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Abst rac t .  We present a novel geometric approach for solving the stereo 
problem for an arbitrary number of images (greater than or equal to 2). 
It is based upon the definition of a variational principle that must be 
satisfied by the sur[aces of the objects in the scene and their images. 
The Euler-Lagrange equations which are deduced from the variational 
principle provide a set of PDE's which are used to deform an initial set of 
surfaces which then move towards the objects to be detected. The level 
set implementation of these PDE's potentially provides an efficient and 
robust way of achieving the surface evolution and to deal automatically 
with changes in the surface topology during the deformation, i.e. to deal 
with multiple objects. Results of an implementation of our theory also 
dealing with occlusion and vibility are presented on synthetic and real 
images. 

1 I n t r o d u c t i o n  a n d  p r e l i m i n a r i e s  

Tile idea that is put forward in this paper is that  the methods of curve and 
surface evolutions which have been developed in computer vision under the name 
of snakes [191 and then reformulated by Caselles, Kimmel and Sapiro [1] and 
Kichenassamy et al. [21] in the context of PDE driven evolving curves can be 
used effectively tbr solving 3D vision problems such as stereo and motion analysis. 

As a first step in this direction we present a mathematical analysis of the 
stereo problem in this context as well as a partial implementation. The problem 
of curve evolution driven by a PDE has been recently studied both from the the- 
oretical standpoint 113, 14, 261 and from the viewpoint of implementation [23, 28, 
29] with the development of level set methods that can efficiently and robustly 
solve those PDE's.  A nice recent exposition of the level set methods and of many 
of their applications can be found in ~27 I. The problem of surface evolution has 
been less touched upon even though some preliminary results have been obtained 
[29, 21 . The path we will follow to attack the stereo problem from that  angle is, 
not surprisingly, a wwiational one. In a nutshell, we will describe the stereo prob- 
lem (to be defined m,,re precisely later) as the minimisation of a functional (we 
will explore several such fimctionals) with respect to some parameters (describ- 
ing the geometry of the scene); we will compute the Euler-Lagrange equations of 
this functional, thereby obtaining a set of necessary conditions, in effect a set of 
partial differential equations, which we will solve as a time evolution problem by 
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a level set method.  Stereo is a problem tha t  has received considerable a t tent ion 
for decades in the psychophysical ,  neurophysiological  and,  more recently, in the 
computer  vision literatures. It is impossible to cite all the published work here, 
we will simply refer the reader to some basic books on the subject  [18, 15 17, 
7]. To explain the problem of stereo from the computa t iona l  s tandpoint ,  we will 
refer the reader to Fig. 1.a. Two, may  be more, images of the world are taken 
simultaneously. The  problem is, given those images, to  recover the geometry  of 
the scene. Given the fact tha t  the relative positions and orientat ions and the 
internal parameters  of the cameras  are known which we will assume in this ar- 
ticle (the cameras  are then said to  be cal ibrated [7]), the problem is essentially 
(but not  only) one of establishing correspondences between the views: one talks 
about  the match ing  problem. The  matching  problem is usually solved by set- 
ring up a matching  functional  for which one then tries to find extrema.  Once a 
pixel in view i has been identified as being the image of the same scene point  as 
another  pixel in view j ,  tile 3D point  (:an then be recons t ruc ted  by intersecting 
the corresponding optical rays (see Fig. 1.a again). In order  to go any further,  

PcI 
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Y l  = ! l / ~  
'12 

(a) (b) 

Fig. 1. (a) The multicamera stereo vision problem is, given a pixel ml in image 1, to 
tind the corresponding pixel rn~ in image 2 , . . .  , the corresponding pixel mn in image n, 
i.e. the ones which are tile images of the same 3D point M. Once such a correspondence 
has been established, the point ~l can be reconstructed by intersecting the optical rays 
(m~, C~), i = 1, . . .  , n. (b) The focal [)lane (x, y) is parallel to the retinal plane (x~, y~) 
and at a distance of I from it. 

