
Identity Escrow

Joe Kilian 1 and Erez Pe t rank 2

1 NEC Research Institute, 4 Independence Way, Princeton, NJ 08540, USA.
E-mail: j o e @ r e s e a r c h . h i . n e c . corn

2 IBM Haifa Research Lab, MATAM, Haifa 31905, Israel.
Email: erezp@haifa, vnet. ibm. tom

Work done while at DIMACS.

A b s t r a c t . We introduce the concept of escrowed identity, an applica-
tion of key-escrow ideas to the problem of authentication. In escrowed
identity, one party A does not give his identity to another party B, but
rather gives him information that would allow an authorized third party
E to determine A's identity. However, B receives a guarantee that E can
indeed determine A's identity. We consider a number of possible features
of escrowed identity schemes, and describe a variety of implementations
that achieve various subsets of these features. In particular, we observe
that group signature schemes can be used to escrow identities, achieving
most (though not all) of the desired features.
The most interesting feature we consider is separability. The escrow
agency is not involved in the day to day operation of the identification
system, but is only called in when anonymity must be revoked. In the
extreme case, there exist identity escrow schemes in which an arbitrary
party (possessing a public key) can be designated an escrow agent with-
out any knowledge or participation on their part until they are asked to
revoke someone's anonymity.

1 I n t r o d u c t i o n

We consider a client tha t obtains regular or continual access to a service or
facility. Examples include driving a toll highway with a regular commuter pass,
parking regularly in a garage, entering one's club premises, or using internet
services. In order to get the service, the client must convince the gate keeper
tha t he is entitled to the service. The client can do this by identifying himself
at the entrance. But must he really identify himself? Such identification raises
critical issues of privacy. For example, a more pervasive highway authori ty might
as a side effect allow the tracing of people's movements to an unprecedented
degree. On the other hand, what if the client remains completely anonymous,
say, by an access code tha t is secret, but common to all clients? In certain rare
circumstances, the service provider (and society at large) may have a compelling
reason to know the identity of the client. For example, consider an au tomated
access system for a parking garage. The garage cares tha t the person entering it is
authorized to do so; the person's precise identity is normally not a valid concern.
However, suppose tha t on some night a person was murdered in the garage. At

170

this point, the garage owner and society at large may have a legitimate interest
in knowing who was there on that night. Or, one might wish to have a computer
"chat room" in which one has conditional anonymity: As long as one follows the
rules laws, ones identity is secure from even the system administrator. But if
one flagrantly breaks the rules (such as arranging drug deals in the "Lion King"
kiddie chat room), suitable law enforcement agencies can be appealed to in order
to determine one's identity. The reader may envision other examples such as a
drunk driver causing a fatal accident on the highway, etc.

Traditionally, access control has been all or nothing. One obtains all the
information about the other person up front, with no recourse to learn more if
circumstances warrant. This rigidity generally leads one to allow less privacy,
since one is likely to want as much information as one can get just in case a
"bad case" arises. We give a more flexible alternative.

We consider a more flexible, two-tier approach to authentication. On the
first tier, a person gives only as much information about themselves as is strictly
necessary for ordinary circumstances. On the second tier, a person gives a more
precise statement of their identity that may be needed in extraordinary circum-
stances. This second tier is only accessible with the help of a third party, which
is separate from (and not under the control of) the party managing access. We
describe identity escrow schemes in Section 1.1 below.

Key escrow has proven an active and contentious field of research and discus-
sion (c.f. [24, 25, 22, 18, 21, 23, 27]). Most of the attention in this area has been
restricted to the simple case of communication: party A sends an encrypted mes-
sage EK(M) to party B; some centralized authority is given the capability to
recover either K or the specific message M. As discussed in Section 3, group
signatures has an escrow-like feature in which the anonymity of a signer may
be revoked. We add yet a new domain for the application of key escrow ideas:
authentication and identity schemes.

Some distinctive features of this application are that

- Escrowed identity may actually enhance privacy. By default, many identity
schemes require a person to give their entire identity "up front." A protocol
in which this information is only released under special circumstances may
prove an acceptable, and more private substitute.

- Escrowed identity schemes work to the advantage of at least one of the parties
invoking them. In traditional key escrow systems, both party only lose by
following the escrow system, and have everything to gain by bypassing it
(which is generally quite easy to do).

1 . 1 E s c r o w e d I d e n t i t y

An escrowed identity system consists of the following parties:

Identifier: The identifier is the client who identifies himself to the verifier (the
gate-keeper).

Issuer: The issuer issues certificates to the identifier that allow him to identify
himself in an escrowed manner.

171

Verifier: The verifier is typically the access provider who verifies the first-tier
identity process as well as the escrow proof for the second-tier identity.

Escrow Agent(s): The escrow agent(s) use information forwarded by the verifier
to make a second-tier identification of the identifier.

These parties execute the following protocols:

Initializing the system: The certificate issuer, and in some cases the escrow agent,
computes whatever private information and publishes whatever public infor-
mation is necessary to initialize the system.

Issuing a certificate: The certificate issuer gives a certificate to the identifier.
Checking the weak identity: The identifier convinces the verifier that he has a

certificate, gives an escrowed certificate and convinces the verifier that the
escrowed certificate is valid.

Recovering the complete identity: The verifier gives the escrow agent(s) the es-
crowed certificate, and the escrow agent(s) recovers the identity of the iden-
tifier.

There are a number of desirable features of escrowed identity systems. Ideally,
one would like an efficient protocol tha t achieves all of these features. However,
as we discuss below, there is a tradeoff between feature coverage and efficiency
among the known escrowed identity protocols. Hence, we will describe for each
implementation the features it does or does not achieve.

