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A b s t r a c t .  We propose a model for view-based adaptive affine track- 
ing of moving objects. We avoid the need for feature-based matching 
in establishing correspondences through learning landmarks. We use an 
effective bootstrapping process based on colour segmentation and selec- 
tive attention. We recover aifine parameters with dynamic updates to 
the eigenspace using most recent history and perform predictions in pa- 
rameter space. Experimental results are given to illustrate our approach. 

1 I n t r o d u c t i o n  

Object recognition in dynamic scenes using view-based representation requires 
establishing image correspondences in successive frames of a moving object which 
may undergo both attine and viewpoint transformations [1]. However, to obtain 
consistent dense image correspondence is both problematic and expensive since 
changes in viewpoint result in self-occlusions which prohibit complete sets of 
image correspondences from being established. Practically, only sparse corre- 
spondence can be established quickly for a carefully chosen set of feature points 
[2]. To realise near real-time performance, however, an entirely different approach 
is preferable which does not depend on reliable feature detection and tracking. 
I-Iolistic texture-only-templates can be used [3]. This assumes that  the object 
of interest is approximately rigid and therefore permits a relatively simplistic 
parametric model to be used. Furthermore, if the model is also built based on 
data from a large set of viewpoints, it can in theory recover pose change as well. 
Likewise, if it is trained under different illuminations, it can perform in changing 
lighting conditions (e.g. [4]). 

The EigenTracking approach proposed by Black [5] essentially a t tempted to 
establish such holistic, appearance-based correspondence of a moving rigid object 
by recovering a parameterised affine transformation in an eigenspace, constructed 
from object images of different views. However, due to its rigidity assumption and 
the use of texture-only-templates, EigenTracking fails to capture changes which 
are not sufficiently affine. In particular, it copes poorly with flexible objects such 
as human faces. Furthermore, to be able to establish image correspondence across 
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different viewpoints, EigenTracking requires a training image set that  spans the 
view sphere. This is impractical and computationally expensive. 

In this work, we propose an integrated scheme for view alignment which 
takes the following into consideration: (a) the use of both shape and texture 
in eigenspace in a simple manner relaxes the rigidity assumption without intro- 
ducing too much computational cost, (b) a process for effective bootstrapping, 
(c) parameter recovery with selective attention, (d) attine parameter estimation 
using a dynamically updated, viewpoint centred eigenspace, and (e) parameter 
prediction. 

The rest of this paper is arranged as follows. We first introduce the shape 
augmented atfine tracking model in Section 2. In Section 3, we describe a eolour 
based bootstrapping process for the atfine tracking. We then introduce the con- 
cept of view dependent model adaptation in affine tracking in Section 4. Section 
5 presents model prediction before experiments and discussion are given in Sec- 
tions 6 and 7. 

2 Atiine Tracking with Shape Constraints 

A set of p images with N dimensions, forming an N • p matrix A, can be 
represented by the eigenspace of their covariance matrix C where usually p < N. 
The image matrix A can be decomposed using Singular Value Decomposition 
(SVD) which gives 

A = U A V  T 

where U is an orthogonal matrix of eigenvectors of C and A is a diagonal matrix 
of its eigenvalues. The matrix V defines the nullspace of C (since p < N). For 
view alignment, an image I is represented by projection onto eigenvectors uj ,  
i.e. 

k 

I ,-~ ~ C j U j  = U c  

j = l  

where k < p is the number of eigenvectors actually used and c gives projection 
coefficients. Note that  throughout this paper, we use I to represent an image 
vector rather than the Identity matrix. A pre-filtering process is often necessary 
if global illumination is unstable [3]. 

2.1 Template-Only Afline Tracking: EigenTracking 

If image changes are approximately affine, correspondence for alignment can be 
achieved by treating an image I(f(x, a)) = [I(f(xl ,  a)), I ( f (x : ,  a ) ) . . .  I ( f (xN,  a))] I 
as a flmction of all at[ine transformation given by l)arameters a = (ao, a l ,  a2, a3, a4, a5) T, 
where 
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and xc = (xc, yc) T is the centre position of the object template. Alignment can 
then be accomplished by recovering both the affine parameters a and the projec- 
tion coefficients c by minimising a cost function minc,a p [( I ( f (x ,  a)) - U c ) ,  or], 
where p is a robust error norm and a is a scale factor that  controls the convexity 
of the norm [5,6]. In our scheme, we use the Geman-McClure error norm [7] 
given by 