we need to be a little inore specific about  the process of image formation.  We 
will assume here tha t  the cameras  perform a perpective project ion of the 3D 
world on the retinal plane as shown in Fig. 1.b. The  optical  (:enter, noted C 
in the figure, is tile center of project ion and tile image of tile 3D point  M is 
tile pixel 'm at the intersection of tile optical ray (C, m) and the retinal plane 
"P~. As descril)ed in many  recent papers in computer  vision, this opera t ion  can 
be conveniently described in projective geometry  by a mat r ix  operat ion.  The 
projective coordinates  of the pixel rn (a 3 x 1 vector) are obta ined  by applying a 
3 x 4 matr ix  P1 to the project ive coordinates  of the 3D point  M (a 4 x 1 vector).  
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This mat r ix  is called the perspect ive project ion matrix.  If  we express the matr ix  
P1 in the coordinate  sys tem (C, x, y, z) shown in the Fig. 1.b, it then takes a 
very simple form: 

P ,  = [I3 01 

where I3 is the 3 x 3 identi ty matrix.  If  we now move the camera  by applying to 
it a rigid t ransformat ion  described by tile ro ta t ion  matr ix  R and the t ransla t ion 
vector t,  the expression of the mat r ix  P changes accordingly and becomes: 

P2 = [R r - R r t ]  

Wi th  these preliminaries in mind we are ready to proceed with our p rogram 
which we will do by progressing along two related axes. The  first axis is tha t  
of object  complexity, the second axis is tha t  of match ing  functional  complexity. 
They  are related in the sense tha t  an increase along one axis usually implies a 
corresponding increase along the other.  We star t  the paper  with a short  com- 
parison of our  work to previous work. In the next two sections we will consider a 
simple object  model  which is well adapted  to the binocular  stereo case where it 
is na tura l  to consider tha t  the objects  in the scene can be considered m a t h e m a t -  
ically as forming the graph  of an unknown smooth  funct ion (the depth  funct ion 
in the language of computer  vision). In Sect. 3 we consider an extremely sim- 
plified matching criterion which will allow us to convey to the reader the flavor 
of the ideas tha t  we are t ry ing to push here. We then move in Sect. 4 to a 
more sophist icated albeit classical match ing  criterion which is at  the hear t  of 
the techniques known in compute r  vision as correlation based methods.  With in  
the f ramework of this model  we s tudy  two related shape models.  In the Section 
5 we introduce a more  general shape model in which we do not  assume anymore  
tha t  the objects are the g raph  of a function and model them as a set of general 
smooth  surfaces in three space. The  next step would of course be to relax the 
smoothness  assumpt ion  lint we will pos tpone  this to a future paper.  

Let us decide on some definitions and notat ions.  Images are denoted by I~, 
k taking some integer values which indicate the camera  with which the image 
has been acquired. They  are considered as smooth  (i.e. C 2, twice cont inuously 
differentiable) functions of pixels rrzk whose coordinates  are defined in some 
or thonormal  image coordinate  systems (xk, Yk) which are assumed to be known. 
We note Ik(mk) or I~(.rk,yk) the intensity value in image k at pixel me. We 
will use tile first and second order  derivatives of these functions, i.e. the gradient  

[ 0[~,: 01~, ]T VIk,  a 2 x 1 vector equal to L ~ ,  ~ J  , and the Hessian Hk, a 2 x 2 symmetr ic  
matrix.  The  pixels in the images are considered as functions of the 3D geometry  
of the scene, i.e. of some 3D point  M on the surface of an object  in the scene, and 
of the unit normal  vector N to this surface. Vectors and matr ixes  will generally 
be indicated in boldfaces, e . g .x .  The  dot or inner p roduc t  of two vectors x and 
y is denoted by x �9 y.  Tile cross-product  of two 3 x 1 vectors x and y is noted 

of x x y. Part ia l  derivatives will be indicated either using tile c9 symbol,  e.g. ~ ,  or 
as a lower index, e.g. f• 
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2 Comparison with previous work 

Our approach is an extension of previous work by Robert  et al. and Robert  
and Deriche, [25, 24], where the idea of using a variational approach for solving 
the stereo problem was proposed first in the classical Tikhonov regularization 
framework and then by using regularization functions more proper to preserve 
discontinuities. Our work can be seen as a 3D extension of the approach proposed 
in [51 where we limit ourselves to the binocular case, to finding cross-sections of 
the objects with a fixed plane, and do not take into account the orientation of 
the tangent plane to the object. 

