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A b s t r a c t .  In this paper, we derive 7 quadratic relations over GF(2) 
from the input and output bits of the S-boxes of DES. We apply one of 
those to an improved linear attack of full round DES. We describe an 
improved algorithm by combining the non-linear approximation method 
proposed by Knudsen and Robshaw, and the multiple approximation 
method proposed by Kaiiski and Robshaw. This improvement can re- 
duce the number of required plaintexts and ciphertexts pairs to 25/34 
(73.5 %) of those number of pairs 243 required in the linear attack by 
Matsui. 

1 I n t r o d u c t i o n  

It is well known that there is no linear relation between the input and output 
bits of each S-box of DES [He176, BraT7]. On the other hand, by representing 
S-boxes as Boolean polynomials [Sch82, Day83, Way92, SAM97], it is easy to 
derive some algebraic relations of the input and output bits of S-boxes. We know 
that the degrees of these polynomials are less than or equal to 6, so there are 
algebraic relations of S-boxes with degree less than or equal to 6. Thus, the 
following problem may be natural to consider; what is the smallest degree of 
all algebraic relations of the S-boxes, and how are the algebraic relations which 
have the smallest degree represented? It can be shown that there is an algebraic 
relation over GF(2) which has degree 3 in all S-boxes, so the above question is 
rewritten as follows; does there exist a quadratic relation? This paper shows that 
there are 7 quadratic relations of S-boxes $1, $4 and $5 of DES; they can be 
derived by calculating the GrSbner bases of S-boxes with respect to the degree 
reverse lexicographic order in the Boolean polynomial ring. We apply one of 
these quadratic relations to improve the linear cryptanalysis offered by Matsui 
[Mat93]. 

In 1993, Matsui succeeded in recovering the secret key of the 16-round DES by 
using linear cryptanalysis in computational experiments [Mat94]. His main idea 
was the approximation of the S-boxes by linear relations. He recovered the key of 
16-round DES by using 243 pairs of plaintext and ciphertext, which took 50 days. 



201 

Since then, some theoretical and practical enhancements or extensions to linear 
cryptanalysis have been proposed [LH94, KR94, KR96, THHK98]. Kaliski and 
Robshaw proposed an algorithm using multiple linear approximations [KR94]. 
They applied it to small-round versions of DES to confirm its performance. As 
an example, they tried the 1-R attack and 2-R attack of 7-round DES, and suc- 
ceeded to reduce the number of required texts. On the other hand, Knudsen and 
Robshaw proposed an algorithm using non-linear approximation [KR96]. They 
considered whether the linear approximations can be replaced with non-linear 
approximations. They constructed relatively simple non-linear approximations 
whose absolute bias are larger than that of the best linear approximation to S- 
box $5, and adopted to 5-round DES. However, their techniques do not seem to 
offer any significant advantage over the existing attack to full round DES. 

In this paper, we deal with derived quadratic relations of the round function of 
DES, like non-linear approximations, whose probabilities are 1. By using one of 
the quadratic relations, we construct an improved linear attack algorithm for full 
round DES. We combine the non-linear approximations method and the multiple 
approximations method. This improvement can reduce the number of plaintexts 
and ciphertexts to 25/34 (73.5 %) of the 243 pairs required in Matsui's attack. 

2 Deriving the algebraic relations of S-boxes 

In [Sch82, Dav83, Way92, SAM97], the polynomial expressions of the S-boxes of 
DES in the Boolean polynomial ring over GF(2) were constructed. 

At first we summarize the notion of the Boolean polynomial ring. The Boolean 
polynomial ring over GF(2) with n variables tl, ..., tn is defined by the following 
quotient ring of the polynomial ring 

GF(2)[tl, ..., tn]lId(t 2 + tl,.. . ,  t 2 + tn), (1) 

where Id(t~ + tl,  ...,t~ + t~) is the ideal generated by the fundamental relations 
t 2 + tl = 0, ...,t 2 + tn = 0 of Boolean variables tl, ...,t~. 

