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A b s t r a c t .  A number of vision-based biometric techniques have been 
proposed in the past for personal identification. We present a novel one 
based on visual capturing of signatures. This paper describes a system 
based on correlation and recursive prediction methods that can track 
the tip of the pen in real time, with sufficient spatio-temporal resolution 
and accuracy to enable signature verification. Several examples and the 
performance of the system are shown. 

1 I n t r o d u c t i o n  a n d  M o t i v a t i o n  

A number  of biometric techniques have been proposed for personal identifi- 
cation in the past.  Among the vision-based ones, we can mention face recog- 
nition [21], [22], [23], fingerprint recognition [6], iris scanning [4] and ret ina 
scanning. Voice recognition or signature verification are the most widely known 
among the non-vision based ones. Signature verification requires the use of elec- 
tronic tablets  or digitizers for on-line capturing and optical scanners for off-line 
conversion [20]. These interfaces have the drawback tha t  they are bulky and 
complicated to use, increasing the complexity of the whole identification system. 
Cameras,  on the other hand, are much smaller and simple to handle, and are 
becoming ubiquitous in the current computer  environment.  This paper  presents 
a visual interface that  can be built using video technology and computer  vision 
techniques in order to capture signatures to be used for personal identification. 
This vision-based personal identification system could be integrated as a compo- 
nent of a complete visual pen-based computer  environment. Some related work 
can be found in [3], [11]. 

Handwrit ing recognition is still an open problem, even though it has been 
extensively studied for many  years. Signature verification is a reduced problem 
that  still poses a real challenge for researchers. The li terature on signature veri- 
fication is quite extensive (see [1], [9], [16] for very comprehensive surveys) and 
shows two main areas of research, off-line and on-line systems. Off-line systems 
deal with a static image of the signature, i.e. the result of the action of signing 
while on-line systems work on the dynamic process of generating the signature, 
i.e. the action of signing itself. The system proposed in this paper  falls within 
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the category of on-line systems since the visual tracker of handwriting captures 
the timing information in the generation of the signature. 

Section 2 describes the system. Section 3 presents the experimental setup 
and the results of experiments. The final section summarizes the results and 
discusses future work. 

2 O v e r v i e w  o f  t h e  S y s t e m  

Figure 1 shows a basic block diagram of the system and the experimental setup. 
The preprocessing stage performs the initialization of the algorithm, i.e. it finds 
the position of the pen on the first frame of the sequence and selects the template 
corresponding to the pen tip to be tracked. In subsequent frames, the prepro- 
cessing stage performs one function only: it cuts a piece of image around the 
predicted position of the pen tip and feeds it into the next block. The pen tip 
tracker has the task of finding the position of the pen tip on each frame of the 
sequence. A Kalman filter predicts the position of the tip in the next frame based 
on an estimate of the current position, velocity and acceleration of the pen. Fi- 
nally, the last block of our system performs signature verification. Section 2.1 
describes in more detail the handwriting acquisition component of our system 
and section 2.2 describes the algorithm used for signature verification. 

Fig. 1. (a) Block Diagram of the system. The camera feeds a sequence of images to 
the preprocessing stage. This block initializes the algorithm and selects the template 
to perform the tracking of the pen tip. The tip tracker obtains the position of the pen 
tip in each image of the sequence. The filter predicts the position of the pen tip in the 
next image. Finally, the last block of our system performs signature verification. (b) 
Experimental setup. The camera is looking at a person signing on a piece of paper. 

2.1 Handwriting Acquisition 

Initialization. The first problem to solve is locating the position of the pen tip 
in the first image of the sequence and selecting the kernel to be tracked. There are 
three possible scenarios: 1) In a batch analysis the tracker is initialized manually 
by mouse-clicking on the pen tip in the first frame. 2) The user writes with a 
pen that  is familiar to the system. 3) An unknown pen is used. 

The familiar-pen case is easy to handle: the system may use a previously 
stored template representing the pen tip and detect its position in the image by 
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correlation. There are a number of methods to initialize the system when the 
pen is unknown [11]. 

T r a c k i n g  t h e  P e n .  The second block of the system has the task of finding 
the position of the pen tip in the current frame of the sequence. The solution of 
this task is well known in the optimal signal detection literature. The optimal 
detector is a filter matched to the signal (in our case a segment of the image) 
and the most likely position of the pen is given by the best match between the 
signal and the optimal detector. 