Our work is also connected to that  of Fua and Leclerc [12] and Fua [111 who 
have developed techniques and programs to integrate multiple stereo views. They 
use meshes and /or  systems of particles to represent the surfaces of the objects 
and deform the mesh or move the particles to minimize a criterion that  is not 
unlike the one we are using. The problems with this approach are well-known and 
described for example in 1123, 271: vertices of the mesh or particles tend to cluster 
in areas of high curvature and the evolution may become unstable; moreover, 
the representation of complicated shapes with several connected components or 
nonzero genus as in the two tori of figure 4. The level set methods which we 
use to implement the evolution of the objects '  surface was invented precisely 
because it solves elegantly those two problems [23, 271 . Another main departure 
from Fua and Leclerc's approach is tile use of a partial differential equation to 
drive this evolution. This puts our method on firmer mathemat ica l  grounds. 
We can potentially derive proofs of uniqueness of solutions in various functional 
spaces as well, prove convergence to the real scene as in [2] as well as benefit 
from the power of tile level set; inethod in our implementation. 

There is also a connection to the work of Takeo Kanade and colleagues [22]. 
They build 3-D models of scenes from multiple cameras by merging the depth 
maps from different cameras into a common volumetric space. Just  like in the 
case of the previous authors, we believe that  their method suffers from the use of 
a mesh-like representation of the surface of the objects of the scene which makes 
merging difficult and unstable, the representation of objects with nonzero genus 
problematical and does not allow set the stage for proofs of correctness of the 
algorithm. 

3 A s i m p l e  o b j e c t  a n d  m a t c h i n g  m o d e l  

This section introduces ill a silnplified framework sonic of the basic ideas of 
this paper. We assume, attd it, is the first important  assumption, that  the ob- 
.jeers which are t)eing imaged by the stereo rig (a t)inocular stereo system) are 
modelled as the graph of an unknown smooth function z = f (x ,  y) defined 
in the first retinal plane which we are trying to estimate. A point M of co- 
ordinates [.r, y, .f(:r, y)] r is seen as two pixels mi  and m2 whose coordinates 
(.qi(z, y), hi(x,  y)), i = 1, 2, (:an be easily computed as fllnetions of x, y, . f (x ,y )  
and the coefficients of tile perspective projection matrices P l  and P2. Let I1 
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a n d / 2  be the intensities of the two images. Assuming, and it is the second im- 
por tant  assumption, that  the objects are perfectly Lambert ian,  we must  have 
I1(ml)  = I2(m2) for all pixels in correspondence, i.e. which are the images of 
the same 3D point. 

This reasoning immediately leads to the variational problem of finding a 
suitable function f defined, to be rigorous, over an open subset of the focal 
plane of the first camera which minimizes the following integral: 

Cl( f )  = f f ( I i (m l (X ,y ) ) -  I2(m2(x,y))2dxdy (1) 

computed over the previous ()pen subset. Our first variational problem is thus 
to find a function f in some suitable functional space that  minimizes the error 
measure C1 (f) .  The corresponding Euler-Lagrange equation is readily obtained: 

( 1 l  - -  I 2 ) ( ~ 7 / 1  O m l  01112 ) 
�9 O ~ - - V I 2 "  Of "=0  (2) 

The values of ~ and ~f___z are functions of f which are easily computed. The 

terms involving I1 and /2 are computed from the images. In order to solve (2) 
one can adopt a number of strategies. 

One standard s t rategy is to consider that  the function f is also a function 
f (x ,  y, t) of t ime and to solve the following PDE: 

It = ~( f )  

where ~ ( f )  is equal to the left hand side of (2), with some initial condition 
f(x,y,O) = fo(x, y). We thus see appear  for the first t ime the idea that  the 
shape of the objects in the scene, described by the function f ,  is obtained by 
allowing a surface of equation z = f (x ,  y, t) to evolve over time, start ing from 
some initial configuration z = f (x ,  y, 0), according to some PDE, to hopefully 
converge toward the real shape of the objects in the scene when t ime goes to 
infinity. This convergence is driven by the data, i.e. the images, as expressed by 
the error criterion (1) or the Euler-Lagrange term ~( f ) .  It is known tha t  if care 
is not taken, for example by adding a regularizing term to (1), the solution f 
is likely not to be smooth and therefore any noise in the images may cause the 
solution to differ widely from the real objects. This is more or less the approach 
taken in [25,24]. \Ve will postpone the solution of this problem until Sect. 5 
and in fact solve it differently from the usual way which consists in adding a 
regularization term to Ct (f) .  

