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Abs t r ac t .  An autonomous vehicle has been developed for precision ap- 
plication of treatment on outdoor crops. This document details a new 
vision algorithm to aid navigation and crop/weed discrimination being 
developed for this machine. The algorithm tracks a model of the crop 
planting pattern through an image sequence using an extended Kalman 
filter. A parallel update scheme is used to provide not only navigation in- 
formation for the vehicle controller but also estimates of plant position for 
the treatment system. The algorithm supersedes a previous Hough trans- 
form tracking technique currently used on the vehicle which provides 
navigation information alone, from the rows of plants. The crop plant- 
ing model is introduced and the tracking system developed, along with 
a method for automatically starting the algorithm. In applications such 
as this, where the vehicle traverses unsurfaced outdoor terrain, "ground 
truth" data for the path taken by the vehicle is unavailable; lacking this 
veridical information, the algorithm's performance is evaluated with re- 
spect to human assessment and the previous row-only tracking algorithm, 
and found to offer improvements over the previous technique. 

1 I n t r o d u c t i o n  

An autonomous agricultural vehicle [2] has been developed at the Silsoe Research 
Inst i tute  to perform the task of plant scale husbandry, which aims, for example, 
to reduce the use of chemicals in crop protection by treat ing individual plants and 
weeds separately, with little waste chemical sprayed onto the bare earth.  Such a 
level of t rea tment  provides obvious environmental and economic advantages over 
more tradit ional field spraying techniques. I t  is important  in such applications 
both to be able to steer the vehicle accurately along rows of plants and to be 
able to identify where individual plants are. 

The algorithm described here uses perspective images captured from a cam- 
era mounted on the front of the vehicle to provide estimates of the position of 
both  the structure of the crop row planting pat tern  and the position of individ- 
ual plants within tha t  structure. At the heart  of the algorithm is a Kalman filter 
with a non-linear measurement  model (to correct for the perspective distortion 
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of the images), which is used to track a model of the crop planting pattern 
through the image sequence generated as the vehicle traverses the field. The 
crop row structure is a cue used by the vehicle, in combination with non-vision 
sensors [3], to navigate along the rows. A Hough transform algorithm for track- 
ing the plant rows has been previously reported [7] [8] and is currently part of 
the system. The existing algorithm extracts only the direction and offset of the 
rows of plants whereas the new algorithm also provides an estimate of individual 
plant positions which can then be used to target treatment by the spray system. 
A second advantage of the new algorithm is that the Kalman filter provides 
a covariance matrix for the state estimate which can be given to the vehicle 
controller; the Hough transform does not produce these covariances. 

The use of a rigid model in tracking systems is well established, notably 
[4] where the rigid model in question consisted of control points on straight 
edge segments, thus suitable mainly for man-made objects. The problem here 
is extracting man-made structure imposed on a natural world. The rigid model 
gives a perfect version of the relationship expected between the plant centres on 
the ground plane, and the non-ideal nature of the real world must be catered for. 
However, how to model the effects of the noise of individual plant locations on 
the estimation of the crop planting pattern position is unclear; for the purposes 
of this paper the simplifying step of accommodating plant position noise as 
uncertainty in the observation model has been taken. 

Other vision work within the scope of this project [10][11] (neither of which 
have been implemented on the vehicle) has addressed tracking individual plants 
rather than the planting pattern as a whole as approached in this paper; by 
tracking the whole pattern it is believed a more robust system will be realised. 
The two methods mentioned make use of plant models (in [11] a cluster of chain- 
coded areas, in [10] a more complex shape model) both of which could potentially 
be distracted by large clusters of weed material. By using the information avail- 
able on the planting pattern, the search for plant material is constrained, and 
weed patches away from the crop structure will be ignored. 

This paper describes the model of the planting structure, the extended Kalman 
filter used to track the model through the image sequence, and a method for au- 
tomatically boot-strapping the algorithm. Finally, results are presented from 
experiments with real images (in the examples given, the crop is cauliflower) 
and conclusions drawn on the performance of the technique. 