X 2 

p ( x , ~ )  - ~2 + x2 

Outliers will be considered values h'om the inflexion point of the norm, which 
are residuals with xi  > cr/v~. In general, the above cost function is non-convex 
and minimisation can result in local minima. A minimisation algorithm found 
to be effective in this case is gradient descent with the continuation method of 
graduated non-convexity [8]. It begins with a large value of a where all the points 
are inliers. Then cr is successively lowered, reducing the influence of outliers. 
While it is not guaranteed to converge to a global minimum, the method is 
effective for visual tracking since continuity of motion provides good starting 
points. 

A dramatic reduction in computational cost is achieved by avoiding image 
warping in every iteration. This is done by adopting the following linear approx- 
imation to the above cost function: 

min p [ (VI  T f (a)  + (I - U c ) ) , a ]  (2) 
c , a  

where VI is the image gradient [Ix, iy]T [5]. 

2.2 E n c o d i n g  L a n d m a r k s  

The difficulty in encoding shape is to be able to compute correspondences quickly 
and sufficiently robustly. To achieve such a purpose, we encode the coordinates 
of known landmarks in the training images which are used for constructing 
the eigenspace. Let A = [Il i2 . . .  Ip] be the matrix of training images and 
X = [xl x2 . . .  xp] be the coordinates of the landmarks in these images. The 
landmarks are assumed to have been located by hand. The landmarks X in 
Fig. 1 are the positions of the eyes. 

We first took the approach of constructing a concatenated matrix: 

A* : [{I i ,x l}  {I2,x2} . . .  {Ip, xp}] 

The new matrix A* is a modification of A with additional feature vectors con- 
catenated to the tail of each training image vector. However, the large scale 
difference in variances of A and X causes numerical problems. To obtain com- 
parable variance, we scale each shape vector xi by the largest norm. A more con- 
sidered approach to achieve comparable variance between the texture and shape 
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Fig. 1. Examples of landmarks used in the training images. 

vectors in eigenspace can be adopted [9]. It is worth pointing out though that  
better  results were actually achieved with modelling the texture and shape vec- 
tors in independent eigenspaces rather than with the concatenated eigenspace. 
This seems to re-confirm the evidence reported elsewhere [10]. 

Once the landmarks have been learned from the training set, we can recall 
the landmarks during the tracking process. If a new image is aligned with the 
eigenspace, the reconstruction from the coefficients in the eigenspace is given 
by Uc.  To recall the most likely landmark positions for the new image based 
on what has been learned in training, an inverse transformation between the 
eigenspace and the training set (related by the SVD) is performed on the shape 
components only: 

X n e  w = X ( v ~ - - l c )  (3) 

V Z - l c  are the coefficients which best reconstruct the new image in the least- 
square sense from the training data. Note that  V ~  -1 can be pre-computed 
off-line in order to speed up the tracking process. Given sufficient training ex- 
amples with known landmarks, incorporating shape with texture in eigenspace 
enables previously learned feature positions to be recalled during tracking, avoid- 
ing the need to perform on-line feature detection and correspondence which are 
computationally both expensive and problematic. 

3 I n i t i a l i s a t i o n  

Colour-based segmentation can provide robust and very fast focus-of-attention 
for the initialization of the affine parameters [ii]. Here we adopt multi-colour 
Gaussian mixture models to perform real-time object detection and focus of at- 
tention. The mixture models were estimated in two-dimensional hue-saturation 
colour space. Such representations are chosen to permit some level of robustness 
against brightness change. Probabilities are computed for pixels in an image 
search space and the size and position of the object are estimated from the 
resulting probability distribution in the image plane [ii]. An example of colour- 
based, real-time, coarse segmentation using a mixture of four Gaussians can be 
seen in Fig. 2. 
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Fig. 2. From left to right: An image frame from a sequence; the object foreground 
colour probabilities in the image plane; results of segmentation with multi-resolution 
relaxation after 1 and 4 iterations. 