Another strategy is to apply the level set idea [23, 27]. Consider the family of 
surfaces S defined by S(x. y, t) = Ix, y, f (x ,  y, t)] T. The parameters  x and y are 
used to parameterize the surface, t is the time. The unit normal to this surface is 

[ , "F the vector N = 4 - ~ [ V . f  . 1] r ,  the velocity vector is St = [0,0, ft] T and 

hence the evolution of the surface can be written 

~ ( f )  St -- N (3) 
v / l +  ] V f  12 
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This expression of the evolution of the surface directly leads to a straightforward 
application of the level set methods.  Consider a function u ( x ,  y ,  z,  t) whose zero 
level set is the surface S, i.e. at  each time instant t, the set of points (x, y, z) 
such that  u ( x ,  y, z, t) = 0 is identical to the surface S. Note that  the function u 
can be considered a temporal  sequence of volumetric images. The next question 
is, given the fact that  the t ime evolution of S is given by (3), what should the 
evolution of u be? This question has been answered in [23] and the answer is: 

U t  - -  
~(f) 

v / l +  i V f i= I w  I 

where Vu is the gradient of u with respect to the first three variables. There are 
a couple of subtle points here. The first is that  the level set methods have been 
designed for closed manifolds (curves or surfaces, say) but here the surface S is 
not closed in general, being a graph. This problem can be solved, as described 
for example in [3, 271. The second point is that  the coefficient of the term I Vu I 
in the previous equation is defined only on the surface S and not in the whole 
(x, y, z) volume. But this term is needed at all points to solve for u. 

We will not delve further into the last issue because it will be solved as we 
proceed toward bet ter  models. 

4 A b e t t e r  f u n c t i o n a l  f o r  m a t c h i n g  

It  is clear that  the error measure (1) is a bit simple for practical applications. 
\u can extend in at least two ways. The first is to replace the difference of 
intensities by a measure of correlation, the hypothesis being tha t  the scene is 
made of fronto parallel planes. The second is to relax this hypothesis and to take 
into account the orientation of the tangent plane to the surface of the object.  In 
the first case we move along the matching criterion axis, in the second we move 
both along the shape and matching criterion complexity axes. 

We explore those two avenues in the next sections. 

4.1 F r o n t o  pa r a l l e l  c o r r e l a t i o n  f u n c t i o n a l  

To each pair of values (x. y), corresponds a 3D point M ,  M = [x ,y ,  f ( x ,  y)]T 
which defines two image points rnl and m2 as in the previous section. We can 
then classically define the mmormalized cross-correlation between I1 a n d / 2  at 
the pixels I~ 1 and m2.  W e  note this cross-correlation (Ia, h ) ( f ,  x, y) to acknowl- 
edge its analogy with an inner product  and the fact that  it depends on M: 

1 /§ 
: ( I i  (Tn l  -1- In )  --  / - l ( / ~ 1 ) )  ( I t , I 2 ) ( f , x , y )  ~ p .,-q 

(1'2 ( rn 2 + rn ) - 1"2 ( m 2 ) ) din,  

(4) 
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equation where the averages l l  and 12 are classically defined as: 

--Ik(mk) = ~pql f §  :_~-qlk(mk + , q k = l , 2  (5) 

Finally, we note I I 12 the quantity (I ,  I ) .  Note that  (I1, I2) = (I2, I1). 

1 f + ;  +q To simplify notations we write f*  instead of ~pq _ f~_q and define a match- 
ing functional which is the integral with respect to x and y of minus the nor- 
realized cross-correlation score: 

C2(f)  = - [ I ,  ] - ]  ?2 idxdy =. 24)(f,x,y)dxdy (6) 

the integral being computed, as in the previous section, over an open set of 
(I1,I2) the focal plane of the first camera. The functional 2~ is - lh l .11~(f ,  x,y). This 

quanti ty varies between -1 and +1, -1 indicating the maximum correlation. We 
have to compute its derivative with respect to f in order to obtain the Euler- 
Lagrange equation of the problem. The computat ions are simple but a little 
fastidious. They can be found in [8]. We can then proceed to solve the Euler- 
Lagrange equation as described in the previous section. But we will not pursue 
this task and explore rather  a bet ter  functional. 