Fig. 2. (a) Given the predicted location of the pen tip in the current frame, the most 
likely position of the pen is obtained by finding the place that has maximum correlation 
with the previously stored template of the pen tip. (b) System configuration: The 
hardware architecture comprises a commercial camera, a video board, and a Pentium 
200. 

Assuming that  the changes in size and orientation of the pen tip during the 
sequence are small, the most likely position of the pen tip in each frame is given 
by the location of the maximum of the correlation between the kernel and the 
image neighborhood, as shown in figure 2(a). 

F i l t e r i n g .  Using the output  of the correlation-based tracker, the filter predicts 
the position of the pen tip in the next frame based on an estimate of the po- 
sition, velocity and acceleration of the pen tip in the current frame. This filter 
improves the performance of the system since it allows us to reduce the size of 
the neighborhood used to calculate correlation. The measurements are acquired 
faster and the measured trajectory is smoother due to the noise rejection of the 
filter. A Kalman Filter [2], [7], [8] is a suitable recursive estimation scheme for 
this problem. We assumed a simple random walk model for the acceleration of 
the pen tip on the image plane. The model is given by 

{ x(t) = v(t)  
~,(t) = a(t) 
a(t) = ha(t)  (:)  
y(t)  = x(t) + ny(t) 

where x(t) ,  v(t)  and a(t) are the two dimensional-components of the position, 
velocity and acceleration of the tracked point, and na (t) is additive zero-mean, 
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Gaussian, white noise. The state of the filter X(t) includes three 2-dimensional 
variables, x(t), v(t) and a(t). This second order model is appropriate to describe 
the dynamics of a point object moving on a plane. The output of the model y(t) 
is the estimated position of the pen tip. 

Real-time Implementation. Figure 2(b) shows a block diagram of the imple- 
mentation hardware, which consists of a video camera, a video processing board, 
and a Pentium 200 PC. The camera is a commercial Flexcam ID, manufactured 
by Videolabs, equipped with manual gain control. It has a resolution of 480x640 
pixels per interlaced image. A TI TMS3020C80 based signal and image process- 
ing board was used to perform the image capturing. The input camera image is 
digitized by the board and the even and odd fields of the image are separated 
for future processing. The even field of the image is transferred via DMA to 
the memory of the host PC. All further computations are performed with the 
Pentium 200. We achieved a total processing time of 31ms per frame. 

2.2 Signature Verification 

Preliminaries. We consider the algorithms presented in references [1], [9], [16] 
as well as in the work of V. Nalwa [12] in order to choose one of them to be 
implemented and included in our system. We decided to explore the performance 
of Dynamic Time Warping (DTW) applied to this problem. This algorithm was 
initially proposed in the field of Speech Recognition by Sakoe and Chiba [18] 
and it is described in full extent in the book of Rabiner and Juang [17]. In the 
area of signature verification, Sato and Kogure [19] used DTW to align signa- 
ture shapes, Parizeau and Plamondon [13] compared the performance of DTW 
with regional correlation and skeletal tree matching for signature verification, 
Huang and Yan [5] applied DTW to align signature strokes and Nalwa [12] em- 
ployed a similar dynamic programming technique to align different characteristic 
functions of the signature parameterized along its arc length. 

Sato and Kogure [19] proposed to use DTW in order to align the shape of 
signatures, consisting only of pen down strokes, after having normalized the data 
with respect to translation, rotation, trend and scale. They further used the re- 
sult of DTW in order to compute the alignment of the pressure function and a 
measure of the difference in writing motion. Finally, they perform the classifi- 
cation based on the residual distance between shapes after time alignment, the 
residual distance between pressure functions and the distance between writing 
motions. 

Parizeau and Plamondon [13] evaluated the use of DTW for signature veri- 
fication by aligning either x(t), y(t), v~(t), v~(t), a=(t) or a~(t). In their work, 
they used the complete signing trajectories, i.e., pen down and pen up strokes. 