2 T h e  C r o p  P l a n t i n g  M o d e l  

2.1 M o d e l  P a r a m e t e r s  

Figure ! shows a schematic view of a patch of crop, with the plants being rep- 
resented by black circles. There are two sets of axes in the figure, (x~, Yw) and 
(Xc, Yc, Zc) which represent the world and camera co-ordinate systems respec- 
tively, with the world z~ axis projecting out of the page, and camera axis Zc 
projecting into the page. It can be seen that the world y axis is coincident with 
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the middle plant row. The model of the crop consists of the four measurements; 
r, the spacing between the rows, l the space between plants in the row, D - l ,  
which is a measure of the offset between the left-hand row of plants and the 
central row of plants and finally D1, which is the corresponding quantity for the 
right-hand row. The model makes the assumption that  the crop is planted in 
perfect position, although in reality there is error in the planting positions, and 
some plants are missing - both of these problems are tackled by the Kalman 
filter. 
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-1 0 1 

Y 

Y 
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Fig. 1. The crop planting model 

Three parameters (t~, Y and k~), specify the position of the model relative 
to the camera as shown in the diagram, and these will later be seen as the state 
vector x = [tx, ]I, o]T estimated by the Kalman filter. The measurement Y is 
the offset in world co-ordinates from the world origin of the plant in the central 
row at the bottom of the image. The offset of the camera Yc axis from the world 
origin t= is approximately equal to the distance h when angle ~ is small. It  can 
be seen then that  the t= and ~ parameters may be used to provide navigation 
information in terms of a heading angle and offset of the camera (and hence the 
vehicle) relative to the rows, and the parameter Y, in conjunction with model 
parameters D-1 and D1 can yield the position of individual plants via equations 
1 and 2 (extended from those presented in [8]) below. 
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x~ = nr  (1) 

Yw -~ ml  + Y + Dn (2) 

The quantities n E ( - 1 , 0 ,  1} and m �9 ( 0 , - 1 , - 2 , . . . , - ( m m a x  - 1)} index into 
the 3 x mma x grid formed by the planting pattern. The term Do is the offset of 
the central row; by definition Do -- 0. It should be noted that  the plant centres 
are assumed to be on the ground plane (zw = 0). It is stressed that  the model 
describes the grid on which individual plants should lie, rather than the actual 
location of the individual plants. 

The origin of the world axes (xw, Yw, zw) is not fixed on the ground plane, 
but is local to the vehicle (and therefore moves along with the vehicle); as stated 
above the y~ axis is always coincident with the middle crop row, whilst the Xw 
axis passes through the point where the camera's optical axis Zc intersects the 
ground plane. 

2.2 Observation of  the Mode l  in the Image 

Having specified a model for the planting pattern, attention must now be turned 
to how this model will appear in the image. Owing to the angle at which the 
camera is mounted on the vehicle, features on the ground plane are viewed on 
the image plane under a perspective projection. Marchant and Brivot [8] arrive 
at the following expressions for the 2D image plane co-ordinates (xu, Yu) of 3D 
world points (Xw, yw, O) (t~, tz and r are explained below): 

x~ = f ( x ~ c o s ~  + y ~ s i n ~  + t x )  (3) 
xw sin ~P sin ~b - y~ cos �9 sin r + tz 

Y~ = f ( -xw sin k~ cos r + Yw cos �9 cos r + ty) (4) 
xw sin �9 sin ~b - Yw cos �9 sin ~b + tz 

Equations 3 and 4 are derived from those given by Tsai [12], with the added 
assumption that  the camera does not pitch or roll (i.e that  the camera axes 
(Xc,Yc, Zc) of figure 1 do not rotate about the world axes xw or Yw). This as- 
sumption has been made on the basis of observation of long image sequences and 
also because the vehicle is running on well tended tilled fields. The angle r is 
that  of the camera's optical axis (zc) to the world z~ axis, and ~ is tha t  shown 
in figure 1. The quantity tz is distance along the optic axis between the camera 
optical centre and the intersection with the ground plane, and ty gives the offset 
(in camera co-ordinates) of the point where the optical axis intersects the world 
xw axis and, as in [8], this can be set to zero. One further assumption is that  
the angle ~P is small enough for the approximations cos �9 ~ 1 and sin ~ ~ ~ to 
hold. 