4.2 T a k i n g  in to  a c c o u n t  t h e  t a n g e n t  p l a n e  to  t h e  o b j e c t  

We now take into account the fact tha t  the rectangular window centered at m2 
is not rectangular but is the image in the second retina of the backprojection on 
the tangent plane to the object at the point M = (x, y, f(x, y)) of the rectangular 
window centered at rnq (see Fig. 2.a). In esssence, we approximate  the object S 
in a neighbourhood of M by its tangent plane but without assuming, as in the 
previous section, that  this plane is fronto parallel, and in fact also that  the retinal 
planes of the two cameras are identical. Let us first s tudy the correspondence 
induced by this plane between the two images. 

Image c o r r e s p o n d e n c e s  i n d u c e d  b y  a p l a n e  Let us consider a plane of 
equation N T M  - d = 0 in the coordinate system of the first camera, d is the 
algebraic distance of the origin of coordinates to that  plane and N is a unit vector 
normal to the plane. This plane induces a projective transformation between the 
two image planes. Tiffs correspondence plays an essential role in the sequel. 

To see why we obtain a projective transformation,  let M be a 3D point in 
tha t  plane, M I  and M2 be the two 3D vectors representing this point in the 
coordinate systems at tached to the first and second cameras, respectively. These 
two 3 • 1 vectors are actually coordinate vectors of the two pixels ?Tt 1 and m2 seen 
as projective points (see Sect. 1). Furthermore,  they are related by the following 
equation: 

M2 = RV(M1 - t) 
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u(x ,  y, t ) = u ( M , t )  = t i e  

s ' - ' - -  . .  w,.. ,, ". /. . . . . . . .  - . .  

5 :" ':: . . . .  -"" .-"" i 

%i / / "  

(b) 

F ig .  2. (a) The square window (al,  b~, cl,  d~) in the first image is back projected onto 
the tangent plane to the object S at point M and reprojected in the retinal plane of the 
second camera where it is generally not square. The observation is that  the distortion 
between (al,  bl, el, dl) and (a2, b2, c2, d2) can be described by a collineation which is 
function of M and the normal N to the surface of the object. (b) Occlusion is taken 
into account: only the cameras viewing the point according to the current surface are 
used,thus avoiding any irrelevant correlation. 

Since M belongs to  the  p lane ,  NT'M1 = d, and  we have: 

R T t N  T 
M2 = ( R  T d ) M I  

which precisely  expresses  the  fact  t h a t  the  two pixels m 1 and  m2 are  r e l a t ed  by  a 
col l ineat ion,  or p ro jec t ive  t r a n s f o r m a t i o n  K .  The  3 x 3 m a t r i x  represen t ing  this  
col l ineat ion is ( R  r Rr tN ' r  ] ?- j. This  t r a n s f o r m a t i o n  is one to  one except  when the  
p lane  goes t h rough  one of the  two op t ica l  centers  when it becomes  degenera te .  
We will assume tha t  it  does not  go t h rough  e i ther  one of those  two po in t s  and  
since the  m a t r i x  of h" is only  defined up to  a scale fac tor  we might  as well t ake  
it equal  to: 

K = d R  ~ - R r t N  T (7) 

T h e  n e w  c r i t e r i o n  a n d  i t s  E u l e r - L a g r a n g e  e q u a t i o n s  We jus t  saw t h a t  
a p lane  induces a col l ineat ion  be tween  the two re t ina l  planes.  This  is the  basis  
of the  m e t h o d  p roposed  in [5] a l t hough  for a very different purpose .  The  win- 
dow a l luded  to in the  i n t roduc t i on  to this  sect ion is therefore  the  image  by the  
col l ineat ion  induced  by the t angen t  p lane  of the  r ec t angu la r  window in image  1. 
This  col l ineat ion  is a funct ion of the  po in t  M and of the  no rma l  to  the  ob jec t  
a t  M .  It  is therefore  a funct ion of f and  V f  t h a t  we denote  by A'. I t  satisfies 
the  condi t ion  I ( ( m l )  = m.). The  inner  p roduc t  (4) must  be modif ied  as follows: 