Huang and Yan [5] presented the use of DTW for matching signature strokes 
by finding a warp path that minimizes the cost of aligning the shape, velocities 
and accelerations of the individual strokes at the same time. Pen up strokes are 
considered in the preprocessing phase of their algorithm, in order to be merged 
with the pen down strokes. 
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Nalwa [12] parameterized the pen down strokes of the signature along its 
arc length and then compute a number of characteristic functions such as co- 
ordinates of the center of mass, torque, and moments of inertia using a sliding 
computational window and a moving coordinate frame. He performed a simul- 
taneously dynamic warping over arc length of all these characteristic functions 
for the two signatures under comparison. A measure of the similarity of the 
signatures is used for classification. 

Our implementation of DTW for signature verification at tempts  to perform 
the best time alignment of the 2D shape of the signatures, i.e., we find the time 
warping function that  has the minimum cost of aligning the planar curves that  
represent signatures. The visual tracker does not have the capability of detecting 
the positions in which the pen is up and not writing, so we used the full signing 
t rajectory in our experiments. We note that  the pen up strokes drawn by each 
subject were as consistent as the pen down strokes. This observation agrees with 
the belief [1] that  signatures are produced as a ballistic or reflex action, without 
any visual feedback involved. We do not perform any type of normalization on 
the signatures since we consider that  users are very consistent on their style of 
signing, they write their signatures with a similar slant, in a similar amount of 
time, with similar dimensions and with a similar motion. As presented, our D T W  
algorithm for signature verification is different from all the mentioned previous 
work although it shares with them some characteristics. 

Figure 3 shows an example of dynamic time warping applied to align the 
2D shape of two signatures. The first column shows x(t) before and after t ime 
warping and the second column shows y(t) before and after alignment. The 
upper plot of the third column shows the two signatures under comparison and 
the lower plot of the third column shows the alignment path. We note that  the 
alignment is quite good regardless of the differences in the shapes of x(t) and 
y(t). The remaining mismatch between these signals accounts for the differences 
in shape of the signatures. 

Description of the Algorithm. Dynamic time warping is a dynamic program- 
ming technique that  performs alignment of two different examples of a signal. 
Given tile two examples X = (x(1), x(2),- .  �9 x(Tr)) and Y = (y(1), y (2 ) , . . ,  y(T:j)), 
and a distance function d(x(t~), y(ty)),  we can define the total dissimilarity be- 
tween X and Y as follows 

T 

D(X,  Y) = E d(x(t),  y(t))  (2) 
t----1 

where the above summation is performed over a common time axis. In the sire- 
plest case of time alignment, i.e., linear time alignment, the above summation 
would be computed over one of the individual time axis tx or ty that  would be 

T~ t related to each other by tx = :% v. 

Linear time alignment assumes that  the rates of production of the signals 
are constant and proportional to the duration of the signals. It corresponds to 
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Fig. 3. Example of dynamic time warping applied to align the 2D shape of two realiza- 
tions of the same signature. The first column shows x(t) before and after time warping, 
the second column shows y(t) before and after alignment. The upper plot of the third 
column shows the two examples of the signature. The lower plot of the third column 
shows the optimal time alignment path compared with a linear time alignment path. 

the diagonal straight line showed in the (tx, ty) plane of figure 4(a). In the gen- 
eral setting, signatures are generated at a variable rate showing local motion 
changes. Therefore, we need to obtain two warping functions Cx and Cy that  re- 
late the time indices of the examples with a common time axis. The accumulated 
distortion between X and Y in this case is 

T 
De(X,  Y) = E d(x(r y(r  (3) 

t = l  

with r = (r Cy). These warping functions define a warping path in the (t~, ty) 
plane of figure 4(a) (solid line). Of all the possible warping functions that  could 
be chosen, we would look for the one that  minimize the distortion between X 
and Y: 

T 
D(X,  Y) = mcin E d(x(r (t)), y(r  (t))) (4) 

t=l 

The solution to this problem is obtained with a dynamic programming algorithm 
that  relies on the following recursion: 

D(tx,  ty) =(t~i,t~ {D(t'x, ty)' + c((t~, ty); (tx, ty))} (5) 

I / I I where D(t~, ty) is the cumulated cost of the best path ending at node (t~, ty), 
and c((t', t'~), (t=, t~)) is the elementary cost of the arc joining nodes ( t ' ,  ty) and 
(t~, ty) in the warping plane. 