The following features are most pertinent to the notion of escrowed identity:

Valid first-tier identification: If a user receives a legitimate certificate from the
issuer, and if he follows his protocol, then he will succeed in convincing a
verifier that he is a legitimate user (i.e. has a certificate) with probability
1. Conversely, a computationally bounded user that has not been issued a
certificate by the issuer will fail to convince the verifier of having a certificate
with probability almost 1. (This implies that producing a certificate without
the issuer's private key is computationally hard.)

Secure second-tier identity: After the verifier has seen one or more first-tier iden-
tification proofs, he cannot fake a legitimate identity in the sense described
above.

Guaranteed escrow for second-tier identity: A computationally bounded user can
interactively prove with high confidence that he has escrowed his second-tier
identity; the escrow agency can determine this identity from the transcript
of this proof. (This imply that producing a second certificate from a given
legitimate on is computationally hard). One may further demand that even if
many identifiers collaborate, the escrow agency may still recover the identity
of one of them with high probability.

Resistance to impersonation: The escrow agency, even after recovering many iden-
titles of many users from the transcripts of weak identity proofs, cannot fake
any legitimate identity in the sense described above. In particular, this im-
plies that the escrowed identity does not reveal the certificate of the user.
Similarly, one can require that the certificate issuer cannot fake the identity
of someone already in the system.

172

Separability: The escrow agency is completely independent of the other parties
unless a request to uncover the second-tier identity is made. An issuer, verifier
and user can set up an identification system without ever registering with
or communicating in any way with the escrow agent. The escrow agency is
only "woken up" when there is a request to revoke anonymity.

Con ta in ing t h e e s c r o w a g e n t Introducing an escrow agent into a system
almost inevitably reduces its security. However, the nature of the problem and
the separability property allows us to minimize the damage.

By separating the escrow agency from the initialization and normal operation
of the identification system, we can have the agency be dormant most of the
time. For example, if the escrow agency is implemented with secure hardware,
this hardware can be stored in a secure bank vault until needed. This helps to
reduce the chance that an escrow agent will be compromised.

A further check on a rogue escrow agent is that the verifier has to ask for a
more precise identification. Key escrow for communication is typically coercive,
and requires that someone be able to obtain the ciphertext of any two peo-
ple's communications without their request or consent. Thus, the possibilities
for widespread abuse are greater than with our scenario. Nevertheless, it is only
prudent to allow for multiple escrow agents; the escrow agents in most of our
protocols can be made to work using simple group cryptography (e.g. [15, 30]).

1.2 His to ry and re la ted work

An earlier version of this work appeared in [20], using cut-and-choose techniques
for the zero-knowledge proofs. The current version describes much more efficient
implementations based on group signature schemes. Group signature schemes
were introduced by Chanm and Heyst [12], and subsequently developed in [13,
10,28,11]. Independently and concurrently with [20], Camenisch and Stadler
[11] developed new schemes for efficient group signatures, one of which can quite
efficiently achieve most of our goals; we describe this solution in Section 3.

At the heart of escrowed identity and group signatures is an efficient proof
that an encrypted value possesses some property. Frankel, Tsiounis and Yung
[17] and Young and Yung [33] give very efficient protocols of this type. Again,
these proofs are are not completely applicable to our setting, but suggest that
dramatically more efficient identity escrow schemes may be possible.

The notion of keeping a trusted agency dormant except for "emergencies"
has been proposed in a number of contexts. Asokan, Shoup and Waidner [1]
show how to use a dormant third party for a variety of applications related
to the exchange of digital signatures. Young and Yung [33] show how to use
a dormant escrow agent for key escrow. Brickell, Gemmel and Kravitz [5] and
Stadler, Piveteau and Camenisch [32] show how to use a dormant escrow agent in
electronic cash systems (more efficient schemes are presented in [29,17]). Quite
recently, Micali [26] has shown how to use a dormant agent for certified mail.

173

1.3 Road map

In Section 2 we describe some of the building blocks we use for our protocols.
In Section 3 we discuss how to implement identity escrow using group signature
schemes. In Section 4 we show how to achieve stronger separability. In Section 5
we show an implementation of an escrowed identity scheme based on the E1-
Gamal encryption and signature schemes.

2 Prel iminaries

We describe some of the basic building blocks we use in our protocol.

2.1 Bit C o m m i t m e n t s

We work in the argument framework of Brassard, Chaum and Cr4pean [7]. In this
paradigm, all parties are assumed to be computationally bounded. It is shown in
[7] how to commit to bits in statistical zero-knowledge, based on the intractability
of certain number-theoretic problems. Ds Pedersen and Pfitzmann [14]
give a protocol for efficiently committing to and revealing strings of bits in
statistical zero-knowledge, relying only on the existence of collision-intractable
hash functions. This scheme is quite practical. For simplicity, we will simply
speak of committing to and revealing bits when referring to the protocols of
[14].

In some implementations we also commit to strings by probabilistic encryp-
tion [19] using the public key of the escrow agency. These commitments are only
computationally secure. Furthermore, they allow for the escrow agents to recover
the values of these commitments in addition to those revealed by the identifier
in the course of the zero-knowledge proofs.

2.2 The EI-Gaxnal signature and encryption schemes

We base one implementation of escrowed identity on the EI-Gamal signature
and encryption schemes [16], which we summarize, following [31], with slight
modifications to suit our purposes.