( f l ,  I2>(f, V f ,  X, y) = (I~ (ml-Fr~)-- I~(m~))(h  ( A ' ( m l  + m ) ) - ~ ( m 2 ) ) d m ,  

(s) 
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Note that ,  the definition of (I1, 12) is no longer symmetric,  because of K.  In 
order to make it symmetric,  we should define it as: 

* m _ _  

(I i , I2)( f ,  V f ,  x,y) = (I i (ml  + m ) -  I i (ml ) ) ( I2 (K(ml  + m ) ) - I 2 ( m 2 ) ) d m  

/* 
+ ( I i ( K - l ( m 2  + m')) - ~ ( m l ) ) ( / 2 ( m 2  + m') - ~(m2))dm'  (9) 

The definition (5) of I1 (resp. of I2) is not modified in the first (resp. second) 
integral of the right hand side, that  o f /2  (resp. of I 0 ,  on the other hand, must  
be modified as follows: 

~(rn2) = I2(K(rnl + p))dp, L[(ml)  = I i ( K - l ( m 2  + p'))dp' (10) 

Since this new definition does not modify the fundamental  ideas exposed in this 
paper  but makes the computat ions significantly more complex, we will assume 
the definition (8) in what follows, acknowledging the fact tha t  in practice (9) 
should be used. 

We now want to minimize the following error measure: 

<6, h> 

Since the functional :3~ now depends on both f and V f ,  its Euler-Lagrange 
equations have the form 3 q ~ f  - -  d i v ( 3 r  = 0. We must therefore recompute 
3~I  to take into account the new dependency of K upon f and compute 3~v$.  

We will simplify the computat ions by assuming that  the collineation K can 
be well approximated by an affine transformation.  Because of the condition 
K ( m l )  = rn2, this t ransformation can be written: 

K(rnl + m) ~ m2 + A m  

where A is a 2 x 2 matr ix  depending upon f and V f .  
In practice this approximation is often sufficient and we will assume tha t  it 

is valid in what follows. We will not pursue this computat ion (see [8] for details) 
since we present in Sect. 5 a more elaborate model that  encompasses this one 
and for which we will perform the corresponding computation.  

5 A n  e v e n  m o r e  r e f i n e d  m o d e l  

In this section we consider the case when the objects in the scene are not defined 
as the graph of a flmction of x and y as in the previous sections, but as the zero 
level set of a flmction fi : R 3 --~ R which we assume to be smooth,  i.e. C 2. 
The coordinates (x, y ,z)  of the points in the scene which are on the surface 
of the objects present are thus defined by the equation ~ (x . y , z )  = 0. This 
approach has at least two advantages. First, by relaxing the graph assumption,  
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it potentially allows us to use an arbitrary number of cameras to analyze the 
scene and second, it leads very naturally to an implementation of a surface 
evolution scheme through the level set method as follows. 

Let us consider a family of smooth surfaces S : (v, w, t) -* S(v, w, t) where 
(v, w) parameterize the surface and t is the time. It is in general not possible 
to find a single mapping S from R 2 to R 3 that describes the entire surface of 
the objects (think of the sphere for example where we need at least two) but we 
do not have to worry about this since our results will in fact be independent of 
the parametrization we choose. The objects in the scene correspond to a surface 
S(v,w) and our goal is, starting from an initial surface S0(v,w), to derive a 
partial differential equation 

St = f~N, (12) 

where N is the inner unit normal to the surface, which, when solved with initial 
conditions S(v, w, 0) = S0 (v, w), will yield a solution that closely approximates 

S(v, w). The function ~ is determined by the matching functional that  we min- 
imize in order to solve the stereo problem. We define such a functional in the 
next paragraph. An interesting point is that  the evolution equation (12) can be 
solved using the level set method which has the advantage of coping automati- 
cally with several objects in tim scene. In detail, the surfaces S are at each time 
instant the zero level sets of a function u : R 4 --~ R: 

u(S, t) ---- 0 

Taking derivatives with respect to v, w, t, noticing that  N can be chosen such 
that N w 