From the above recursion equation, we can see that  a simple algorithm yields 
the optimal path: for each node on the discrete plane (t~, ty), the minimum cumu- 
lated cost is computed with equation (5). The node that  provides the minimum 
cost is stored in memory. The cumulative cost is computed serially starting from 
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Fig. 4. (a) Two different realizations of the same signature and the discrete (tx, ty) 
plane in which the time alignment is performed. The warping path in dashed line 
corresponds to linear time alignment while the warping path in solid line corresponds 
to a possible solution for the optimal time alignment. (b) Translation vectors between 
two pairs of points in each signature. 

the first column until the last column in the discrete plane (tx, t y ) .  Finally, the 
last column is searched for the node with minimum cost and then the optimum 
warping path is found by backtracking the stored nodes. 

For the time alignment process to be meaningful in terms of time normal- 
ization for different realizations of a signature, some constraints on the warping 
functions are necessary. Unconstrained minimization in equation (5) may con- 
ceivably result in a near-perfect match between two different signatures, thus 
making the comparison meaningless for recognition purposes. Typical time warp- 
ing constraints that  are considered reasonable for time alignment include end- 
point constraints, monotonicity conditions, local continuity constraints, global 
path constraints and slope weighting (see [17] for a more extensive treatment of 
the subject). 

We enforce only a few simple constraints. First, we only allow monotonic 
paths to be explored, so if point tx is matched with point ty, then point t~ + 1 
can only be matched with a point after point ty. Second, we only allow point 
(t, ,  t~) to be reached from points (t~ - 1, t~), (tx - 1, ty - 1) and (t, ,  ty - 1). Third, 
we require that the warping path start at point (0, 0) and end at point (T~, Ty). 
Finally, we constrain the number of points t~ that can be explored for each point 
tx in minimizing equation (5). With all these constraints, the algorithm can be 
summarized as follows: 

1. Initialization: D(0, 0) = 0 
2. Recursion: for 1 < tx < Tx ,  1 < ty <_ Ty ,  such that t~ and ty stay within the 

allowed grid, compute: 

{ D(t~ - 1, t y )  + c ( ( t~  - 1, t y ) ,  ( tx ,  t~) )  
D(t~, t~) = r a i n  D(tx - 1, ty - 1) + c( ( t~  - 1, ty  - 1), (t~, ty)) (6) 

D(t~, ty - 1) + c ( ( t x ,  ty  - 1), (t~, t~)) 

3. Termination: D(X,  Y) = D(Tx, T~) 

The only missing element in the algorithm is the specification of the elemen- 
I l I I tary cost of the arc joining nodes (t=, ty) and (t=, tu), c((t=, ty), (t~, ty)). Assume 

that the point x(t~) in the first signature is matched with point y(t~) in the 
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second signature, and that  point x(tx) in the first signature is matched with 
point y(ty) in the second signature. The translation vectors associated with 
each match are t ( t ' , t y )  = x ( t ' )  - y(ty) and t( t=, ty)  = x(t~) - y(ty).  The 
error between matches is d((t'x,t'y), ( tz , ty))  = t ( t z , ty )  - t ( t ' , t y ) .  We choose 
the elementary cost to be the Euclidean norm of the error between matches: 

I ! ! c(( t=, ty) , ( tx , ty))  = IId((t ' , ty) ,( tx, ty))l l  2, as shown in figure 4(5). This cost 
function tends to give minimum elementary cost to pair of places in the warping 
plane that  corresponds to pairs of points in the signatures that  have the same 
displacement vectors, providing zero cost in the case in which one signature is a 
translated version of the other. 

3 E x p e r i m e n t s  

The performance of our tracking system has been presented in references [10], [11]. 
In this paper, we focus our experiments on the results of the automatic personal 
identification. In section 3.1 we present the performance of the time warping 
algorithm tested on a database of signatures collected with a tablet digitizer. In 
section 3.2 we show the results of the visual identification system. 

3.1 P e r f o r m a n c e  o f  the Signature Verification Algorithm 

We collected signatures from 38 subjects. Each of them was asked to provide 20 
signatures, 10 of them to be used as the training set and the other 10 to be used as 
the test set. The test set allows us to evaluate the Type I error (or False Rejection 
Rate (FRR)). We did not collect any real forgery so we used all the signatures 
from the other subjects as random forgeries in order to obtain the Type II 
error (or False Acceptance Rate (FAR)). The tablet is a WACOM Digitizer, 
Active area: 153.6x204.8 mm, Resolution: 50 lpmm, Accuracy: + 0.25 mm and 
Maximum report  rate: 205 points/second. In our experiments we used the full 
signing trajectory, in order to be consistent with the experiments that  we will 
perform with the real-time system. 