In both schemes, there is a common prime p, which for our purposes is of
the form 2q + 1 where q is a prime. Let g E Zp have order q. For the encryption
scheme each party has a private key X E Zq and a public key Y = gx. For
the signature scheme we denote the secret key by S E Zq and the public key by
p =qS.

To encrypt a message M E Zp given public key P, the sender uniformly
generates r E Zq and computes Ey(M, r) = (gr, Myr). The decryption function
is given by Dx(A, B) = B/A x.

The signer signs a message M E Zp-1 as follows.

1. The signer uniformly generates r E Zq, computes a = gr, and casting it as
an integer in O..(p- 1). This step is repeated until a and p - 1 are relatively
prime.

174

2. Using the extended Euclidean algorithm, the signer computes b E Zp-1 such
that Sa + rb = 1 mod p - 1.

3. The signer returns (a, b).

To verify a signature (a, b) for M, the verifier checks tha t paab = gM mod p.

Signing the "0" document is not secure We remark on a weakness in the
E1-Gamal signature scheme. The document "0" can be signed efficiently by a
par ty tha t does not have the secret key S. For example, by setting a = P and
b = - P mod q we have paab = P P P - P = qO. More generally, we can set a = pk
mod p and setting b = - a / k mod q. For this reason, we use E1-Gamal signatures
for 1 instead of 0. We assume that given a number of signatures for 1 it is
impossible to generate a different signature for 1. This assumption is plausible,
but we do not know of any more standard assumptions that imply it.

2.3 The RSA encryption scheme

In the RSA encryption scheme the public key consists of n = pq where p and
q are prime and an exponent e, where e is relatively prime to n and r A
message M is encrypted by computing M e mod n. The private key consists of
d such that de = 1 mod (p - 1)Ca - 1) (strictly, de = 1 mod A(n) suffices), and
M e is decrypted by computing (Me) d = M rood n.

We make an additional assumption beyond the security of RSA. We assume
that for a random ~ it is hard to find (a,b) such tha t a e - b e = $ m o d n .
Furthermore, we assume that given a set of such pairs {(ai, b~)} it is hard to
generate a new pair. Given d, it is easy to generate a pair (a, b) with given value
of a e by computing a = (ae) d and b = (ae - ~) d .

Camenisch and Sta~iler [11] use essentially the same assumption, and have
pointed out that the system is not secure for very small e (2 or 3); the pairs (a, b)
fall on a low degree curve, which can be used as a basis for an attack. However,
a large e doesn't seem vulnerable to such an attack.

3 Using group signatures to escrow identity

Borrowing freely from the exposition in [11], we describe the basics of group
signatures. We then proceed to describe how a particular implementation can
be used to give an escrowed identity system with most of the desired features.

Group signatures

A group signature system consists of a group manager that oversees a group
of signers. The group manager can allow other players to join the group. Any
member of the group can sign a message on behalf of the group. The group
manager can determine precisely who within the group signed the message, but
no one else can.

175

This framework suggests the following set of protocols for something close
to escrowed identification. Being issued a certificate corresponds to joining the
signature group. The identifier can identify himself to the verifier by signing a
(random) message of the verifier's choosing. To avoid replay and timing attacks,
this message should include the (approximate) time and the verifier's name.
To revoke anonymity the group manager determines who actually signed the
message.

However, in the reduction outlined above, the group manager plays two roles:
the issuer and the escrow agency. To obtain an escrowed identity system, we need
to split these roles. As noted in [11], one of their implementations ([11], Section 6)
allows for a considerable, though not complete separation between these roles.
For completeness, we explicitly describe how this separation is made.

3.1 The Camenisch-Stadler construct ion

We briefly describe the parts of the Camenisch-Stadler construction that are
relevant to separating the roles of the issuer and the escrow agency. We omit
quantities, guarantees, protocols and other issues that are not directly relevant
to this goal.

The group manager generates an RSA modulus n = p q , RSA exponents
el,e2, a cyclic group G = (g), of order n, an element h E G, an E1 Gamal
private-key, public key pair, (p, YR = hP). It publishes (n, el, e2, G, g, h, YR).

The identifier randomly generates a private x and computes y -- x el and
z = gV. As part of the registration process, the identifier sends z to the group
manager. The only operation the group manager performs relying on its private
information is the computation of ~1/e2 for some ~ (used as part of a blind
decryption to generate the certificate).

The signature incorporates a proof of knowledge of a valid certificate and
r h r y the private key, x. As one part of the signature, the identifier sends (YR, g),

which is the E1-Gamal encryption of z. A group manager can thus recover z,
allowing it to determine the identity of the signer. The signing process requires
knowledge of x and y.

The group manager can be split into an issuer and an escrow agency as
follows. The issuer generates n = p q and the corresponding RSA exponents. It
then registers n with the escrow agency. The escrow agency chooses G, g, h, p
a n d Y R appropriately and sends G, g, h, rR to the issuer, keeping p private. It is
typically not hard to verify that G is of the correct order. Also, the issuer can
ensure that h is "random enough" by requiring that is be, for example, a hash
of g.

The issuer can register participants without knowing p. The escrow agency
can determine z without knowing the factorization of n. Once it has recovered
z, it must go back to the issuer to determine who actually corresponds to z.

3.2 Features obtained by the Camenisch-Stadler construct ion

First, we note that for this and all the (serious) protocols proposed in this
paper, we argue purely heuristically. All statements about security are implicitly

176

preceded by, "Well, it sure looks to us that...". An interesting open question is
to obtain efficient schemes based on well known hardness assumptions.