- -  Iv,ul' where V is the gradient operator for the first three coordinates 

of u, one finds easily that the evolution equation for u is: 

ut = / 3 1 V u  I (13) 

Using the same ideas as in  the section 4.2, we can define the following error 
measure: 

I,r  I I ej I 

In this equation, the indexes i and j range from 1 to n, the number of views. 
In practice it is often not necessary to consider all possible pairs but it does not 
change our analysis of the problem. In (14), the integration is carried over with 
respect to the area element do. on the surface S. With the previous notations, 
we have 

do- =1S,, • S,~ [ dvdw = h(v, w)dvdw 
S,, xS,,~ do. plays the role of dx dy in our previous analysis, S that  of f ,  and N - Is,, xS,o I' 

the unit normal vector to the surface S, that  of Vf .  
Note that this is a significant departure from what we had before because we 

are multiplying our previous normalized cross-correlation score with the term 
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[ Sv x Sw 1- This has two dramatic consequences: (i) It automatically regularizes 
the variational problem like in the geodesic snakes approach [1], and (ii) it makes 
the problem intrinsic, i.e. independent of the parametrization of the objects in 
the scene. 

Note also that  each integral that  appears in (14) is only computed for those 
points of the surface S which are visible in the two concerned images. Thus, 
visibility and occlusion are modelled in this approach (fig. 2.b). This is essential 
not to pretend the surface is at a wrong place when it actually is at the right 
place. 

The rest of the derivation is extremely similar, although technically more 
complicated, to the derivations in the previous section, namely we write the 
Euter-Lagrange equations of the variational problem (14), consider their compo- 
nent/3 along the normal to the surface, set up a surface evolution equation (12) 
and implement it by a level-set method. This is all pretty straightforward except 
for the announced result that the resulting value of ~ is intrinsic and does not 
depend upon the parametrization of the surface S. 

We will in fact prove a more general result. Let 4~ : R 3 • R 3 ----+ $ 2  be 
a smooth function of class at least C 2 defined on the product of the three- 
dimensional space R 3 where the surface S "lives" and the two-dimensional unit- 
radius sphere 82 of R 3 where the unit normal N to the surface S "lives". We 
note 4~(X, N) the value of �9 at the point X of R 3 and the point N of $2- Let 
us now consider the following error measure: 

C(S, Sv, S w ) =  f f 4~(S(v,w), N ( v , w ) ) h ( v , w ) d v d w  (15) 

where the integral is taken over the surface S. 
~Ve prove in [8] the following theorem: 

T h e o r e m  1. Under the assumptions of smoothness that have been made for the 
function q5 and the surface S, the component of the Euler-Lagrange equations for 
criterion (15) along the noT~nal to the surface is the product of h with an intrinsic 
factor, i.e. which does not depend upon the parametrization (v, w). Furthermore, 
this component is equal to 

h ( ~ x N  - 2H(~ - ~5NN ) + Trace((q~XN)Ts + dN o (~)NN)Ts)) (16) 

where all quantities are evaluated at the point S of normal N of the surface, 
T5 is the tangent plane to the surface at the point S. dN is the differential of 
the Gauss map of the surface, H is its mean curvature, qSXN and ~NN are the 
second order derivatives of ~, (qSXN)Ts and (qSNN)Ts their restrictions to the 
tangent plane Tv" of the surface at the point S. 

The symbol o represents the composition of applications. Note that  the error 
criterion (14) is of the form (15) if we define q~ to be 

_ ~ 1 <[i,Ij) 
i,j i,iej ] Ii [" [13 [ 
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According to the theorem 1, in order to compute the velocity fl along the normal 
in the evolution equations (12) or (13) we only need to compute ~s ,  qSN, 4~SN and 
~bNN as well as the second order intrinsic differential properties of the surface S. 