Training. During training the system must learn a representation of the training 
set that  will yield minimum generalization error. The dynamic time warping 
algorithm provides the optimal alignment of two signatures, so we could compute 
the mean signature of these two along the warping path. This mean signature 
would provide a more robust representative for the class since the inherent noise 
in capturing the signatures will be averaged. In the case in which there are more 
than two examples in the training set, there is no clear way of defining the 
mean signature. In principle, one could think of performing the simultaneous 
alignment of all the examples at the same time, working on an N-dimensional 
tensor instead of a matrix. The disadvantage of this approach is that  there is 
no clear way of defining the elementary cost of the arc joining two nodes of this 
tensor. We propose a sub-optimal training procedure. We perform only pairwise 
alignment in order to find all the pairwise mean signatures out of all the possible 
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pairs of elements in the training set. The mean signature tha t  yields minimum 
alignment cost with all the remaining signatures in the training set is the one tha t  
represents the training set. The individual costs of aligning each of the signatures 
in the training set with this reference signature are collected in order to est imate 
the statistics of the alignment process. This statistics are subsequently used for 
classification. In figure 5 we show several examples of signatures collected for 
our database and their corresponding training reference. 

'i ~ i i i . . . .  

~ : . . . . . . . . .  

R ~ E ~ n a ~ e f ~  ~ s30 
] 

Fig. 5. Several examples of signatures i n  our database. In the first row we display 
signatures captured with the tablet while in the second row we show the corresponding 
reference signature of the training set. 

We evaluated several possible alignment schemes in our experiments.  Lorette 
and Plamondon [1] show evidence that  the best representation space for a 2D 
signature verification system is the velocity domain, in concordance with the 
kinematic theory of rapid human movements  developed by Plamondon [14], [15]. 
Therefore, one of the schemes tha t  we tested was t ime alignment of the 2D 
velocity shape of the signatures. The x and y velocities were computed using 
first-order central finite differences. We examined two more schemes in which 
we perform time alignment of the 2D shape of the signature. In one of them, 
we align the raw data  acquired with the tablet  and in the other, we align the 
signatures after having rotated them so tha t  their main axis coincide with the 
horizontal axis. 

T e s t i n g .  As we stated before, we used a test set of 10 signatures for computing 
the F R R  and all the 740 signatures from other subjects for computing the FAR, 
both  of them as a function of the classification threshold. Clearly, we can t rade 
off one type of error for the other type of error. As an extreme example,  if we 
accept every signature, we will have a 0% of FRR and a 100% of FAR, and 
if we reject every signature,we will have a 100% of F R R  and a 0% of FAR. 
The  simplest characterization of the FAR-FRR tradeoff is given by the equal 
error rate, i.e., the error rate at which the percentage of false accepts equal 
the percentage of false rejects. This equal error rate provides an est imate of 
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the statistical performance of the algorithm, i.e., it provides an est imate of its 
generalization error. We calculate the value of the equal error rate  by intersecting 
the FAR and F R R  curves tha t  we computed, considering them to be piecewise 
lineal'. 

In figure 6 we plot the value of the equal error rate for the 38 signers, for each 
of the three schemes under test. We observe tha t  the alignment of 2D shapes of 
the signatures using the raw data  gives the best performance of the three. We 
note that ,  for this case of best performance, there are three signatures for which 
the equal error rate is 10% and one for which the equal error rate is 20%, that ,  
in our present experimental  setting, accounts for having one or two signatures 
being falsely rejected. In figure 7 we show one of the original signatures, the 
reference signature, the signature that  is falsely rejected and one of the falsely 
accepted signatures for each of these worst performance cases. 
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Fig. 6. Value of the equal error rate for each of the 38 subjects. The first plot cor- 
responds to time alignment in velocity space, the second plot corresponds to time 
alignment of the 2D shape of the signatures and the third plot corresponds to time 
alignment of the 2D shape of the signatures, having previously aligned their main axis 
with the horizontal axis. 