Now we review how to obtain representations of the input and output bits 
of S-boxes in Boolean polynomial. For example, since the output of S-box $1 
corresponding to input 4 (= (0,0,0,1,0,0)) is 13 (= (1,1,0,1)) (Figure 1), we have 
the following algebraic relation of input Boolean variables xl, ..., x6 and output 
Boolean variables yl,..., y4. 

( x l + l ) ( x 2 + l ) ( x 3 + l ) ( z 4 + O ) ( x 5 + l ) ( x 6 + 1 )  
( ( y l+O) (y2+O) (y3+1) (y4+O)+l )=O 

(2) 

Since there is an algebraic relation corresponding to each input from 0 to 63, we 
have 64 algebraic relations for each S-box which are similar to equation (2). 

In commutative algebra, the technique of GrSbner basis is well-known as a 
basic tool [Bec93]. By using this technique, we can obtain another representation 
of these algebraic relations. For example, we can obtain the representation of each 
output bit yi by the polynomial of input bits xl, ..., x6 by computing the Gr6bner 
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Fig. 1. S-box $1 of DES 

1 ~ S 1  x 3 
I x 4 

Table  1. The number of the quadratic and cubic relations of the S-boxes 

S-box $1 $2 S~ $4 g5 $6 S7 Ss 
quadratic 1 0 0 5 1 0 0 0 

cubic 103 112 112 75 103 112 112 112 

basis with respect to the lexicographic order of the sum set of polynomials in the 
above 64 algebraic relations and the fundamental relations x~ + xl -- 0, ..., y~ + 
Y4 = 0 of all Boolean variables [SAM97]. We compute the GrSbner basis 1 in 
order to obtain algebraic relations which have much smaller degrees of S-boxes. 
With reference to the problem of the degree of the algebraic relations of S-boxes, 
we have the following lemma. 

L e m m a  1 1. There is no linear relation for all g-boxes. [He176, Bra77]. 
2. There is a cubic (that is, it has degree 3) algebraic relation for each g-box. 
(See Appendix A.) 

Does there exists a quadratic (that is, it has degree 2) algebraic relation of 
each S-box? In order to see that, we can use the reduced GrSbner basis. By using 
the reduced GrSbner basis with respect to the degree reverse lexicographic order, 
we can obtain all algebraic relations of each S-box which are linearly independent 
over GF(2) .  Table 2 shows the number of quadratic and cubic polynomials in the 
reduced GrSbner basis of the Boolean algebraic relations of S-boxes as derived 
above with respect to the degree reverse lexicographic order. 

From Table 2, we know that there are 7 quadratic relations of S-boxes in 
total. All quadratic relations are given in Appendix B. Now we pay attention to 
the quadratic relation corresponding to the S-box g5 : (Xl, x2, xs, xa, xs, x~) 
(Yl, Y2, Y3, Y4) as follows. 

XlYl  ~- Xly2 "~ XlY3 "~ XlY4 Jr X2yl "~ X2y2 + x2Y3 
+x2Y4 + X2Xl -~ XSyl "~ XSY2 -~ xSy3 + xSya + X5X2 (3) 

~-Yl -~ Y2 -F Y3 "~ Y4 ~- Xl + x2 + x5 -F 1 ---- 0 

1 In order to compute the GrSbner Basis over GF(2), we used the computer algebra 
system Risa/Asir developed by Fujitsu LABORATORIES LTD. [Nor92]. 
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It can be factorized into the polynomial as follows 2. 

(Yl +Y2 + Y3 +Y4 + x2 + 1)- (Xl + x2 +x5  + 1) = 0 (4) 

It is surprising that, in the first factor of the left side of the polynomial (4), 
there is the best linear approximation (5) with bias 5/16 corresponding to the 
input and output bits of :95 discovered by Matsui [Mat93]. 

yl + y2 + y3 + y4 + x2 - 0 (5) 

In the remaining part of this paper, we will t ry to apply the quadratic relation 
(4) for improving the linear attack of 16-round DES. 