The above construction achieves three of our desired features, and achieves
a weak form of the other two. The validity of the first-tier identification and
the security of the second-tier identification derive from the corresponding secu-
rity properties of group signature schemes. Furthermore, the Camenisch-Stadler
construction also achieves a strong resistance to impersonation. The group cen-
ter cannot forge a message from a group member, essentially because the group
manager never learns x and y; this inability extends to the issuer and the escrow
agency (even working in concert).

Guaranteed escrow of the second-tier identification is in a sense also guaran-
teed by the properties of group signature schemes. However, note that the the
escrow agency and the issuer must work in concert to reveal the identity. Thus,
if the issuer later refuses to help, or no longer exists, no second-tier identification
may be obtained. This problem may be ameliorated by having the issuer con-
tinually inform the escrow agency of the identity corresponding to each z. For
some applications, this weakness may be a strength, in that it provides another
layer of protection for the anonymity of the identifier.

A weak form of separability obtained, in that the escrow agency is not in-
volved with any transaction. However, the escrow agency has to be contacted to
initialize a group. For some applications, this may be reasonable, but it is not
suitable when forming groups should be a lightweight operation and the escrow
agency is to be kept dormant nearly all the time.

4 A s c h e m e a c h i e v i n g f u l l s e p a r a t i o n

The greatest limitation of the group-signature based schemes is that the issuer
and escrow agent cannot be completely separated - they must communicate when
the system is set up and whenever anonymity must be revoked. It is of interest to
see how much separation is indeed possible. Using general zero-knowledge proofs
for NP assertions, great flexibility may be obtained, though with a complete loss
of practicality. To allow person X into the group, the issuer can simply sign a
message stating that X is in the group. To identify itself, the identifier simply
(probabilistically) encrypts this message and signature in the escrow agent's
public key, and gives a zero-knowledge proof that were the message decrypted
it would be a valid signed message authorizing entry (further details, such as
avoiding resending attacks, omitted).

We give an escrowed identification system that is vastly more efficient than
the above system, but substantially less efficient than the group-signature based
schemes. In its basic form, it allows for impersonation attacks by the issuer; as
recent work in progress we believe we can eliminate this attack with a somewhat
more complex scheme.

4.1 The protocols

Central to our protocols is an RSA public key consisting of n = pq and e (rela-
tively prime to r with a secret key d such that de = 1 mod (p - 1)(q - 1).

177

In addition there is a new parameter, $, that can be either set randomly or to a
fixed number different from 0 or 1 (but must be fixed throughout the execution
of the scheme).

A certificate is a pair (a, b) such that a e - b e = $. Given d, one can easily
generate a certificate, even if a or a e is fixed, since b = (a e - $)d rood n. We
assume that a and b are relatively prime to n. The structure of these certificates
follows closely the methodology of [11] (and was independently put forth in [20]).

In i t i a l i z ing the sys tem To set up the system, the issuer chooses n, e, d and
as above, and publishes (n, e, d). Note that unlike the previous scheme, the

escrow agency has no part in setting up the system. We only assume that any
potential escrow agent has a public key.

Issuing a certificate The center chooses a valid certificate (a, b) such that a e
contains (say, in its low order bits) the name of the identifier, and gives (a, b)
to the identifier. As another security check, a can actually contain a compact
signature by the issuer; anyone can verify that only the issuer made a.

C h e c k i n g t h e w e a k (first t ie r) i d e n t i t y On a high level, the identifier proves
that he knows a proper certificate (a, b) by a cut-and-choose protocol. The iden-
tifier and the verifier may choose their escrow agent independently during each
identification session.

First, the identifier chooses independently and uniformly at random two num-
bers al , bl both relatively prime to n. He then sets a2, b2 to be the numbers
satisfying a = al a2 and b = bl b2. This partition is done to later hide the actual
value of a and b from the verifier. The identifier also chooses uniformly and in-
dependently at random two numbers x, y such that x and y are relatively prime
to n.

The identifier commits to the values of al , a2, bl, b2, (al) e, (a2) e, (bl) e, (b2) e,
x, x (a l) e, x(bl) e, and x(ala2) e + y, and x(blb2) e + y. He commits to (al) e and
(a2) e by probabilistic encryption, using the chosen escrow agents public key. He
commits to the other variables using statistical zero-knowledge commitments.
The following five tests are used by the verifier to check that the committed
values are correct and that the implied a = ala2 and b = bib2 satisfy a e - b e = ~.
The verifier will pick one of them at random and check that it holds.

1. The identifier opens the commitments on x, a l , (al) e, a lx , bl, (bl) e and blx,
and the verifier checks that all the values match their supposed relations.

2. The identifier opens the commitments on a~, (a2) e, b2, (b2) e and blx , and
the verifier checks that all the values match their supposed relations.

3. The identifier opens the commitments on x (a l) e, (a2) e, y and x(a la2) e + y,
and the verifier checks that the values match their supposed relations.

4. The identifier opens the commitments on x(bl) e, (b2) e, y and X(blb2) e + y,
and the verifier checks that the values match their supposed relations.

178

5. The verifier opens the commitments on x, on x(ala2)e--by, and on X(b lb2)e+y ,
and the verifier checks that x is relatively prime to n and that

(x (a l a 2) e + y) - (x(blb2) e + y) = 5x .

Note that the tests all simultaneously hold only if (aza2) e - (bib2) e = 5. Thus,
a cheating identifier is caught with probability 1/5. The error probability can
be decreased to e by repeating this protocol O(log(1/e)) times; by choosing
the constant appropriately, we have that either two-thirds of the committed
(a = ala2, b = bzb2) (they may have different values in each iteration) are good
or the verifier accepts with probability at most e. Furthermore, identifier and the
verifier go through a standard proof by which the identifier can show with high
confidence that most of the committed values of a = a la2 and b = blb2 have the
same value (details omitted).