Table 3.1 summarizes the results shown in figure 6 for the best case, i.e., the 
one corresponding to the alignment of the 2D shape of the signatures. There is a 
noticeable difference between the numbers on table 3.1 and the values plotted on 
figure 6. The difference is due to the fact that  in figure 6 we plot the value of equal 
error rate,  tha t  was computed as the intersection of the FAR and F R R  curves 
and corresponds to an est imate of the performance of the algorithm in average, 
while in table 3.1 we show the values of FAR and F R R  tha t  correspond to a 
particular realization of the performance of the algorithm given by our test  set. 
In the first four columns of the table, we show the number  of signatures falsely 
rejected and falsely accepted, as well as the FRR and FAR for the condition of 
equal error rate. In the last four columns of the table, we present the number  of 
signatures falsely rejected and falsely accepted, as well as the F R R  and FAR for 
the condition of FAR < 1%. We note the mentioned trade off between F R R  and 
FAR comparing the results obtained under these two conditions. In a verification 
system used for credit card transactions, it is very reasonable to operate  with 
FAR < 1% since accepting a false signature could cause a substantial  financial 
loss while rejecting a true signature could produce a little annoyance in the 
customer tha t  would have to repeat  the signature. For this case, the algorithm 
has an average F R R  of 4 %. We should note that  the overall performance of the 
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Fig. 7. The 4 cases in which the algorithm has biggest error. The first column shows 
signatures in the training set, the second column shows the reference signatures, the 
third column shows the signatures that were falsely rejected and, the last column shows 
signatures that were falsely accepted. 

algorithm is quite good, with error rates comparable to the best presented in 
the literature [5], [12], [13], [19] under similar conditions. 

3 . 2  P e r f o r m a n c e  o f  V i s u a l  S i g n a t u r e  V e r i f i c a t i o n  S y s t e m  

We collected signatures from 15 subjects. They were asked to train the system 
with 5 signatures and test it with at least 2 genuine signatures and 2 quasi- 
random forgeries (some piece of handwriting that  has similar writing pat tern as 
the genuine signature and it is written by the same subject). 

Given the results showed in the previous section, we only implemented the 
2D signature shape alignment in our real time system. The training is performed 
in the same way as it was described in section 3.1, right after the signatures have 
been captured. The training time is variable, depending on the duration of the 
signatures, experimentally we observe a maximum training t ime of 5 seconds. 
We should point out that  our visual tracker is working in real-time at 30Hz. As 
shown in our previous work [10], we are able to track the pen tip in conditions 
of normal cursive or printed handwriting and drawings. However, in the case of 
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Table 1. Performance of the algorithm tested on the database of signatures collected 
with the tablet. 

Signer ID Equal  error condi t ion  F A R < I ~  c o n d i t i o n  
F R s  ~ FA~ F R R  ( ~ )  F A R  ( % )  # F R s  ~ F A s  F R R  ( % )  F A R  ( % )  

1 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 
3 0 0 O 0 0 0 0 0 
4 1 42 10 5 .6757  1 7 10 0 .9459  
5 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 
8 1 55 I 0  7 .4324 2 3 20 0 . 4 0 5 4  
9 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 
12 1 5 I 0  0 .6757  0 5 0 0 .6757  
13 0 0 0 0 0 0 0 0 
14 1 8 10 1.0811 1 2 10 0 .2703  
15 0 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 9 
18 2 153 20 20 ,6757  3 2 30 0 .2703  
19 1 77 10 10 .4064  4 2 40 0 .2700  
20 0 0 0 0 0 0 0 0 
21 0 0 0 0 0 0 0 0 
22 1 77 I 0  10 .4054  1 2 I 0  0 .2703  
23 0 0 0 0 0 0 0 0 
24 0 0 0 0 0 0 0 0 
25 0 0 0 0 0 0 0 0 
26 0 0 0 0 0 0 0 0 
27 0 0 0 0 0 0 0 0 
28 0 0 0 0 0 0 0 0 
29 0 0 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 0 
31 0 0 0 0 O 0 0 0 
32 0 0 0 0 0 0 0 0 
33 1 11 10 1 .4665 1 7 10 0 . 9 4 5 9  
34 1 I 10 0 .1351 O 6 0 0 .8108  
35 1 83 I 0  11 .2162  1 1 I 0  0 .1351  
36 0 O O 0 0 0 0 0 
37 0 0 0 0 0 0 0 0 
38 0 0 0 0 0 0 0 0 

Tota l  i i  512 2 .8947  1 .8208  14 37 3 .6842  0 .1316  

signatures, we observe that the system occasionally loses track of the pen tip 
when the subject produces an extremely fast stroke. This problem of losing track 
of the pen tip could be solved in the future by using a more powerful machine 
or dedicated hardware. However, after a few trials, the user learns how to utilize 
the system without driving it to its limits. 