3 A p p l i c a t i o n  t o  n o n - l i n e a r  c r y p t a n a l y s i s  

We denote the sum of the coordinates from il to ij by X [ i l , i 2 , . . .  ,i1] for each 
vector X E GF(2) n. In particular, we denote the i-th coordinate of X by X[i]. 
We can easily extend the algebraic relation (4) to the algebraic relation of i-th 
round function Fi : (Xi ,  K~) --+ Fi(X~,  K~) as follows; 

(Fi[3, 8, 15, 24] + X~[17] + K~[26] + 1) 
A* : .(Xi[16, 17, 20] + Ki[25, 26, 29] + 1) = 0, (6) 

where X~ E GF(2) a2 is an input of i-th round and Ki E GF(2) as is a i-th round 
key of the round function Fi. 

In [KR96], Knudsen and Robshaw tried to apply the following non-linear 
approximations of S-boxes :95 in order to raise the bias of best linear approxi- 
mation of 5-round DES. Each non-linear approximation has bias 24/64, 18/64, 
respectively. 

h' : Yl + Y2 -t- Y3 + Y4 
= x2 + XlX2 + x l x 5  + x2x6 + xsx6  + XlX2X6 + XlXsX6 (7) 

D' : Yl + Y2 + Y3 
= X 2 J r  X 4 --~ X l X  4 ~- X l X  6 --~ X2X 4 �9 X2X6 Jr  X l X 2 X  4 --~ X l X 2 X  6 

By replacing linear approximation with these non-linear approximations, we can 
raise the bias 2.26 times more than those of linear approximation of 5-round 
DES, which reduces the number of plaintexts and ciphertexts pairs required for 
recovering one bit of key information of 5-round DES. They tried to recover 
more key bits using Matsui's 1-round and 2-round elimination method. They 
said, however, their techniques do not seem to offer any significant advantage 
over the basic attack. 

In the above, we derived the quadratic representation (6) of the round func- 
tion. In the first factor of equation (6), we can find the following best linear 

2 Because the Boolean polynomial ring is not a unique factored domain, each polyno- 
mial in the ring may have another factorized form. In fact, polynomial (3) can be 
factorized into another form (yl + y2 + Ys + y4 + xl + x~ + 1)- (xl + x2 + x5 + 1) - 0. 
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approximation A for the i-th round function F/ with the absolute valued bias of 
5/16 that appeared in [Mat93]. 

A: Fi[3,8,15,24] + Xi[17] + KI[26] = O (s) 

Matsui derived the following linear approximation (9) for 16-round DES by using 
best linear approximation of 14-round A-ACD-DCA-ACD- whose bias is P14 = 
1.19 �9 2 -21 which is a concatenation of the three linear approximations A, C, D of 
the round function [Mat93], 

Pr[3, 8, 14, 25] + Pill 7] + Cl[8, 14, 25] + F1 (Pr, K1)[17] 
+F16(Cr,K16)[8, 14,25] --/(2[26] + K41261 +/(5[4] +/(6[26] 

+/(8[26] +/(9[4] +/(10126] + Kt2126] + Ksa[4] + K14126], 
(9) 

where Pz, Pr are left and right halves of plaintext and Cz, Cr are left and right 
halves of ciphertext, respectively. 

Since A* is a non-linear approximation with bias 1/2, we obtain the following 
non-linear approximation A*-ACD-DCA-ACD- of 16-round DES by replacing the 
linear approximation A with quadratic relation A* which has higher bias than (9). 