From the above, it is possible to generate image pixel co-ordinates ( x f , y f )  
for each plant centre (m, n) by combining equations 1 and 2 with 3 and 4, and 



801 

inserting a suitable estimate of the parameters t=, Y and 

x/(x,Y,~9,  m , n ) =  f n r + ~ ( m l + Y + D ~ ) + t =  
dx nr~P sin-r -- ~ l - ~  § Dn) sin r + tz + C= (5) 

f (ml + Y + D~ - ~nr)  cos r 
y f ( x , Y, # , m , n ) = -~y n r # s~n r -_- -~ll - ~  7 ~ - ~  ) s~n C + t z + C y (6) 

The values of dx and dy give the horizontal and vertical side length of the camera 
pixels respectively, and (Cx, Cy) is the co-ordinate (in pixels) of the centre of 
the imaging surface. In practice it has been found that the maximum number of 
plants seen in a single image is 15, so Urea x = 5 generates a suitable number of 
predictions (if there are less than 15 plants in the image, then some predictions 
will lie outside the bounds of the image; such predictions are ignored). 

3 T r a c k i n g  t h e  P a t t e r n  

The Kalman filter [5] is used to provide a means of tracking the plant model 
through the image sequence by predicting the crop structure position (and hence 
the individual plant positions) and using observations of plants taken from the 
image to correct this prediction. The filter estimates not only the state of a 
system x, but also provides a covariance for the estimates, P. 

3.1 The System Model  

The prediction is made by means of a (linear) state transition model which 
describes the evolution of the state x = It=, Y, ~P] as the vehicle moves between 
between image k and k + 1: 

x(k + 1) = Ax(k) + U(k) + n(k), (7) 

where A is the 3 x 3 state transition matrix and U the 3 x 1 control input, i.e. the 
vehicle motion between image k and k + 1. By treating U as an external variable, 
rather than a state to be estimated, the kinematic model of the vehicle is hidden 
from the algorithm (therefore providing an estimate that is independent of a 
kinematic model which will be violated in certain circumstances, e.g. when the 
vehicle's wheels slip); the problem of integrating the vision system Kalman filter 
given here with the vehicle control system filter (where the vehicle kinematics 
are used to estimate U) will be addressed in the future. There is also an additive 
zero-mean Gaussian noise term n which has (3 x 3) covariance matrix Q(k), and 
quantifies the uncertainty in the vehicle motion estimates. Because the planting 
pattern is assumed to be of fixed size and shape, A is taken to be the identity 
matrix. 

The observation of the crop planting model in the image has already been 
discussed in section 2.2, and this can also be more formally stated in state-space 
terms: 

rxs(x(k),-~, n) ] 
z ( k , m , n )  = h [ k , x ( k ) , m , n , w ( k ) ]  = [ y s ( x ( k ) , m , n ) j  +w(k)  (8) 
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The vector w(k) is zero-mean Gaussian noise described by (2 x 2) covariance 
matrix R(k, m, n). Here, the matrix R reflects the fact that the cauliflowers are 
not planted on a perfect grid, but deviate from the ideal positions predicted by 
the model. Note that the observation model h is both a function of the state 
x(k), and m and n, the integer variables which index the crop grid - so one 
state estimate generates 3 x mmax observations. The observation model is also 
non-linear, so an extended Kalman filter [1] is required. 

3.2 The  E x t e n d e d  K a l m a n  Fi l ter  

The extended Kalman filter allows a linearisation of the observation model about 
the state prediction point, and although it offers a sub-optimal solution to the 
estimation problem, and can converge to local minima (and therefore lose track) 
if poorly initialised, it offers a practical solution to the non-linear tracking prob- 
lem. The filter predict-correct cycle is outlined here, with initialisation of the 
state prediction ~ and its covariance P covered in section 4. 

Owing to the fact that each state prediction produces several observations 
which must be incorporated into the filter to yield the corrected estimate, the 
predict-correct cycle takes a slightly unusual form. The "prior" prediction for 
each image is given by equations 9 and 10. 

~(k + l l k  ) = ~(klk ) +W(k) (9) 

P(k + Ilk ) = P(klk ) + Q(k) (10) 

From this single state prediction, equation 8 shows that a set of predicted ob- 
servations is produced 

f~(k + llk, m,n  ) : [ xs(~(k + l lk) ,m,n)]  (II) [ yi(~2(k + 1]k),rn, n) 

Each of these predicted observations ~(k + l lk ,m,n  ) must be matched to an 
observed image feature z(k + 1, m, n) and incorporated into the state estimate. 
Feature matching is achieved using the nearest-neighbour data association proce- 
dure [9], with each associated feature being validated prior to incorporation (see 
below). The incorporation itself is performed using a batch update method as 
used in [6] (originally appearing in [13]) as opposed to the more traditional recur- 
sive estimation procedure. The batch update is preferred because a single state 
update leads to the prediction of several (3 • rnm~x) feature locations, and when 
a validation procedure is used, the order of incorporation would become impor- 
tant if a recursive update scheme were in place - if a "poor" feature-prediction 
pair were incorporated first, it could bias successive predictions in such a way 
that "good" features would fail the validation test, leading to inaccurate tracking 
performance. 