Also, if the identifier has a good certificate pair C a, b), then he can always
pass all tests. Last, the view of the verifier in each of the tests can be simulated
efficiently.

Recovering the complete (second tier) identity The verifier gives the
transcript of the proof to the escrow agent. Since the commitment on the (a l) e
and (a2) e were done by probabilistic encryption, using the escrow agent's public
key, the escrow agent can read the value of (a l) e and (a2) e and thus get a e.
This value plainly reveals the identity of the user; no further consultation with
the issuer is required. One subtlety is that there may be multiple values, ei-
ther because the prover cheated successfully in some rounds or because multiple
identifiers colluded. These are thwarted by having the equality check; nearly all
the recovered ae's will be the same, and will be equal to an a from a certificate
known to the identifier.

4.2 Features of the identification system

As with the group-signature based schemes, all of the arguments for the security
of this scheme is heuristic; the same caveats about statements of security apply.
Some necessary hardness assumptions that we make are that it is hard to find a
pair (a, b) so that a e - b e = ~ rood n (so no one can fake an identity), that given
(a, b) satisfying the above, it is hard to produce a different pair (a ~, b t) with the
same property (so the user must escrow the real ae), and tha t given a e it is not
possible to find the appropriate C a, b) (so that the escrow agency cannot fake the
user identity). The last condition is implied by the first one, since it is easy to
produce a e for any arbitrary a. Further discussion of this assumption is given in
[11].

It appears difficult for an outsider to mimic a group member. The interactive
proof does imply that the intruder has a valid certificate. Assuming that these
are hard to generate (given all the side information available to an attacker),
valid first-tier identification appears to hold. Similarly, the zero-knowledge proof
implies that with high probability the escrow agent will be able to recover a e
for a valid certificate, implying that the second-tier identity has been escrowed.

179

However, without the escrow agent, the proof of knowledge of a certificate is
zero knowledge, so the second-tier identity is secure.

The strongest feature of the protocol is its separability. The escrow agent is
completely uninvolved unless asked to revoke anonymity. Indeed, the identifier
and verifier have complete freedom of who they pick as their agent for any
individual transaction. Anyone with a public key known to the identifier and
verifier may be designated an escrow agent, with no prior interaction required.

The weakest feature of the protocol as it now stands is its resistance to
impersonation. The issuer can forge any player's identity as soon as a certificate
is issued. However, it can be verified that knowing (al) e and (a2) e and seeing
the rest of the proof reveals nothing about b. Hence, even after determining
the identifier's identity, the escrow agency and the verifier cannot team up to
impersonate the identifier. Hence, this system works best when the issuer is
under high security and preferably is destroyed (erases its private data) when
no further certificates are to be issued. We note that since it's sole operation is
an RSA decryption, it can be implemented via group cryptography, increasing
the security of the system. We also note as a result of this weakness, the escrow
agent's goal is to determine the identifier, but not to prove this identity.

4.3 Recent enhancements

We report on work in progress tha t will be described in detail in an upcoming
longer version of this paper. We believe we can modify the above protocol, with
some loss of efficiency, to make it resistant to impersonation. We briefly describe
the basic tricks involved.

First, one can achieve resistance to impersonation in a similar manner as in
[11] by having a be gr for some element g E Z*, where the random r is chosen
by the identifier. Care must be taken so that this discrete log problem is hard.
As part of the identification process, the identifier proves knowledge of r, which
is never revealed to anyone.

Unfortunately, this way of choosing a doesn't allow the identifier's name to be
encoded. So instead, three certificates (al, bl), (a2, b2) and (as, b3) are generated,
such that the identifier knows the discrete log of al , and a3 contains his identity.

A potential impersonation attack by the issuer would simply substitute a
new value of al whose discrete log is known by the issuer. However, given the
existence of space efficient signature schemes, a3 and al can be "linked" by
the identifier, so that only that value of al can be used to establish someone's
identity, and only the identifier can make such a link. Essentially, a3 contains the
identifier's signature for al. However, it isn't possible to directly prove in zero
knowledge that these committed pairs are linked (they aren't normally revealed).
One attack is for two identifiers to mix their pairs, so that no linked pairs are
recovered. To thwart this attack, al , a2 and a3 are additionally constrained so
tha t a3 = al + a2, and this relation is proven during the identification protocol,
using standard cut and choose techniques. The issuer can arrange things so that
for any 3 valid certificates au = al + a2 implies that a3 and al are linked. Many,
many details omitted.

180

5 A n E 1 - G a m a l b a s e d i d e n t i f i c a t i o n s y s t e m

Given the rather nonstandard and quite similar assumptions used by the previous
two schemes, one would like to make sure that plausible schemes can be based
on alternative cryptographic functions. We construct an identity escrow system
using the EI-Gamal signature scheme as the underlying cryptographic primitive.
Unfortunately, the protocol is even more inefficient than the last, and does not
enjoy its strengths, but serves as evidence that identity escrow does not rely on
what is essentially a single nonstandard assumption.

We first give a high level discussion of this scheme.

Init ial izing the s y s t e m The issuer begins by choosing keys for the encryption
scheme and for the signature scheme. For both schemes he chooses a big prime p
satisfying p = 2q + 1 for a prime q, and a random quadratic residuosity g in Z~.
The issuer then chooses a secret key S for the signature scheme and computes
the related public key P = gS rood p. The escrow agent chooses a secret key X
for its encryption scheme and computes Y = gX mod p. The issuer publishes
g,p, P, Y. In the sequel all operations are done modulo p unless otherwise stated.