(Pr[3, 8, 14, 25] +/~[17] + Cl[8, 14, 25] + Ft (Pr,/(1)[17] 
+FI6(Cr,K16)[8, 14,25] +/(2[26] + K4126] +/(5[4] +/(6[26] 

+Ks[26] +/(9[4] +/(10126] +/(12126] + K1314] + Kt4126] + 1) 
�9 (Pl[16, 17, 20] + Fs(P~,/(1)[16, 17, 20] +/(2[25, 26, 29] + 1) -- 0 

(10) 

The bias of non-linear approximation (10) is higher than (9). We may not, 
however, be able to use (10) directly in order to reduce the number of required 
plaintexts and ciphertexts for recovering the effective key bits of 16-round DES, 
involved in (10), because the numbers of effective text bits and effective key bits 
involved in (10) become much larger than those in (9). In the next section, we 
will apply (10) to the multiple approximations to avoid this problem. 

4 A p p l i c a t i o n  t o  m u l t i p l e  a p p r o x i m a t i o n s  m e t h o d  

In the previous section, we showed the non-linear approximation (10) of 16-round 
DES. The numbers of effective text bits and effective key bits corresponding to 
(10) are 24 and 26. We think it is not efficient to derive all 26 effective key 
bits at once, because the size of counter table corresponding to the effective keys 
is quite large. In order to avoid this problem, we deal with each factor in (10) 
independently. The following equation is the second factor of (10). 

P~[16,17,20]+FI(Pr,KI)[16,17,20] = K2125, 26, 29] (11) 

When (11) holds, the bias of (9) changes to e0 -- (1/2)/(5/16)Pt4 = 8/5p14. 
When (11) does not hold, it changes to el = 2- (1 - (8/5)/2)pt4 = 2/5pt4. Thus, 
we deal with the linear approximation (9) as two linear approximations; one is 
when the equation (11) holds, and the other is when it does not hold. 
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Let N be the number of plaintexts and ciphertexts pairs. To (, T1) be the 
number of plaintexts and ciphertexts pairs such that the left side of equation 
(9) is equal to 0 and the equation (11) holds (, does not holds). We calculate 
the statistic U = aoTo + alT1 for some weights a0 al such that ao + al = 2. 
For maximizing the distance between N/2  and the average E[U] in terms of the 
standard deviation av, we use Lemma 2. 

L e m m a  2 (Kaliski  and R o b s h a w  [KR94]) The distance IN/2 - E[U]l/au 
is maximized for given N when the weights a~ are proportional to the biases of 
the linear approximations. 

From Lemma 2, we conclude that the best choices of the weights are a0, al 
such t h a t a 0 : a z  = e 0 : e z = 4 : l .  

L e m m a  3 (KaUski and R o b s h a w  [KR94]) The success rate of the algorithm 
with optimal weights a~ with respect to the biases ei is 

Q (12) 
1 

Lemma 3 tells us that the success rate of original attack with N plain texts 
is the same as that of the improved attack with N I plaintexts as long as the 
following relation holds. On the assumption of random input, we can assume 
that the number of times of holding the equation (11) is NI/2. 

2 1 - 4((8/5p14) 2 + (2/5p14) 2) 
(13) 

This is equivalent to 

N, 2 5 (  6 8 )  2 5 N = O . 7 3 5 . N .  (14) =~-~ 1-4 .~-~p14 . N ~  34 

Therefore, we can reduce the number of pairs to 73.5 % by using our attack. 

5 I m p r o v e d  a l g o r i t h m  f o r  a t t a c k i n g  1 6 = r o u n d  D E S  

In this section, we show the improved attack algorithm for 16-round DES. It still 
requires a large number of effective texts and effective keys in equations (9) and 
(11). In order to minimize the work spent in processing the data, we divide the 
algorithm into two parts. The first part is Matsui's original attack (part 1, 2, 3). 
The second is an improved part which replaces the exhaustive key search part 
in Matsui's attack with multiple approximations (part 4, 5, 6). 

1 Compute plaintexts and ciphertexts pairs and count up the effective text bits 
of equation (9) and (11). 
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2 Count up the counters in the set ]C corresponding to effective key bits of (9) 
if the left side of (9) is zero. 