Armed with the predictions from equation 11, the associated image features 
(see section 3.3) z(k + 1,m,n) may each be subjected to a validation test. This 
validation procedure allows a plant to be missing from the grid structure (without 
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validation, if a plant were missing then the nearest-neighbour algorithm would 
associate a neighbouring plant with the prediction). If 

v(k + 1,m,n) = z(k + 1,re, n ) -  ~(k + l[k,m,n) (12) 

is the innovation, then feature z(k + 1, m, n) is valid if 

vT(k + 1,m,n)S-l(k + 1,m,n)v(k + 1,re, n) < X 2 (13) 

where X 2 is a chi-square figure of merit, corresponding to a desired confidence 
level, and S(k+ 1, m, n) is the innovation covariance for observation (m, n), given 
by 

S(k+l ,m,n)  = hx(k+l ,m,n)P(k+l[k)hxT(k+l ,m,n)+R(k+l ,m,n) .  (14) 

The Jacobian hx(k + 1,m,n) is that of the observation equations 8, which lin- 
earises (to the first order) the observation equation about the prediction point, 
thus enabling a projection of the state estimate covariance P(k + l [k )  into the 
image plane. Its definition is 

~t~ ~(k+lik) m n ~-Y~ ft(k+l]k),m,n ~-~ ] hx(k + 1, m, n) = Is [ . 

~Ys - ~ ~:(k+llk),m,n] (15) 
tX ~ck+likl,m,n ~(k+llkl,m,.o 

Each observation passing the validation test (equation 13) is then used in the 
batch update of the state estimate and state covariance matrix. For each valid 
observation, the three quantities hx(k+ 1, m, n), R ( k + l ,  m, n) and v (k+ l ,  m, n) 
are stored. A batch innovation vector v(k + 1) is constructed by stacking each of 
the validated innovations v(k + 1, m, n), and similarly a batch observation Ja- 
cobian hx(k + 1) is created by stacking the hx(k + 1, m, n) corresponding to the 
valid observations. Finally, a batch observation matrix R(k + 1) is constructed 
which has block diagonal form, where the matrices on the diagonal are the vali- 
dated R(k + 1, m, n). The standard Kalman filter equations are then applied to 
these batch quantities to update the state estimate and state covariance matrix: 

~(k + 1]k + 1) = ~(k + l l k  ) + W ( k  + 1)v(k + 1) (16) 

P(k + l l k  + 1) = P(k + l [k)  - W(k + 1)S(k + 1)WT(k + 1), (17) 

with the covariance matrix of the stacked innovation 

S(k + 1) = hx(k + 1)P(k + l[k)hxT(k + 1) + R(k + 1) (18) 

and Kalman gain 

W(k + 1) -- P(k + l[k)hxT(k + 1)s- l (k  + 1). (19) 

The off-diagonal terms in the innovation covariance matrix S (k + 1) (equation 18) 
describe the correlations between successive observations made from the single 
state prediction. 
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3.3 Feature Extraction,  Associat ion and Validation 

Although the state estimation framework has been described, there are still 
some matters to be discussed, one of which is the method of extracting the 
observations z(k + 1, m, n) from the images. The images are of real crop planted 
and raised in accordance with standard agricultural practice and are collected 
outdoors under natural illumination. The sequences thus contain both crop and 
weeds, with some plants missing from the row structure. The images are collected 
using a camera sensitive to near infra-red wavelengths where contrast between 
plant and soil matter is enhanced [8] (the camera has a visible light blocking 
filter). Two methods have been used to extract plant positions from the images; 
an automatic method described below, and manual selection of features by a 
human, which is used to evaluate the performance of the tracker independently 
of the feature extraction mechanism. 