1 [" I j ) ,  Using the fact that  the function ~ is a sum of functions ~sij II~l-lbJ ( _ - -  $ ,  

the problem is broken down into the problem of computing the corresponding 
derivatives of the qs~j's, which, for the first order derivatives is extremely similar 
to what we have done in the Sect. 4.2. The computat ions are carried out in I8I. 
In terms of the level set implementation, we ought to make a few remarks.  The 
first is to explain how we compute/3 in (13) at each point (x, y, z) rather  than on 
the surface S. It  should be clear that  we do not have any problem for computing 
N = - Ivulv---v-~ and 2H = div(~--~l) and dN which is the differential of the Gauss 

map of the level set surface going through the point (x, y, z). The vectors q~x, 
~bN, the matrices ~bXN , ~NN are computed as explained in I8[. 

The second remark is that  we can now write (13) as follows: 

= I w t -  N(DN + trace(DN)I3)W 
(17) 

-Trace(( XN)V  + d N  o ( NN)T )I W I 

where D N  is the 3 • 3 matr ix  of the derivatives of the normal with respect 
to the space coordinates, I3 the identity matr ix,  and at each point (x, y, z) the 
tangent  plane Ts is that  of the level set surface u = constant going through that  
point. Note that  trace(DN) = - d i v ( ~ ) .  The first te rm I Vu I div(q~-~ I ) is 

identical to the one in the work of Caselles, Kimmel,  Sapiro and Sbert [2] on the 
use of minimal surfaces or geodesic snakes to segment volumetric images. Our 
other terms come from the particular process that  we are modelling, i.e. stereo. 
We believe and hope that  we can prove in the near future that ,  under some 
reasonable assumptions, (17) is well-posed. As a first step in that  direction, we 
report  on some important  implementat ion details: (i) Near the solution, r is close 
to -1 and the term I Vu I div(qS~) becomes anti-diffusive! As a consequence, 

we used ~5' = ~ + 1 instead of q~,which takes values between 0 and +2, as a 
new error measure. This is equivalent to introducing in the criterion a term 
that  tends to nfinimize the total area of the objects since it has the effect of 
adding to our original criterion the term f f da  which is precisely equal to that  
area. (ii) Regarding the image smoothness assumptions, a Gaussian modulated 
correlation could be used I10]. Actually, image intensities and their derivatives 
are extracted using recursively implemented Gaussian filters [4]. (iii) Concerning 
the problems of visibility and occlusion, the total  error measure C4 assumes the 
choice of certain camera pairs. Due to lack of place, we will not go into the details 
and just  say tha t  our implementation handles this problem such that  C4 is at 
least continuous. For more details, see [20] and [9]. 

6 R e s u l t s  

We now present some results obtained from both synthetic and real images. 
The corresponding animated recovering processes as well as other results can 
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be downloaded at: h t t p  : / / c e r m i c s .  enpc.  fr/~keriven/stereo, html. We first 
synthesized two crossing tori, shot from enough points of views so that  each part  
was seen at least twice (actually 24 images fig. 3). See how the surface splits 
after some iterations and how even the internal parts are recovered (fig. 4). We 
also used real images of a real objet (two human heads) that  was rotated before 
the cameras (fig. 4). All viewed parts (ie. neither the top nor the bottom) are 
correctly recovered (fig. 5). In both cases the image textures are mapped on the 
surface by standard texture mapping techniques. 

Fig. 3. Multicamera images of 3D objets. On the left hand side, two crossing synthetic 
tori (24 images). On the right hand side, real images: two human heads (18 images). 

Fig. 4. Evolution of the surface for the two tori. 

7 C o n c l u s i o n  

We have presented a novel geometric approach for solving the stereo problem 
from an arbitrary number of views. It is based upon writing a variational prin- 
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Fig. 5. Evolution of the surface for the two heads. 

ciple that must be satisfied by the surfaces of the objects to be detected. The 
design of the variational principle allows us to clearly incorporate the hypothe- 
ses we make about the objects in the scene and how we obtain correspondences 
between image points. The Euler-Lagrange equations which are deduced from 
the variational principle provide a set of PDE's  which are used to deform an 
initial set of surfaces which then move towards the objects to be detected. The 
level set implementation of these PDE's  provides an efficient and robust way of 
achieving the surface evolution and to deal automatically with changes in the 
surface topology during the deformation. The whole objects (at least parts seen 
from two or more cameras) are recovered and visibility and occlusion are taken 
into account. 
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