3 Sort the effective keys of (9) using the counters K: in order of reliability. 
4 For the most reliable effective key of (9) when the right hand of (9) is zero, 

count up the counters in the set 7/0 corresponding to effective key bits of (11), 
with bias 4 or 1 by whether the left hand of (11) is zero or not, respectively, 
count up counters in the set 7/1 with bias 1 or 4, respectively, in the same 
way as 7/0. 

5 Sort the effective keys of (11) using the counters 7/0 and 7/1 in order of 
reliability. 

6 From the most reliable effective keys of (9) and (11), search for the remaining 
key bits. 

In [Mat94], the effective text and key bits of (9) are shown. The 13 effective 
text bits of the left half of equation (9) are 

Pr[32], Pr [1], ..., Pr [5], Pr[16], ..., P~[21], Pr[3, 8, 14, 25]+Pt[17] +Ct[3, 8, 14], (15) 

and the 12 effective key bits of left half of equation (9) are 

/(1 [1],...,/(1 [6],/(1 [25],...,/(1 [3O]. (16) 

The 11 effective text bits of (11), if the key bits in (16) are fixed, are 

Pl[16, 17, 20], Pr [8], ..., Pr [17], (17) 

and the 13 effective key bits of (11) if the key bits in (16) are fixed are 

K1 [13], ..., K1 [24], /(2[25, 26, 29]. (18) 

Moreover, we can use another approximation replacing the plaintexts P and 
ciphertexts C in (9) and (11), similarly. 

In our algorithm, we prepare a counter corresponding to the effective keys of 
equation (9) in the first part whose size is 12 bits long, and those of equation 
(11) in the second part whose size is 13 bits long. Thus, we can reduce the total 
size of effective key counter from 2 • 235 to 2 • (212 + 213) by using the improved 
algorithm. 

6 T h e  c o m p u t e r  e x p e r i m e n t s  

In this section, we show the results of computer experiments. Detail of the al- 
gorithm is shown in Appendix C. In order to estimate the complexity of our 
improved attack on 16-round DES, we consider the attack of 8-round DES by 
using plaintexts and ciphertexts pairs whose number is 

1.49.25/34.217 = 1.09.217, (19) 

which is equivalent to the attack of 16-round DES using 25/34 �9 243 pairs. Our 
computer experiments recovered the all round keys 10,000 times. Table 2 shows 
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Table 2. Complexity and success rate of attacks on 16-round DES (%) 

complexityH2~1 23~ 2~ 240 241 24.. 24~ 244 
(1) l[47.9 54.9 62.0 68.7 74.3 81.4 86.6 g0.9 
(2) 124.7 30.3 36.6 44.1 52.2 60.5 68.8 76.2 
(3) 50.1 54.4 61.3 68.2 75.1 81.3 86.8 91.2 

(1) : The original algorithm with 243 pairs. 
(2) : The original algorithm with 25/34.243 pairs. 
(3) : Our improved algorithm with 25/34.2 a3 pairs. 

the comparison of the complexity and the success rate of the Matsui's original 
algorithm and our improved algorithm. 

We also conducted a computer experiment of recovering all round keys of full 
round DES using 25/34 x 243 pairs by our improved algorithm. The computer 
environments we used are 16 Sun workstations (Ultra SPARC 167MHz x 14 and 
200 MHz • 2) 3 and a DEC workstation (Alpha 21164A 500MHz). By using the 
above machines and by implementing the algorithms in a bitslice manner [Bih97, 
NM97, SAM97] with Kwan's instructions sets of S-boxes [Kwa98] 4, we achieved 
1.14 Gbps in total 5. It took about 6 days to compute all pairs of plaintexts and 
ciphertexts, 44 seconds for arranging the order of the key bits and about 4 hours 
for exhaustive key search (= about 237 times of encryption). In total, we could 
recover the all key bits in less than 7 days. 