The automatic feature extraction method is that used in [8], which chain- 
codes areas of the infra-red image exceeding a grey-level threshold (currently, 
the vehicle uses dedicated hardware to perform this function). The centre of 
each chain code is calculated and used as a candidate feature to be matched 
to a prediction generated by the Kalman filter. It has been observed that weed 
features in the image tend to be smaller than the plants, and a simple threshold 
on chain code area is also imposed in order to reject the smallest weeds from the 
matching process. 

Owing to the simplicity of the differentiation between plant and non-plant 
pixels (by use of a threshold) the chain-coder does not always produce perfect 
plant outlines; parts of leaves may be missed out because of shadows, or a plant 
made of separate leaves may be fractured into several objects because the regions 
between leaves are dark. The result of these shortcomings is that the "centres" 
produced by the chain coder do not necessarily correspond to the real centres 
of plants. Improved feature detection will feature largely in further research, 
although results show that this relatively crude method produces satisfactory 
results. 

3.4 Covariance Matrices 

Three covariance matrices are required to run the filter; a measure of process 
noise Q(k), which may be obtained from the Kalman filter used to estimate the 
vehicle motion parameters [3], an observation noise matrix R(k,m,n), which 
will be discussed here, and an initial value of the estimate covariance P(0t0), 
which will be provided in section 4. 

The observation covariance R(k + 1, m, n) quantifies the noise associated with 
the predicted observation ~.(k + l l k  ) of plant centre (m, n) - the Kalman filter 
framework implicitly assumes that the plant centres are being extracted from the 
image, and although, as seen above, this is not the case, results on real images 
bear out the fact that this is an acceptable working assumption. Additional noise 
arises because the plant centres are not placed ideally on the grid specified by 
the model, but are found on the ground plane in perturbed positions which may 
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be modelled by a two dimensional (xw, Yw) Gaussian distribution whose mean 
is the ideal plant position. This covariance in the world-frame is given by the 
matrix Rw " 2 2 = dlag[a~, ay,~], and can be projected into the image frame using 
standard first order error propagation via equations 3 and 4, giving 

R(k + 1, m, n) = F~(k + 1, m, n )R wF~T(k  + 1, m, n) (20) 

Where the Jacobian F~(k + 1, m, n) is defined as 

I ] 
F~(k + 1,re, n) = I If~(kWllk),rn,n I~(k+l[k),m,n | (21) 

~ I 
L I~(k+llk),m,n fc(k+llk),m,nJ 

x~, Yw for the plant centres are defined in equations 1 and 2. As noted in the 
introduction, this noise source should manifest itself in the system noise model, 
but as yet it is unclear how this should be done; the method given here provides 
a working alternative. 

4 Starting the Algorithm 

To start the tracking process, an initial estimate of the crop pattern position 
x is acquired in two stages; the initial estimates of t~ and ~ are obtained by a 
global search of the Hough space which is formed using the methods of [8]. The 
model position Y and row offsets D-1 and D1 are then obtained from Fourier 
analysis of 1D image samples taken along the extracted rows. By sampling along 
the line of the rows in the image a profile of the grey-levels along the row is 
obtained. Figure 2 shows an idealised binary image with a row marked and its 
corresponding sample. The sampling is performed in world frame co-ordinates, 
which accounts for the regular spacing of the sample peaks in the figure, despite 
the perspective foreshortening in the image. To allow for non-ideal positioning 
of the row, and the fact that plants are two dimensional objects in the image 
rather than one dimensional, the sample analysed is constructed by taking the 
mean (at each sample point) of a set of 5 samples taken 5 mm apart on the 
ground plane around the row specified by the Hough transform method. 

The procedure for obtaining offset values from these samples is as follows; 
form the discrete Fourier transform F(jw)  of the (1D) grey-level profile (w is 
the angular spatial frequency in radians per metre) and calculate the phase 0 of 
the coefficients corresponding to the frequency 27r/I, the expected frequency of 
plant spacing I from the crop model. 0 can be converted into spatial offset along 
the row using the following formula 

Offset = - - .  (22) 
21r 

Using this method, model position Y can be calculated from the central row, 
and D_I, D1 found subsequently from the outer rows. 
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0 

Fig. 2. Sampling along a row: the phase ~ of the sample provides the offset of the 
planting pattern 