Issuing a certificate The valid certificates will be the set of all signatures
on the number 1. Namely, legitimate identities will be all pairs (a, b) satisfying
paab = g mod p. The issuer selects a random signature of 'T ' which is a pair
(a, b), and sends (a, b) to the identifier. Specifically, the issuer chooses a random
number r E [0..q - 1] and computes a = gr. (Note that a is a random quadratic
residue modulo p.) The issuer tries again if a = q,1 otherwise, the issuer computes
the number b satisfying aS + rb = 1 rood q. (a standard calculation in the field
Zq.) The issuer sends (a, b) to the identifier and saves a to allow it to help the
escrow agent revoke anonymity.

Checking the weak (first t ier) ident i ty We go into the details of this pro-
cess in Section 5.1 below. But in a nutshell, in order to identify himself, the
identifier provides an E1-Gamal encryption of a, and then proves in perfect zero
knowledge that he knows a pair (a, b) such that paab = g rood p and such that
a is encrypted in the cipher-text he provided.

Recovering the comple te (second tier) iden t i ty If the identity of a user
has to be revealed, the verifier sends the escrow agent the encryption of a. The
escrow agent decrypts it and, with the help of the issuer, determines which
identifier had that value of a.

5.1 Verifying the identity in zero knowledge

Let us get into the details of the identity verification process. Recall that Party A
should not get any knowledge from the interaction with U, but only be convinced

1 The number a equals q with (negligible) probability 2 / (p - 1).

181

tha t U is a proper user. To this end, U commits on a few numbers, and by
A's request, U opens a few of them. A learns nothing from seeing the opened
commitments, but if U tries to cheat, A catches him with a constant probability.
Thus, repeating the process O(log(1/e)) times, A is convinced tha t indeed U has
a proper identity with probability 1 - e.

User U begins by encrypting a, i.e., selecting uniformly at random R E Zq
and computing the encryption (a, fl) = (gR, y R . a), which he sends to A. Next,
U partitions a, b and R into shares in the following manner. For b and for R
the user U chooses a random sum modulo q. Namely, he chooses uniformly at
random bi, R1 E Zq, and then sets b2 = b - bi mod q and R2 = R - Ri mod q.
The value of a is parti t ioned in a more involved manner. User U splits it into a
product ai �9 a2 which equals a both modulo p and modulo q. He does this in the
following manner. U chooses uniformly at random a number al E [1..pq - 1] such
tha t al is relatively prime to pq. Next, U chooses the unique a2 E [1..pq - 1]
satisfying a2 = a /a i mod p and a2 = a /a i mod q. This can be done by the
Chinese Remainder Theorem. Note that for any fixed a (which is assumed to be
relatively prime to pq), a2 (as well as al) is randomly distributed amongst the
numbers in [1..pq - 1] which are relatively prime to pq.

We first describe the tests on a high level; a more detailed explanation follows.
We first specify some of the commitments tha t U makes. These commitments
are the ones needed to state the high level tests, but more commitments will be
required by the implementations of these tests.

C o m m i t m e n t s U commits to each of the following values: a l , a2, bi, b2, Ri ,
R2, yR1, yR2, (a l) b l , (a l)b2 , (a2)bl , (a2)b2, gR1, gR2, ya , , ya2.

Tests We describe on a high level a set of checks. A picks one check at random,
and U proves that the test holds by opening some of his commitments. There
are 34 low-level tests which are described in high level by the following 6 tests:

1. A multiplication test tha t yR1 . yR2 . al �9 a2 ---- f~. Note that each of the
multiplicands is a random number that can be simulated, and g is public.
(This consists of 6 basic tests which are described in Subsection 5.1 below.)

2. A multiplication test tha t gR1. gR2 = c~. Note that each of the multiplicands
is a random number that can be simulated, and g and ~ are public. (This
consists of 5 basic tests which are described in Subsection 5.1 below.)

3. A multiplication test tha t (pal)a2 . (a l)b i . (a2)bl . (a l)b2 . (a2)b2 -- g. (This
consists of 8 tests which are described in Subsection 5.1 below.)

4. U proves to A that ai "a2 mod pq is a number in the range 1 . .p-1 . See Section
5.1 for the details of implementing this test (which consists of 9 basic tests).
A discussion of why this is a crucial test appears in the appendix of [20].

5. For i -- 1, 2 and for j = 1, 2 the user U opens the commitments on al on bj
and on (a~) b~ and A checks that indeed the value of the exponentiation is
correct. (These are 4 basic tests.)

182

6. For i = 1, 2 the user U opens the commitments on R~, a~ and on g ~ and
on Ya~ and A checks that both exponentiations are correct. (These are two
basic tests.)

These techniques are quite standard, and one may check that seeing one of
these tests is perfectly simulatable. Also, if all tests hold then the multiplications
hold as well. And finally, if the multiplications hold, and the user follows the
protocol as above, then he never fails to convince A.

Implementing the multiplication tests Let us describe the standard manner
in which the multiplication tests are implemented. In these tests, at most one
of the operands is revealed; we use the test in situations where this leakage
does not pose a problem. The first test we are interested in is a multiplication
test tha t yR1 . yR2 . al �9 a2 = /3 . The value of/3 is given to A. To this end U
chooses uniformly at random and independently 4 numbers t l , t2, t3, t4 in Z~. U

commits on the values of f l Y R1, t2Y R2, t3al, t4a2, and tlt2t3t4 all modulo p.
The following 6 tests check the multiplication.