7 Concluding remarks 

In this paper, we derived the 7 quadratic relations of S-boxes. We used one 
of those quadratic relations for improving the linear cryptanalysis with 2-round 
elimination method proposed by Matsui. We constructed an improved algorithm 
for attacking 16-round DES which is a combination of the non-linear apprximation 
method and multiple approximation method. Moreover, we showed an effective 
algorithm that consisted of two parts to reduce the size of counter table of effective 
keys and minimizing the effort in processing the data. Overall, we could reduce 
the number of required plaintexts and ciphertexts pairs to 25/34 = 73.5 % of that 
demanded by Matsui's original attack for recovering the key of 16-round DES. 
From computer experiments, when we attack 16-round DES with 25/34.243 pairs, 
the probability of finding the secret key equals that of Matsui's original attack. 

3 These workstations construct the parallel computer AP3000 with 16 nodes developed 
by FUJITSU LTD. 

4 For calculating one S-box, 51 instructions are required on average. 
5 Ultra SPARC 167MHz : 51 Mbps, 200MHz : 62 Mbps, Alpha 500MHz : 336 Mbps 
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A p p e n d i x  A .  P r o o f  o f  L e m m a  1 ( 2 )  

For each S-box Si : ( x l , x 2 , x 3 , x 4 , x s , x 6 )  -+ ( y l , y 2 , y 3 , Y 4 ) ,  there are Boolean 
polynomial representations in input bits x l, x2, x3, x4, x s, x6 of output  bits YI, 
�9 .., Y4 as follows. { Yl ----/l(Xl,-.-, x6) 

Y2 = 1 2 ( x l , . . . , x 6 )  (20) 
Y3 : f3(Xl ,  "", X6) 
Y4 = f4 (xl,  ..., x6) 

From these Boolean polynomials, we obtain the following algebraic relations. 

x yj = (i e {1,...,6},j e {1,...,4}) (21) 

The number of these polynomials in (20) and (21) is 28 (= 4 + 4 x 6). It is easy 
to see that the right halves of these Boolean polynomials in (20) and (21) have 
degrees at most 6, and these polynomials are linearly independent over GF(2) .  
Since the number of terms with degree more than 3 in a Boolean polynomial with 
6 variables are 22 (= 15 + 6 + 1), we can eliminate the terms with degree more 
than 3 from these algebraic relations. 

A p p e n d i x  B .  A l l  q u a d r a t i c  r e l a t i o n s  o f  S - b o x e s  

We label the input and output bits to S-box as follows. 

Si  : ( X l , X 2 , X 3 , X a , X s , X 6 )  "+ (Y l ,Y2 ,Y3 ,Y4 )  

$1 : *  

S4 : � 9  

$5 : � 9  

X2X 1 -~- X3X 2 -{- X4X2 -{- X5X2 -~- X6X2 -{- y l X l  + ylX2 + ylX3 + y lX4 + yIXs  + 
ylX6 + y2Xl + y2X2 + y2X3 + y2X4 + y2X5 + y2X6 + y3Xl + ysX2 + ysX3 + 

y3X4 -F y3x5 + y3x6 + y 4 x l  + y4x3 + y4x4 -F y4x5 + y4x6 + Y4Yl + Y4Y2 + 

Y4Y3 + x l  + x 2  + x 3  + x 4  + x 5  + x 6  +Yl  +Y2 +Y3 +Y4 + 1---- 0, 
x 3 x l  + XsXl  + x~x3 + y l x 3  + y l x 5  + y2x3 + y2x5 + y3xs  + y3x5 + y4x3 + 

y4x5 + x l  + x3 + x5 + Yl + Y2 + Y3 + Y4 + 1 = O, 
X2•l -~- X3X2 "~ X4Xl -~- X5Xl "}- X5X4 -b y l  X5 "[- yl  X6 -I- y2X5 + y2X6 "}- yaX5 "b 