3.1 A t t e n t i o n a l  W i n d o w  

The most computat ionally expensive operation in recovering affine parameters  
is to recursively warp the image relative to its center in order to minimise the 
cost function of Equation (2). To address this problem, the affine t ransformation 
is only computed within an attentional window. The size of this window adapts  
to the size of the object (see Fig. 3). Affine transforms are performed relative 
to the center of the window which must coincide with the centroid of the object 
in order to minimize the errors in estimated rotation and scale parameters .  The 
centre of the at tentional window is estimated using prediction (see Section 5). 

Fig. 3. Tracked face images with adaptive attentional windows shown by the larger 
bounding boxes. Affine transforms are applied only within these windows. The small 
bounding boxes give the tracked face with the recovered affine parameters. 
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3,2 F e a t u r e  E x t r a c t i o n  

Colour provides only a crude initial estimate for an attentional window. An 
improved estimate is obtained in a computationally efficient way by applying re- 
cursive, non-linear morphological operations at multiple resolutions. The method 
can be seen as a combination of relaxation and something similar in spirit to 
geodesic reconstruction in morphology [12]. This "geodesic relaxation" algorithm 
is as follows: 

1. Compute log probabilities in a 1/4 sub-sampled image and normalise these 
probabilities to give a low resolution grey-scale "probability image" I~,/16. 

2. Apply grey-level morphological erosion to I~v/16. This reduces noise and er- 
roneous foreground and yields an image I~vr/16 . 

* e r  3. Let IN/16 ---- IN/16 ~ then apply the following operation for a fixed number of 
times: 

1 * I~v/16 ---- ~(IN/16 | l o w - p a s s - f i l t e r +  I~v/16) , where | denotes convolution. 

The resulting image I*/16 (see Fig. 2) is used to fit a bounding box which is then 
used as an initial attentional window. The iterative process is fast because good 
results are obtained in a few iterations using low resolution images. Morphologi- 
cal operators were also used to estimate the region within the initial attentional 
window occupied by the main facial features (see Fig. 4). The process was as 
follows: 

w i n  1. Perform vertical erosion on the 1/2 sub-sampled attentional window IN~ 4 to 
give I~/4. 

er  w i n  2. Perform geodesic reconstruction of IN/4 with IN/4 as the reference image to 
give I~v~4. 

3. Compute -N/41end = o p e n i n g ( I ~  - I~r 

The extent of the estimated facial feature region was used to estimate initial 
affine scale parameters (al, as). 

Fig. 4. Left: The attentional window estimated using colour cues, Pdght: The main 
facial feature region extracted using morphological operators. 
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3.3 Parameter  Init ia l i sat ion 

Colour and morphological operators provide an initial attentional window and 
approximate estimates of translational and scale parameters. These initial pa- 
rameter estimates are further refined by recursively applying Successive-Over- 
Relaxation [8] in order to minimize the cost function (2). Robust norms with a 
continuation method and a multi-resolution representation were used in order to 
avoid local minima. At first, only the translational parameters (a0, a3) were opti- 
mised in order to align the centre of the attentional window with the eigenspace. 
Subsequently, the scale parameters (al, as) were optimised. It was assumed that  
affine rotation was negligible in the initial frame. An example of this parameter  
initialisation process is shown in Fig. 5. In this example, the initial estimates 
provided by the eolour model were unusually poor. 

Fig. 5. Affine parameter initialisation: The attentional window is overlaid with a 
smaller box indicating estimated translation and scale parameters. Below each frame 
are the located region (left) and its reconstruction (right). 
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4 M o d e l  A d a p t a t i o n  

The EigenTracking method made use of a fixed, global eigenspace (GES) rep- 
resentation for reconstruction and tracking. This eigenspace was built by per- 
forming SVD on a relatively large, fixed training set. The alternative method 
described in this section yields faster and more accurate reconstruction. It in- 
volves the use of local eigenspace (LES) representations built using subsets of the 
original training set. In particular, at each time frame t, the k training images 
which are "closest" to the previous affine-normalised, tracked image I t - l ,  were 
selected. A new LES is then computed from these k images along with It-1. The 
inclusion of It-1 helps to compensate for temporary changes not represented in 
the original training set (e.g. unusual facial expressions). 

