (~ ) :  ( 21 , -87 )  
Using ~b'(t) :  ( - 2 4 , - 1 0 4 )  

- Using the epipolar constraint : ( - 2 1 , - 1 1 6 )  

5 C o n c l u s i o n s  

There exists a lot of structure in the world. With regard to shape, this structure 
manifests itself in surface patches that  are smooth,  separated by abrupt  discon- 
tinuities. This paper  exploited this fact in order to provide an algori thm tha t  
est imates 3D motion while at the same t ime it recovers scene discontinuities. 
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Fig. 7. The results of the FOE voting. The voting area is three times the image size 
with the image in the center of the area. The gray value of the bin represents the value 
of the depth smoothness measure with black representing the smallest value. (a) The 
smoothness measure ~(t). (b) The scaled smoothness measure 4~'(t). (c) The epipolar 
constraint measure 

The basis of the technique lies in the understanding of the interaction between 
3D shape and motion. Wrong 3D motion estimates give rise to depth values that  
are locally unsmooth, i.e., they vary more than the correct ones. This was ex- 
ploited in order to obtain the 3D motion that locally provides the "smoothest" 
depth while recovering scene discontinuities. Finally, it was shown that  the tech- 
nique is very much related to epipolar minimization since the function to be 
minimized in image areas corresponding to smooth scene patches takes the same 
values as deviation from the epipolar constraint. The function used here, how- 
ever, is obtained from normal flow measurements. The fact that  values of the 
flow are not needed in the approach, along with the aforementioned equivalence 
of our objective function to the epipolar constraint, demonstrates that  the pre- 
sented algorithm is an improvement over existing techniques. 
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