Y3X6 "{- y4X5 + yaX6 -'}- Xl  + Y2 "}- Y3 ---- O, 
XaX2 "b X4X l "+" X4X3 T X5X l "~ X5X2 -{- X5X3 "{- y l  Xl -'}- Yl  X2 "{- y l  X4 "~ yl  X6 + 
y2Xl "b y2X2 "+" y2X4 -}- Y2X6 "{- y3Xl "-}- y3X2 + y3X4 + y3X6 Jr" y4Xl "}- y4X2 + 

y4X4 + Y4X6 Jr Xl -}- X3 T X6 "+" Yl + Y3 + 1 = O, 
X3X 1 "~ X3X2 -I- X4X3 + X5Xl -}- X5X2 -}- X5X4 "~ YaYl -}- YaY2 -t" Y4Y~ + Y4Y2 -i- 

X2 + X3 + X4 "t- Yl + Y3 -}" 1 = O, 
X4Xl "+" X5Xl T X5X4 T yl  x2 T yl  x4 + Y2X2 + y2x4 "{- Y2Yl "F Y3X2 Jr" y3x4 T 

Y3Y2 T y4 x2 T y4x4 T Y4Yl + Y4Y3 -t- x2 T x3 Jr x4 T x5 "F x6 + Yl + Y4 -}- 1 = O, 
X2Xl W x5x2  "t- y l  x l  + yl  x2 "}- yl  x5 "{- Y2Xl "{- y2x2 "b Y2X5 "b y 3 x l  -b ysx2  "}- 
y3x5 "}- y 4 x l  + y4x2 T y4x5 "F Xl "t- x2 -}- x5 "Jr Yl "t- Y2 "}- Y3 + Y4 + 1 = O. 



210 

A p p e n d i x  C.  D e t a i l  o f  o u r  a l g o r i t h m  

In this section, we show detail of our improved algorithm. The following two 
non-linear equations are obtained from best linear expression of 14-round DES 
with 2-R elimination method and the quadratic relation of the input and output 
bits of S-box Ss; 

(Pr [3, 8, 14, 25] + Pl [17] + Ct [8, 14, 25] + F1 (Pr, 1(1)[17] 
+F16(Cr,/(16)[8, 14, 25] +/(2[26] +/(4[26] +/(5[4] +/(6[26] 
+Ks[26] + K914] + K~0126] + K12126] + gz314] + K14126] + 1) 

�9 (Pt [16, 17, 20] + F1 (Pr,/(1)[16, 17, 20] + / (2  [25, 26, 29] + 1) = 0, 

(22) 

(Cr[3, 8, 14, 25] + Cl[17] + Pl[8, 14, 25] + F16 (Cr,/(16)[17] 
+Fz (Pr,/(1)[8, 14, 25] +/(3[26] +/(4[4] +/(5[26] + KT[26] 
+gs[4] + K9126] + gz~[26] + g~[4] + K~3126] + K~5126] + 1) 

�9 (Cz[16, 17, 20] + F16 (Cr, K16)[16, 17, 20] +/(15125, 26, 29] + 1) = 0, 
(23) 

where P~, P~ are left and right halves of plaintext and Ct, Cr are left and right 
halves of ciphertext, respectively, and Ki is i-th round key with 48 bit long�9 We 
define the notations of the vectors of effective text and key bits corresponding to 
equation (22) as follows. 

A ( P , C , K )  = 

B(P,C)  = 

D(K)  = 

E(K)  = 
G(P) = 
H(P) = 
I ( g )  = 
J ( g )  = 

Pr[3, 8, 14, 25] + Pill7] + Cl[8, 14, 25] 
+F1(Pr, K1)[17] + F16(Cr,K16)[8,14,25] E GF(2) 

(Pr [3, 8, 14, 25] + P,[17] + Ct[8, 14, 25], 
Pr [32], Pr[1], .-., Pr [5], Cr[16], ..., Cr[21]) E GF(2) 13 