The computation of a new LES in (potentially) every frame might seem pro- 
hibitively expensive. However, the iterative matching algorithm typically con- 
verges more quickly when reconstructions are performed using an LES. In prac- 
tise, this faster convergence more than compensates for the expense of comput- 
ing the LES. The overall result is faster and gives more robust tracking. The 
k selected training images are usually images with similar 3D pose and facial 
expression and can therefore be accurately represented using only a few eigen- 
vectors. In order to achieve sufficiently good reconstruction, enough eigenvectors 
are retained to account for 95% of the variance in the training set. 

In order to compute an LES, the k "closest" training images must be selected. 
An obvious way in which to perform this selection is to measure the Euclidean 
distance between It-1 and each of the training images and to select the k near- 
est images. These distance measurements can be efficiently approximated using 
projections onto the precomputed GES [13]. Further efficiency can be obtained 
using a multi-resolution scheme in which It-1 is sub-sampled and projected onto 
a precomputed GES of equally low resolution. 

If an ordering can be imposed on the training set, however, an alternative 
scheme becomes possible. The closest match in the training set is then used to 
index into this ordered set and the k images for the LES are selected using the 
predetermined ordering. There are other strategies that  have been suggested for 
performing such a nearest neighbour search. See [14] for a detailed discussion. 
In our case, if the training set consists of a sequence of a head rotating from 
left to right then time imposes a natural ordering. The nearest match then 
yields an estimation of head pose and the LES is computed from images of 
similar poses. Another way to derive the same matching could be done using the 
information of the projection coefficients and their relation with the training set. 
The p coefficients y = [Yl Y 2  � 9  �9 y p ] T  whose linear combination of the training 
set minimises the Euclidean distance, rainy [] It-1 - A y  II 2, are given by: 

y = V~'--lc, y ----- (ATA)-IATI (4) 
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As we are working with normalized images, minimising the Euclidean distance 
is equivalent to maximising the dot product. Note that  we can obtain the dot 
products if the coefficients in the eigenspace c are known, that  is: 

ATI = (ATA)y = V~Ec (5) 

The position of the maximum component of ATI corresponds to the "closest" 
image in the training set. It can be easily shown that  this is computationally 
equivalent to [13]. However, our approach establishes correspondence between 
the eigen-coefficients and the training images directly and is less expensive for 
computing the GES. For example, computing C = clc2...cp = UTA requires 
kpN operations. With SVD of A, computing C = Z V  T needs just k2p operations 
which is more efficient since k << N. 

Fig. 6. Top row: EigenTracking without dynamic updating fails due to insufficient 
training views. Bottom row: The result from using the adaptive scheme. 

5 P a r a m e t e r  P r e d i c t i o n  

In order to cope with displacements of more than a few (2-3) pixels between 
frames, it was necessary to use prediction. In each frame, the affine parameters 
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were predicted and these predictions were used to initialise the iterative optimi- 
sation algorithm�9 Each of the six attine parameters  was predicted using a Kalman 
filter [15]: 

xk+l = r x k  + Bnk ,  (6) 

zk = Hxk  + r/r (7) 

where x and z were 12-dimensional state and measurement  vectors and nk and r k 
were zero-mean white noise with covariance matrices Qk and Rk. The dynamic 
system model used assumed constant velocity. This seemed to be reasonable due 
to the fact tha t  pairwise plots of the affine parameter  measurements typically 
revealed trajectories in the 6-dimensional affine parameter  space which were 
approximately linear or piecewise linear (see Fig. 7). The elements of the vectors 
x and z corresponded to the affine parameters  and their velocities. 

114 ~ | U g  : .  ' | ' ~ ,  I I  m'" 
, ," �9 

�9 ~ ,4 4.1 �9149 f '  : 

�9 . I L g  . "  

" ' - . "  t . . . . .  1 

�9 " ~ .  I ~  " : l : ~  | 

" ~ | I ' t ' .~," 
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Fig. 7. Pairwise 2D affine parameter subspaces in our case are mostly linear. The 
example subspaces shown are aO-al, aO-a3, al-a2, al-a4, al-a5 and al-a6, from top- 
left to bottom-right. 