1. U opens the commitments on t l , y R , and t l Y ~ and A checks that the
values match.

2. U opens the commitments on t2, yR~, and t2Y R2 and A checks that the
values match.

3. U opens the commitments on t3, al , and t3al and A checks that the values
match.

4. U opens the commitments on t4, a2, and t4a2 and A checks that the values
match.

5. U opens the commitments on tl, t2, t3, t4, and tlt2tst4 and A checks that
the values match.

6. U opens the commitments on tl yR~, t2YR2, tsal , t4a~, tl t2tst4, and U checks
that the multiplication tl Y RI �9 t2Y R2 �9 tsal �9 t4a2 equals tlt2t3t4/3.

In a similar manner one can construct 5 basic tests and the corresponding com-
mitments to check that gR~gR2 = a.

The second multiplication test should check tha t (pa~)a2 .(al)bl .(a2)b~ .(al)b2.
(a2) b2 = g. For this test, U chooses independently and uniformly at random 5
numbers ts, t6, tT, ts, t9 in Z$. U commits on each of these 5 values and also on
P ~ t s , (P~)~2 .t5 a2, (al)b~t6, (a2)bltT, (al)b2ts, and (a2)b~tg, and on the value of
(ts)a2t6tTtstg. The following 8 tests check the validity of the commitments and
the correctness of the multiplication asserted.

1. U opens the commitments on t5, on al and on Pa~ts, and A checks that the
values match.

2. U opens the commitments on P ~ t s , on a~, and on (pa~)a~ . t~a~ and A
checks that the values match.

3. U opens the commitments on t~, on (a~) b~ and on (al)ht~, and A checks
that the values match.

4. U opens the commitments on t~, on (a~) b~, and on (a2)bltT, and A checks
that the values match.

183

5. U opens the commitments on ts, on (a l) b2 and on (al)b2t8 and A checks that
the values match.

6. U opens the commitments on ts, on (a2) b2, and on (a2)b2ts and A checks
that the values match.

7. U opens the commitments on values of all ts, re , . . . , t9, on the value of a2
and on the value of the product (ts)a2tot~tsts, and A checks that the values
match.

8. U opens the commitments on (pal)a2 . tsa2, (al)blt6, (a2)bltT, (al)b2t8, and
(a2)b2ts, and on the value of (ts)a2tot~tsts. A checks that the product

(p~,)a2. t5~2. (al)bXt6. (a2)bxt7. (al)b2~s. (a2)b2t9

equals the product/~. (ts)a2t6tvtsts.

Testing a range property modu lo n -- pq Let q,p be two primes such
that q < p. A useful tool in our system is a zero knowledge test which verifies
that a given pair of numbers al, a2 E [0, 1, . . . ,pq - 1] satisfies that ala2 mod pq
is a number in the range [0..p - 1]. A solution to this problem, for a general
range, is given by Bellare and Goldwasser [2]; for greatest efficiency they use an
improvement due to Cramer based on the techniques of [9]. In their scenario, the
prover commits on the value a (which has to be in the right range) by committing
on each of the bits in its binary representation. However, these and other such
protocols depend intimately on how the value is committed to; the commitment
method we use (a is committed to as a product of committed values, al and
a2) precludes the direct use of this solution. In [20], we give a simple cut-and-
choose type proof for this commitment format; which is omitted here due to
space limitations.

5.2 Fea tures of the ident i f icat ion sys t em

The interactive proof establishes that the identifier has a valid certificate (a, b)
and that he has escrowed the value of a. We know of no way of generating
valid certificates, or of generating a new certificate from a number of other valid
certificates. Thus, heuristically, this argues that the first-tier identification is
valid and that the second-tier identification has been escrowed. However, we
note that as with the group-signature based scheme, the escrow agent needs the
issuer's help to revoke anonymity. Without the escrow agent, the zero-knowledge
proof only reveals the E1 Gamal probabilistic encryption of a valid certificate, so
the second-tier identity seems secure.

The protocol is weakly separable in the same way as with the group-signature
scheme: the escrow agent must be involved during the initialization and needs
the issuer's help to revoke anonymity.

The escrow agent only sees a, but doesn't receive b. However, the issuer can
impersonate any identifier.

Acknowledgements

We thank Markus Stadler for useful discussions.

184

References

I. Asokan, Shoup and Waidner. Optimistic Fair Exchange of Digital Signatures. IBM
Research Report RZ2973, November 17, 1997.

2. M. Bellare and S. Goldwasser. Verifiable partial key escrow. Proceedings of the
Fourth Annual Conference on Computer and Communications Security, ACM,
1997. Preliminary version appeared as Technical Report CS95-447, Dept. of CS
and Engineering, UCSD, October 1995.

3. M. BeUare and S. Goldwasser. Encapsulated key escrow. MIT Laboratory for Com-
puter Science Technical Report 688, April 1996.

4. M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computations. In Proc. of the ~0th Annu.
~ymposium on the Theory of Computing, pages 1-10, 1988.

5. E. Brickell, P. Gemmel and D. Kravitz. Trustee-based tracing extensions to anony-
mous cash and the making of anonymous change. In Proc. 6th Symposium on
Discrete Algorithms, 1995, pp. 457-466

6. D. Boneh and M. Franklin. Efficient generation of shared RSA keys. Advances in
Cryptology - CRYPTO '97 Proceedings, pp. 425-439. Lecture notes in Computer
Science #1294, Springer Verlag, Berlin, 1997.