The results of our tests were very encouraging and they are summarized in 
table 3.2. After the training, we obtain the individual costs of aligning each 
signature in the training set with the reference signature. We compute  the mean 
and the standard deviation of these individual costs in order to use them for 
classification. When a new signature is captured for testing the system, the cost 
of  aligning this signature with the reference signature is computed.  The signature 
will be classified as genuine if this cost is smaller than a threshold and classified 
as forgery otherwise. In all our experiments, the threshold was taken to be the 
mean plus twice the standard deviation of the training costs. 

We observe that the performance of subject 6 is not very good. Figure 8 
shows signatures corresponding to this subject. We believe that this low perfor- 
mance is due to the fact that he was writing Greek letters with a big change 
in the inter-letter hesitation, generating in this way a series of sequences that 
are not very consistent time-wise when we compare them with signatures. We 
should point out that these results from the visual system need to be verified 
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Table 2. Results obtained by testing the algorithm in real time. 

S i g n e r  I D  F a l s e  R e j e c t s  F a l s e  A c c e p t s  F R R ( % )  F A R  ( % )  
1 0 0 0 0 
2 0 0 0 0 
3 1 0 33 0 
4 0 0 0 0 
5 0 0 0 0 
6 4 0 80 0 
7 0 0 0 0 
8 0 0 0 0 
9 0 0 0 0 
I0 0 0 0 0 

ll 0 0 0 0 

12 0 0 0 0 
13 0 0 0 0 
14 0 0 0 0 
15 0 0 0 0 

T o t a l  5 0 7.5 0 

by doing a bigger set of experiments, in order to fully characterize the perfor- 
mance of the algorithm. Nevertheless, we note that  these results correspond to 
the most pessimistic scenario since the subjects were writing their signatures 
without any feedback from the system on the consistency of their signatures. In 
a more realistic scenario in which the subjects receive feedback from the system, 
one could expect that  they would adapt, learning to sign in a way that  would 
be considered consistent for the system. 

Fig. 8. Signature from subject 6, reference signature and false rejected signature. 

In figure 9 we show some original signatures, the corresponding reference 
signature and one of the random forgeries provided by the same subject. 

The last part  of our experiment was to compute the the FAR and FRR in 
the same way as we calculated it in section 3.1, i.e., the FRR was obtained by 
using the 2 signatures that  we had for testing and the FAR was obtained by 
using all the other signatures provided by the other signers and all the forgeries. 
The result provided by the algorithm were perfect with 0% of FAR and FRR, 
probably due to the fact that  our test set was very small. Nevertheless, these 
results are very encouraging in order to further pursue the development of a 
visual password verification system. 

4 C o n c l u s i o n s  a n d  F u r t h e r  W o r k  

We have presented a novel vision-based technique for personal identification. The 
system does not require any special hardware, unlike fingerprint verification, iris 
or retina scanning systems. It is comparable to face recognition systems in terms 
of hardware since it uses a camera for tracking the signature. We demonstrated 
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Fig. 9. Sequences acquired with the visual tracker. The first row shows signatures in 
the training set, the second row shows the reference signatures and the third row shows 
the quasi-random forgeries provided by the subjects. 

the feasibility of having such a system working in real t ime with a high degree 
of accuracy in verifying signatures. 

We consider it impor tant  to increase the robustness of the signature verifi- 
cation algorithm by adding some global parameter izat ion of the signatures tha t  
will allow the system to discard coarse forgeries. The dynamic t ime warping 
algorithm could be improved by using different constraints or even using contin- 
uous t ime warping. We would also like to explore ways of training the system by 
aligning all the signatures at the same time, so that  the resulting mean signature 
will be a more robust representative of its class. More extensive testing of the 
algorithm is required in order to understand its week points and correct them. 
In particular,  we should include more actual forgeries in our database.  