Appropria te  noise covariance matrices were est imated using the EM algo- 
r i thm with the following least-squares approximations of observation noise and 
s tate  noise: 

rk ~ Zk -- H x / ,  (8) 

T --1 T § - + )  ( 9 )  nk ~ ( B  B) B (Xk+ 1 

where + denotes a posteriori estimation and - denotes a priori estimation. The 
est imated covariance noise between the affine parameters  was also verified visu- 
ally by plotting pairwise parameter  observations�9 An alternative approach is to 
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derive an optimal estimate based on the Kalman filter's underlying cost func- 
tion. Estimation of the state vector Xk+l based upon previous measurements is 
equivalent to minimising cost function: 

q- 1 + X-- ~ T / p - l ~ ( .  + E ( x k +  1) = _ 2 (Xkq-1 k - - l ]  \ ] ~,~k+l Xk-1)  

1 + ~-(Zk -- Hx++, )T(R-1)  (zk - HXk+ 1 ) +  

The first term specifies the temporal constraint while the second expresses 
the data  conservation, where all errors are measured using the Mahalanobis 
distance. We apply one robust norm to the second term in order to derive a 
robust Kalman filter. Efiqcient minimization of this function could be performed 
using a technique such as Iteratively Recursive Least Squares (IRLS) [16]. 

The human head will inevitably move in ways which are not predictable 
using these simple dynamic models. An effective way in which to detect this 
"unpredictability" is to run one iteration of the optimisation algorithm used 
for tracking. Only if the direction in affine parameter space from this iteration 
"agrees" with that  of the Kalman prediction are the predictions utilised. This 
works well if not many outliers are present. 

6 Experiments 

The system was initially implemented in Matlab and takes an average of 14 
sec/frame. In C, it could run at near 2 sec/frame on a standard 200MHz PC. 
Applying IRLS to the minimisation process can solve an approximation of the 
robust formulation in near real-time. 

Fig. 8 shows the ability of the new adaptive scheme with shape encoded 
to align a face undergoing non-rigid expression change. Similar problems occur 
when the assumption of affine transformation is no longer valid. The adaptive 
scheme was shown to be able to overcome the problem when changes in pose 
were not sufficiently captured by the training data (see examples in Fig. 6). 

Fig. 9 shows view alignment from a 260 frame sequence with both affine and 
pose variations. The training set had 100 images and 54 eigenvectors were used in 
a GES capturing 95% of the variance. However, with the adaptive scheme using 
LES, only 6 eigenvectors were needed to recover sufficiently accurate parameters 
for alignment. 

Fig. 10 gives an indication of savings in computational cost when the adaptive 
scheme is applied. It shows the time taken in seconds to perform the minimisation 
(Equation (2)). The first plot shows the time required for each frame using GES 
with 54 eigenvectors. The second plot shows the time required for each frame 
with LES but without the previous history at t - 1. The third plot shows the 
result from augmented LES using t -  1 tracked data. The mean frame rate were: 
29 sec/frame for GES, 15 sec/frame for LES and 12 see/frame for t -  1 augmented 
LES. 
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Fig. 8. This sequence demonstrates the advantage in using shape with non-rigid ex- 
pression changes. The first two frames show the overlaid results from EigenTracking 
without shape. The corresponding three small images are, from left to right, the aligned 
object image, the reconstructed object image using the estimated affine parameters, 
and the outliers. The last two frames show the results on the same sequence from the 
adaptive scheme with shape encoded. 

7 C o n c l u s i o n  

In this paper  we presented an integrated scheme for view alignment. We exploited 
the t ransformation between the training set and the eigenspace in a computa-  
tionally inexpensive manner  in order to establish the correspondence between 
the landmarks in the training set and the image. 

A dynamically adaptive scheme was adopted to compensate the small changes 
in illumination and the nonlinear transformations that  cannot be recovered with 
global alfine transformations.  One advantage of our scheme is tha t  the adaption 
does not change essentially the basis dataset of the eigenspace since the current 
tracked frame is only used once as an added bias in constructing the eigenspace 
at tha t  t ime frame. It  is not used to replace any initial sample images in the 
training set therefore the tracker is unlikely to eventually adapt  and track the 
background. 
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Fig. 9. Every 10th frame from a sequence with attentional windows and Migned face 
images overlaid. Below each frame are the located region (left) and its reconstruction 
(right). The affine parameters were recovered using LES. 