K2 [26] +/(4 [26] + K5 [4] +/(6 [26] + Ks [26] 
+/(9[4] +/(10126] +/(12126] + K1314] + K1a[26] E GF(2) 

(/(1 [1], ...,/(1 [6], K15 [25], ..., KI~ [30]) E GF(2)12 
Pt[16, 17, 20] + FI(P~, K1)[16, 17, 20] E GF(2) 
(Pill6, 17, 20], P~[8], ..., P~[17]) E GF(2) lz 
/(2[25, 26, 29] e GF(2) 
(K1 [13], ..., K1 [24]) C GF(2) 12 

Similarly, we define the following notations of effective text and key bit vectors 
related with equation (23). 

A'(P, C, K),  B'(P, C), D'(K),  E ' (K) ,  G'(C), H'(C), I ' (K),  J ' (K) 

Algor i thm 1 (Improved Attack Algorithm) 

1 (Data Counting Phase) For N pairs {(P1, C1), ..., (PN, CN)} Of input and 
output, count up the following counters. 

V(b, d) --- # {  n I b = S(Pn,  Cn), d = g(Pn)} 
Y'(b',d') = #{  n ] b' = B'(Pn, Vn),d' = H'(en)} 

2 (Original Linear Attack Phase) 
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W(b) = 5-~.d V(b, d), (0 < b < 213) 
W'(b') = ~d '  V'(b',d'), (0 < b' < 213) 

By using the above counters W, W',  sort the effective key vectors correspond- 
ing to the following in order of reliability by using the original linear attack. 

((D(K), E(K)),  (D'(K), E'(K))) 

3 (Data Counting Phase II) Let (k, k') E GF(2) 26 be the most reliable key 
vector obtained in the step (2). 

T(d) = ~cond, V(b,d), 
T'(d') = ~'~-con42 V'(b',d'), 

condl : A(b, k) = D(k), cond2 : A'(b', k') = D'(k'). 

(Key Counting Phase) For m,m '  (0 <_ m,m'  < 212), calculate the ]oUowing 
counters. 

U(e, a) = 4 ~cond8 T(d) + ~'~-cond4 T(d) 
cond3 : G(d, a) = e, conda : G(d, a) = e + 1, 

U'(e', d)  = 4 ~cond5 T'(d)  + 5-~.r T'(d') 
cond5 : G'(dl,a ') = e', cond6 : G'(d,a')  = e' + 1. 

5 (Key Sort Phase) Sort the set of key vectors {hi (=  (e, a))}, {h~, (= (e', a'))} 
which are belong to effective key vectors o] 

((I(K), J(K)), (I '(K), J'(K))), 

in order of IU(hj) - 5/4NI, IU'(h~,) - 5/4NI, respectively, and sort the set 
of pairs of key vector (hi, h~,) e GF(2) 26 in order of reliability. 

6 (Exhaustive Search Phase) For each key vectors (k{, k~,, hi, h~,), search ]or 
the remaining 14 secret key bits in order of reliability until the correct value 
is found. 

In exhaustive search phase (Algorithm 1, (6)), the reliability of a vector (k{, k~,, hi, 
h~,) has been determined in order of the magnitude of ((i + 1) x (i' + 1)) 12s x 
(j + 1) x (y  + 1) which is the formula derived experimentally from the case of 
8-round DES. 

In the improved attack algorithm, all of effective key bits are 52 bits, that 
is, D(K), E(K),  D'(K), E'(K),  I (g ) ,  J (g ) ,  I ' (g ) ,  J '(K) in total. There are, 
however, 10 of 52 bits are duplicated as below. Therefore, the number of the 
remaining key bits which should be executed exhaustive search is 56 - 52 + 10 = 
14. 

KI [3] = K16 [151, KI [5] = KI6 [24], KI [131 =/(16 [4], KI [14] = KI6 [22], 
/(1115] = K16123], K1116] = K1616], KI[17] = Kt6121], KI[19] = K1612], 
KI[20] =/(16118], KI[23] = KI6[I]. 