7. G. Brassard, D. Chaum and C. Crdpeau. Minimum Disclosure Proofs of Knowl-
edge. In JCSS, pages 156--189. 1988.

8. D. Chanm, C. Crepau, and I. DSangard. Multiparty unconditionally secure proto-
cols. In Proc. of the 2Oth Annu. ACM Syrup. on the Theory of Computing, pages
11-19, 1988.

9. R. Cramer, I. Damgs and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. Advances in Cryptology - CRYPTO
'94 Proceedings, pp. 174-187. Lecture Notes in Computer Science #839, Berlin:
Springer-Verlag, 1994.

10. Camenisch. Efficient and generalized group signatures. Advances in Cryptology
- - EUROCRYPT '97, volume 1233 of Lecture Notes in Computer Science, pages
465-479. Springer Verlag, 1997.

11. J. Camenisch and M. Stadler. Efficient Group Signature Schemes for Large Groups.
Advances in Cryptology - CRYPTO '97 Proceedings, pp. 410-424. Lecture notes
in Computer Science #1294, Springer Verlag, Berlin, 1997.

12. D. Chaum and E. van Heyst. Group signatures. Advances in Cryptology - -
EUROCRYPT '91, volume 547 of Lecture Notes in Computer Science, pages 257-
265. SpringerVerlag, 1991.

13. L. Chen and T. P. Pedersen. New group signature schemes. Advances in Cryptology
- - EUROCRYPT '94, volume 950 of Lecture Notes in Computer Science, pages
171-181. SpringerVerlag, 1995.

14. I. Ds T. Pedersen and B. Pfitzmann. On the Existence of Statistically Hid-
ing Bit Commitment Schemes and Fail-Stop Signatures. Advances in Cryptology -
CRYPTO '93 Proceedings, pp. 250-265. Lecture Notes in Computer Science #773,
Berlin: Springer-Verlag, 1994.

15. Yvo Desmedt and Yair Frankel. Theshold cryptosystems. Advances in Cryptology
- CRYPTO '89 Proceedings, pp. 307-315. Berlin: Springer-Verlag, 1990.

16. T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. Advances in Cryptology - CRYPTO '89 Proceedings, pp.
10-18. Berlin: Springer-Verlag, 1985.

17. Y. Fr~akel, Y. Tsiounis and M. Yung. "Indirect Discourse Proofs": Achieving Ef-
ficient Fair Off-Line E-Cash. Advances in Cryptology-ASIACRYPT '96 proceed-
ings, pp. 286-300. Lecture Notes in Computer Science #1163. Springer-Verlag,
19851996.

185

18. Y. Frankel and M. Yung. Escrow Encryption Systems Visited: Attacks, Analy-
sis and Designs. Advances in Cryptology - CRYPTO '95 Proceedings, Berlin:
Springer-Verlag, 1995.

19. S. Goldwasser and S. Micali. Probabilistic Encryption. In JCSS Vol 28(2), pages
270-299, 1984.

20. J. Kilian and E. Petrank. Identity Escrow. Theory of Cryptography Library,
f t p : / / t h e o r y , l c s . mit . edulpub/ tcryptol /97-11, ps, August 1997.

21. J. Kilian and F. T. Leighton. Fair Cryptosystems, Revisited. Advances in Cryp-
tology - CRYPTO '95 Proceedings, Berlin: Springer-Verlag, 1995.

22. F. T. Leighton. Failsafe key escrow systems. Technical Memo 483, MIT Lab. for
Computer Science, August 1994.

23. A. Lenstra, P. Winkler and Y. Yacobi. A Key Escrow System with Warrant Bounds.
Advances in Cryptology - CRYPTO '95 Proceedings, Berlin: Springer-Verlag, 1995.

24. S. Micali Fair public-key cryptosystems. Advances in Cryptology - CRYPTO '92
Proceedings, Berlin: Springer-Verlag, 1993.

25. S. Micali. Fair public-key cryptosystems. Technical Report 579, MIT Lab. for
Computer Science, September 1993.

26. S. Micali. Certified E-Mail With Invisible Post Offices. Talk at Workshop on
Secure Computation, Weizmann Institute, June, 1998.

27. S. Micali and R. Sydney. A Simple Method for Generating and Sharing Pseudo-
Random Functions, with Applications to Clipper-like Key Escrow Systems. Ad-
vances in Cryptology - CRYPTO '95 Proceedings, Berlin: Springer-Verlag, 1995.

28. H. Petersen. How to convert any digital signature scheme into a group signature
scheme. Security Protocols Workshop, Paris, 1997.

29. J. Camenisch, U. Maurer, and M. Stadler. Digital payment systems with passive
anonymityrevoking trustees. In proceedings, ESORICS: European Symposium on
Research in Computer Security", Springer-Verlag, 1996.

30. A. De Santis, Y. Desmedt, Y. Frankel and M. Yung. How to Share a Function
Securely (Extended Summary). Proceedings of the Twenty-Sixth Annual ACM
Symposium on Theory of Computing, pp. 522-533, Montrdal, Qudbec, May 23-25,
1994.

31. Schneier, B. (1993). App/{ed Cryptography. John Wiley.
32. M. Stadier, J.-M. Piveteau and J. Camenisch Fair blind signatures. In Proc.

Eurocrypt 95, 1995, LNCS 921, pp. 209 - 219
33. Adam Young and Moti Yung. Auto-Recoverable Auto-Certifiable Cryptosystems.

Eurocrypt 98, LNCS 1403 (Ed. K. Nyberg), pp. 17-32.