Our current scheme did not include a pre-filtering process to address changes 
in global illumination. This can be addressed by estimating the illumination in 
the new image dynamically with homomorphic filtering. An alternative approach 
to resolve the problem is to use an additional basis to represent all the probable 
illumination situations [4]. Gabor  wavelets representation can also be employed 
which gives a certain degree of invariance to global illumination change [2]. 
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Fig. 10. Convergence times required by the minimisation process of different affine 
tracking schemes. 

Currently, the parameters  are only predicted independently. Prediction can 
therefore be rather  under-constrained and allows for too much freedom. On the 
other hand, Fig. 7 indicates strongly that  all the parameters  should be tracked 
with a prediction model simultaneously since they are highly correlated and 
most ly  linear in their correlations. This will enable the prediction and tracking 
much bet ter  constrained and consequently more robust and consistent. 

Although the segmentation process in the initialisation stage utilises colour 
information, it still relies heavily upon morphological operations which can be 
relatively slow and inconsistent. Future work includes incorporating the adaptive 
affine tracking scheme developed here with a robust adaptive multi-colour model 
[17] in order to cope with changes in illumination over time. 

R e f e r e n c e s  

1. D. Beymer and T. Poggio, "Image representations for visual learning," Science, 
vol. 272, pp. 1905-1909, June 1996. 

2. S. McKenna, S. Gong, R. Wurtz, J. Tanner, and D. Banin, "Tracking facial feature 
points with gabor wavelets and shape models," in IAPR International Conference 
on Audio- Video Based Biometric Person Authentication, Crans-Montana, Switzer- 
land, March 1997. 

3. S. McKenna and S. Gong, "Real-time face pose estimation," Real Time Imag- 
ing, 1998, To appear in the Special Issue on Real-time Visual Monitoring and 
Inspection. 

4. G. Hager and P. Belhumeur, "Real-time tracking of image region with changes in 
geometry and illumination," in IEEE Conference on Computer Vision and Pattern 
Recognition, 1996. 

5. M. Black and Y.Yacoob, "Eigen tracking: Robust matching and tracking of ar- 
ticulated objects using a view-based representation," in European Conference on 
Computer Vision, Cambridge, England, April 1996. 

6. P. Huber, Robust statistics, John Wiley and Sons, 1981. 
7. S. Geman and D. McClure, "Statistical methods for tomographic image recon- 

struction," Bull. Int. Statis. Inst., pp. 5 21, 1987. 
8. M.J. Black and P. Anandan, "The robust estimation of multiple motions: Para- 

metric and piecewise-smooth flow fields," CVIU, vol. 63, no. 1, pp. 75-104, 1996. 
9. N. Sumpter, R. Boyle, and R. Tillett, "Modelling collective animal behaviour 

using extended point distribution models," in British Machine Vision Conference, 
Colchester, September 1997, pp. 242-251. 



842 

10. I. Craw, "A manifold model of face and object recognition," in Cognitive and 
Computational Aspects of Face Recognition, T. R. Valentine, Ed., pp. 183-203. 
Routledge, 1995. 

11. Y. Raja, S. McKenna, and S. Gong, "Tracking and segmenting people in varying 
lighting conditions using colour," in IEEE International Conference on Automatic 
Face and Gesture Recognition, Nara, Japan, April 1998. 

12. F. De la Torre, E. Martinez, E. Santamaria, and J.A Morin, "Moving object 
detection and tracking system: a real-time implementation," in GRETSI, Grenoble, 
1997, pp. 375 378. 

13. H. Murase and S. Nayar, "Detection of 3d objects in cluttered scenes using hier- 
archical eigenspace," Pattern Recognition Letters, vol. 18, pp. 375 384, 1997. 

14. S. Nene and S. Nayar, "A simple algorithm for nearest neighbor search in high 
dimensions," IEEE Transactions on Pattern Analysis and Machine Intelligence, 
vol. 19, no. 9, 1997. 

15. S. Kay, Fundamentals of statistical signal processing: Estimation theory, Prentice 
Hall, 1993. 

16. Z. Zhang, "Parameter estimation techniques: A tutorial with application to conic 
fitting," Image and Vision Computing, 1996. 

17. Y. Raja, S. McKenna, and S. Gong, "Colour model selection and adaptation in 
dynamic scenes," in European Conference on Computer Vision, Freiburg, Germany, 
June 1998. 