Once initial values for t~, Y and ~P have been obtained, the state est imate 
~(010 ) may be formed, leaving only the initial s tate covariance P(010 ) undeter- 
mined. From [8], an estimate of root mean square error has been obtained on 
the accuracy of the Hough transform algorithm, giving r.m.s error of 12.5 m m  
on t~ and 1 ~ on ~P. As noted in [1], in the extended Kalman filter the mat r ix  P 
is not strictly a covariance, but a measure of mean square error on the est imate 
K, so these values of offset and angular error may be used directly. To obtain 
a measure of mean square error for the estimate of row offset, the method of 
[8] was used; the row offset algorithm was applied to 40 images, and estimates 
of the central row offset were acquired. A human operator  was then asked to 
align a template  of plant centres with the crop in each image, the position of 
the template  giving the offset; the initial alignment of the template  with the row 
structure was carried out using the Hough transform method,  so tha t  only the 
Fourier t ransform par t  of the algorithm was under test. A scatter  plot of the 
human v s  automat ic  measurements of offset is shown in figure 3. A regression 
line was then fitted through this set of points, and the r.m.s, error calculated, 
with the resulting error being 24.5 mm. It  should be noted that  this method im- 
plicitly assumes that  all the errors arise from the algorithm (i.e. that  the human 
assessment is perfect), so is far from ideal. However, with a lack of veridical data,  
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Fig. 3. Comparison of human and automatic assessment of row offset 

this kind of comparison with subjective human judgement provides a pragmatic 
solution to the problem of estimating the initial state covariance. 

Experiments in which the initial covariance was increased by up to a factor 
of 10, or decreased to zero showed that  this only affected the initial response of 
the filter, with convergence to the same track after two or three images into the 
sequence. 

5 R e s u l t s  a n d  D i s c u s s i o n  

Two sets of 20 near infra-red images have been digitised from video stock col- 
lected from the experimental vehicle during the Summer of 1997. In both se- 
quences, the vehicle was instructed to follow the crop rows at a constant velocity. 
The image sequences were analysed using the following methods: 

1. The fully automatic algorithm described in this paper (AUTO). 
2. The Kalman filter using the human selected input features (SEMI). 
3. Human assessment of the model position; a mouse-driven program has been 

designed to allow the user to place the crop pattern on each image in the 
sequence. Data from three different people has been collected (HUMAN 1-3). 

4. The method of [8], which produces estimates of tx and k~ alone (HOUGH). 

Figure 4 shows state trajectories from the first image sequence. The left-hand 
column plots the three human responses, whilst the right hand column shows 
the equivalent automatic results (note that  there is no Y estimate available from 
the Hough transform algorithm). 
As noted above, when ground t ruth trajectories are unavailable, as in this case, 

quantitative analysis of the accuracy of a tracking system is difficult to perform 
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Fig.  4. Trajectories of the state variables. In the left-hand column are human assess- 
ments, and in the right the algorithm output (note that HOUGH does not produce a 
Y output). The negative values of t .  indicate that the vehicle was to the left of the 
planting pattern, but moving toward it. The Y estimates have been plotted with re- 
spect to a static global origin (as opposed to the moving co-ordinate system described 
in section 2) to illustrate clearly the vehicle's approximately constant velocity. 
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because it is not known how the errors are distributed between the automat ic  
methods and human assessment. To provide some measure of performance, an 
approach has been taken which assumes errors are equally distributed between 
the automat ic  and human approach. By taking each set of results for tx,Y and q~ 
from the experiments conducted and pairing of corresponding da ta  sets, scatter  
plots like figure 3 can be constructed. If a pair of algorithms agree exactly, then 
the points in the scatter  diagram will lie on the line x = y. Taking this as the 
ideal response, a measure of how far a pair of algorithms depart  from the ideal 
may be found by taking the root mean-square differences between feature points 
in the scatter  plot and the nearest (in Euclidean terms) point on the line x = y. 
These values are tabulated for each of the state variables and algorithm pairs in 
tables 1 - 3. It  should be stressed that  the x = y "ideal" does not mean tha t  a 
pairing is correct, but tha t  the two sets are consistent, so the larger this measure,  
the greater the inconsistency between them. 

From the tabulated figures and perusal of the t ra jectory plots, three main 
conclusions may be drawn; 

1. Human assessments are not wholly consistent. The table elements referring 
to the similarity between HUMAN data  set pairs contain figures tha t  are 
not zero; so, unsurprisingly, different people make differing assessments of 
the model position. 