We note tha t  the user would need some minimal training in order to master  
the system. When the signatures have extremely fast strokes, the system loses 
track of the pen tip. We asked the users to slow down a bit the motion of these 
strokes so that  the tracker could acquire the signature. We believe tha t  the use 
of a more powerful machine or the implementat ion of our tracking algorithm in 
hardware using F P G A ' s  will eliminate this problem, allowing users to sign at 
normal speed. 

References  

1. Dynamic approaches to handwritten signature verification. G. lorette and r. pla- 
mondon. Computer Processing of Handwriting, pages 21-47, 1990. 

2. R.S. Bucy. Non-linear filtering theory. IEEE Trans. A.C. AC-IO, 198, 1965. 



796 

3. J.L. Crowley, F. Bernard, and J. Coutaz. Finger tracking as an input device for 
augmented reality. Int. Work. on Face and Gecture Recog., pages 195-200, 1995. 

4. J.G. Daugman. High confidence visual recognition of persons by a test of a sta- 
tistical independence. IEEE Trans. Pattern Analysis and Machine Intelligence, 
15(11):1148-1161, 1993. 

5. K. Huang and H. Yam On-line signatuer verification based on dynamic segmenta- 
tion and global and local matching. Optical Engineering, 34(12):3480-3487, 1995. 

6. A.K. Jain, L. Hong, S. Pankanti, and E. Bolle. An identity-authentication system 
using fingerprints. Proceedings of the IEEE, 85(9):1365-1388, 1997. 

7. A.H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press, 1970. 
8. R.E. Kalman. A new approach to linear filtering and prediction problems. Trans. 

of the ASME-Journal of basic engineering., 35-45, 1960. 
9. F. Leclerc and R. Plamondon. Automatic signature verificationand. International 

Journal of Pattern Recognition and Artificial Intelligence, 8(3):643-660, 1994. 
10. M. Munich and P. Perona. Visual input for pen-based computers. In Proc. 13 th 

Int. Conf. Pattern Recognition, 1996. 
11. M.E. Munich and P.Perona. Visual input for pen based computers. CNS Technical 

Report CNS-TR-95-01, California Institute of Technology, 1995. 
12. Vishvjit S. Nalwa. Automatic on-line signature verification. Proceedings of the 

IEEE, 85(2):215-239, 1997. 
13. M. Parizeau and R. Plamondon. A comparative analysis of regional correlation, 

dynamical time warping and skeletal tree matching for signature verification. IEEE 
Trans. Pattern Analysis and Machine Intelligence, 12(7):710-717, 1990. 

14. R. Plamondon. A kinematic theory of rapid movements, part i: Movement repre- 
sentation and generation. Biological Cybernetics, 72:295-307, 1995. 

15. R. Plamondon. A kinematic theory of rapid movements, part ii: Movement time 
and control. Biological Cybernetics, 72:309-320, 1995. 

16. R. Plamondon and G. Lorette. Automatic signature verification and writer iden- 
tification, the state of the art. Pattern Recognition, 22(2):107-131, 1989. 

17. L. Rabiner and B. Juang. Fundamentals of Speech Recognition. Prentice Hall, Inc., 
1993. 

18. H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken 
word recognition. IEEE Trans. Acoustics, Speech, Signal Processing, 26(1):43-49, 
1978. 

19. Y. Sato and K. Kogure. On-line signature verification based on shape, motion and 
writng pressure. Proc. 6th Int. Conf. on Patt. Recognition, pages 823-826, 1982. 

20. C.C. Tappert, C.Y. Suen, and T. Wakahara. The state of the art in on-line 
handwriting recognition. IEEE Trans. Pattern Analysis and Machine Intelligence, 
12:787-808, 1990. 

21. C.J. Taylor, T.F. Cootes, A. Lanitis, G. Edwards, and P. Smyth et al. Model-based 
interpretation of complex and variables images. Philosophical transactions of the 
Royal Society of London, 352(1358):1267-1274, 1997. 

22. M. Turk and A. Pentland. Eigenfaces for recognition. J. of Cognitive Neurosei., 
3(1):71-86, 1991. 

23. L. Wiskott, J.M. Fellous, N. Kruger, and C. Von der Malsburg. Face recogniton 
by elastic bunch graph matching. IEEE Trans. Pattern Analysis and Machine 
Intelligence, 19(7):775-779, 1997. 