2. The various algorithm estimates are as consistent with the human results 
as the human results are with each other. In some cases, notably the tx 
est imate of HUMAN 2, the human observation is more consistent with the 
automat ic  and semi-automatic methods than with the other humans. Impor-  
tantly, the new method (AUTO) has similar r.m.s, measures of consistency 
to the HOUGH method, which has operated successfully on the vehicle. For 
the measurement  of ~, the AUTO method is more consistent with human 
assessment than  HOUGH; this is reflected in the plots of figure 4. 

3. The fully automat ic  algorithm performs comparably with the semi-automatic  
algorithm. The similarity measure between the two is given in the table; 
in the case of tx and q~, the differences are a fraction of the quantisation 
interval used in the Hough transform method,  so it may be assumed tha t  
errors in the automat ic  method would make no operational difference, and 
the mean difference of 14 m m  on a measurement  of Y ranging from 600 - 
1700 m m  is also very small. I t  can be seen that  when compared to the human 
assessments, the two differ even less. 

6 C o n c l u s i o n s  

A self-starting algorithm has been demonstrated which allows the extract ion of 
crop planting pat terns  from a sequence of images, giving information for both  
vehicle navigation and plant t rea tment  system control. The new method pro- 
duces est imates of offset tx and heading angle �9 which compare favourably with 
those produced by the Hough transform algorithm, and furthermore yields both  
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HUMAN 1 i 
HUMAN 1 0 
HUMAN 2 8.02 
HUMAN 3 7.54 

HOUGH 8.20 
AUTO 6.63 
SEMI 6.76 

HUMAN 2 

0 
7.96 0 
7.70 7.85 
6.41 8.89 
6.17 8.85 

HUMAN 3 HOUGH AUTO SEMI 

0 - -  - -  

5.06 0 - 
5.86 2.82 0 

T a b l e  1. Root-mean square differences on the t= estimate, mm. '- '  indicates tha t  the 
value can be found in the lower half of table.  

HUMAN 1 HUMAN 2 
HUMAN 1! 
H MAN 21 
H U M A N  3 

HOUGH 
AUTO 
SEMI 

0 
14.20 
13.72 
n / a  

13.18 
12.55 

L 

0 
13.84 
n / a  

17.19 
10.82 

HUMAN 3 HOUGH AUTO SEMI 
- -  n / a  - - 

- n / a  - - 

0 n / a  - - 
n / a  n / a  n / a  n / a  

10.16 n / a  0 - 
12.50 n / a  14.11 0 

T a b l e  2. Root-mean square differences on the Y estimate, mm. ' n / a '  indicates Y is 
not est imated by algorithm HOUGH. 

HUMAN 1 
HUMAN 1 0 
HUMAN 2 0.408 
HUMAN 3 0.510 
HOUGH 0.750 
AUTO 0.363 
SEMI 0.426 

HUMAN 2 HUMAN 3 HOUGH AUTO SEMI 

0 
0.540 
0.808 
0.365 
0.323 

0 - -  - -  - -  

0.698 0 - - 
0.510 0.666 0 - 
0.532 0.742 0.253 0 

T a b l e  3. Root-mean square differences on the ~ estimate, degrees. The figures indicate 
that  the set least consistent with the other da ta  is from algorithm HOUGH, and this 
is reflected in the plots of figure 4. 

an  e s t i m a t e  of  the  Y m e a s u r e m e n t  which is used to  loca te  ind iv idua l  p l an t s  
for t r e a t m e n t ,  and  a measure  of  unce r t a in ty  P which will be  u t i l i sed  by  the  
cont ro l  sys t em K a l m a n  fil ter in the  fusion of vis ion in fo rma t ion  wi th  o d o m e t r i c  
measu remen t s .  

I t  is h o p e d  to  implemen t  the  a lgo r i t hm to run  in real  t ime  (which should  be  
feasible due  to  the  c o m p u t a t i o n a l  s impl ic i ty  of  the  me thod )  and  to  t es t  i t  on 
longer  image  sequences.  I nco rpo ra t i on  of this  m e t h o d  into  the  vehicle  con t ro l  
sys t em will also be  addressed .  A m e t h o d  of  on-l ine mode l  p a r a m e t e r  a d j u s t m e n t  
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is to be added in order to correct for any calibration errors, and to compensate 
for any gradual change in crop spacing which may occur during planting. It is 
also believed that more sophisticated feature extraction techniques may improve 
performance, particularly robustness to the changing lighting conditions often 
experienced in outdoor environments. 
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